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Lagrangians

If you had asked me 25 years ago, I would have said that
Lagrangians in classical field theory were mainly useful as
nmemonic devices for remembering field equations: It is

easier to remember a Lagrangian (e.g., L = /—gR) than

to remember the field equations (e.g., Gg = 0). Thus, it
was my view that for applications to classical physics,
you can dispense with the Lagrangian if you've already
memorized the field equations.

Some people seem to believe that Lagrangians are
somehow necessary and/or sufficient to have well posed
field equations. This is not true.

However, I was wrong about Lagrangians being useful
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classically only for mnemonic purposes. Lagrangians

provide classical field theories—particularly those with

local symmetries—with vitally important auxiliary

structure. This additional structure is crucial to

understanding the thermodynamic properties of classical
black holes.
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Diffeomorphism Covariant Lagrangians

Consider a diffeomorphism covariant Lagrangian L(g, 1)

for a metric g, and arbitrary matter fields ¥*, inn

spacetime dimensions. Diffeomorphism covariance means
it 0g = £xg and 0y = £ x, then 0L = £ x L. It implies
that L can be written as a function of g, the Riemann
curvature of g, covariant derivatives of the Riemann
curvature, and ¥ and its covariant derivatives. Let

¢ = (g,v) denote the collection of dynamical variables.

i) View the Lagrangian as an n-form rather than a scalar
density. (“d” commutes with pullbacks and it is generally
much more straightforward to apply Stokes™ theorem
than Gauss’ law.)
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Example: Einstein-Hilbert Lagrangian for vacuum

general relativity:
La1 il ™

ii) Don’t put the Lagrangian under an integral sign so as

to pretend that you are calculating an action. (The

action integral over spacetime generally doesn’t converge
anyway. People usually put in a boundary and spend
time and effort computing the boundary term. It is much

easier to work with the local Lagrangian.)

First variation:

5L =E 66+ db(s,50)
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People normally throw away the “boundary term” 6 (or

choose a boundary term in the action so as to cancel 6)

and keep the Euler-Lagrange equations of motion £ = 0.
For our purposes, the more useful thing to do is: iii)
Throw away the equations of motion and keep the

boundary term 6.

Example: For the Einstein-Hilbert Lagrangian, we obtain

1 ac
O ...tn1 = Eg gbd(vd5gbc — Vc5gbd)€ca1...an_1

Symplectic current ((n — 1)-form):

w(@; 019, 02¢) = 010(¢; 029) — 020(; 010) -
Then dw = 0 if 01¢ and 0,0 satisty the linearized
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equations of motion, 01 = 0o = 0. The symplectic

form is obtained by integrating w over a Cauchy surface
)35

W (: 616, 626) = / (616, 620)

Example: For the Einstein-Hilbert Lagrangian, we

obtain

1

Ws(g;019,029) = a9
o

(61 habézpab = 52ha,b61pab) )

with
pab B hl/Q(Kab . habK) .
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Hamiltonians and Hamilton’s Equations

Let X be a vector field on spacetime defining a notion of

“time translations.” If you know the Hamiltonian Hx,

W0

you have broken up the phase space variables into “p

and “q” and you are trying to write the equations of

motion £ = 0 as time evolution equations, then it is quite
useful to use the usual form of Hamilton's of motion:

£xq=0Hx/op, Lxp=—0Hx/dq

But if you know the equations of motion (e.g., from a

W,

Lagrangian), you haven’t broken up phase space into “p

)

and “g,” variables, and you are trying to figure out if a

Hamiltonian, Hx, exists and, if so, what it is, then:
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iv) A much more useful form of Hamilton’s equations of

motion 1s:
0Hx = Wy (¢; 00, £x0)
for all 0¢ it and only if ¢ satisfies £ = 0.
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Nocther Current and Charge

Diffeomorphism covariance of L means that for any
vector field X, the field variation 0¢ = £ x¢ produces the
Lagrangian variation 0L = £ x L(¢). This implies that

the Noether current

Jx =g Lxg) — X+ L

is conserved, dJx = 0, whenever E' = 0. Since this holds
for all X, this further implies that Jx takes the form

jX:XO+dQX

where C' = 0 whenever the equations of motion hold
(and C' satisfies a Bianchi identity, so the equations
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C' = 0 are naturally viewed as “constraints.” )x is called

the Nocther charge. For the Einstein-Hilbert Lagrangian,
() x takes the form

1

b
(QX)al...a,n_g — _EvaCE Cal...an_g
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Fundamental Variational Identity

Taking the first variation of the two formulas for Jx, we

obtain

w(g;00, £x0) = X -[E(g)-00] + X -0C
+d[0Qx(0) — X - 8(¢;09)]

Comparing with Hamilton's equations of motion, we
obtain

5HX/EX.50+/82 5Qx(¢) — X - (6 60)]

Thus, the Hamiltonian of a diffeomorphism covariant
theory always takes the the form of a volume integral of a

“pure constraint” term plus a surface term. In the
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asymptotically flat case, the ADM conserved quantities

are defined as the boundary term from infinity:

5Hyx — / 6Qx(6) — X - 0(6:6)]
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The First Law of Black Hole Mechanics

For a stationary black hole, choose X to be the horizon
Killing field

K ="+ Z ;07
Integration of the fundamental identity vields:

O-5M—ZQ¢5L—/6QK.
; B

Can show further that

50 — 59
2T
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with E%° = §L/dRgpeq. One may therefore identify S as
the entropy of the black hole.
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Canonical Energy

Define the canonical energy of a perturbation 0¢ of a

stationary black hole by

Ex = Wy (¢500, £x00)

[Need to impose gauge conditions at B to make Ex
gauge invariant.] If £ has a positive flux at infinity and
through the black hole horizon (as is the case for
axisymmetric perturbations in general relativity), then
positivity of £k for perturbations with oM =0J;, =0 is

necessary and sufficient for linear dynamic stability. But

Page 1§§/19



the second variation of our fundamental identity yields

Exc =M~ 8%, - ;628.
- il

which shows that positivity of £ is necessary and
sufficient for local thermodynamic stability (maximum of
S at fixed M, J;). Thus, for black holes in general
relativity, dynamic and thermodynamic stability are
equivalent.
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Conclusion

It is well known that there is a deep connection between

black holes and thermodynamics. The Lagrangian
structure of classical general relativity plays a deep role

in this relationship.
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