Title: The Weak Gravity Conjecture, Natural Inflation, and the Conformal Bootstrap

Date: May 19, 2015 01:00 PM

URL: http://pirsa.org/15050117

Abstract: There have been recent claims that the weak gravity conjecture (WGC) rules out multi-field natural inflation. I review these claims and then show how 2-field natural inflation can be consistent with even the most stringent form of WGC. I also discuss my recent attempt at numerically proving the WGC via the conformal bootstrap.

Pirsa: 15050117 Page 1/57

The WGC for Everyone

work with Raman Sundrum and Prashant Saraswat

Pirsa: 15050117 Page 2/57

QG reduces to EFT at low energies.

Pirsa: 15050117 Page 3/57

String theory reduces to a vast landscape of EFTs.

Pirsa: 15050117 Page 4/57

The swampland consists of EFTs that are not in the landscape.

Pirsa: 15050117 Page 5/57

The weak gravity conjecture

There exists some particle such that

$$G_N \frac{m^2}{r^2} < \frac{q^2}{r^2}$$

$$\frac{m}{m_{\rm pl}} < q$$

Messages

- The WGC is the CFT version of Noether's theorem.
- The WGC requires model builders to include particles and cutoffs that ensure all black holes can decay.
- Despite recent claims, two-axion models can achieve transplanckian field transits while remaining consistent with the WGC.

Pirsa: 15050117 Page 7/57

Why should the WGC be true?

To avoid an infinite number of exactly stable states

$$Q = \sum q_i \qquad M > \sum m_i$$
 $\sum q_i > \sum m_i$ $q_j > m_j$

What prevents us from maximally violating it?

 The WGC imposes a lower bound on the strength of the gauge force

$$e \to 0$$
 $q = Ze$ $m_{\rm pl}$ Fixed

We would be left with matter charged under a global symmetry and a decoupled photon.

Pirsa: 15050117 Page 11/57

QG violates all global symmetries.

- Form a black hole with area A
- Hawking radiation is ignorant of baryon number
- Feed it baryons to keep its area unchanged

Pirsa: 15050117 Page 12/57

We lose the statistical interpretation of black hole entropy.

$$S = \frac{\text{Area}}{4G_N} = \log(\# \text{ of states})$$

$$\{|B=0\rangle, |B=1\rangle, \cdots |B=e^s\rangle, \cdots\}$$

We lose the statistical intepretation of black hole entropy.

$$S = \frac{\text{Area}}{4G_N} = \log(\# \text{ of states})$$

$$\{|B=0\rangle, |B=1\rangle, \cdots |B=e^s\rangle, \cdots\}$$

We lose the statistical intepretation of black hole entropy.

$$S = \frac{\text{Area}}{4G_N} = \log(\# \text{ of states})$$

$$\{|B=0\rangle, |B=1\rangle, \cdots |B=e^s\rangle, \cdots\}$$

A direct proof could determine a lower bound on the gauge coupling.

Pirsa: 15050117 Page 16/57

QG involves a path integral over spacetime geometries.

$$Z = \int \mathcal{D}g_{\mu\nu} \cdots e^{i \int d^4x \sqrt{-g}R + \cdots}$$

Pirsa: 15050117 Page 17/57

Restrict to geometries that asymptotically approach AdS

Pirsa: 15050117 Page 18/57

That path integral is equal to a completely different one

$$Z_{\text{AdS}} = Z_{\text{CFT}}$$

 Same quantum theory described by two different sets of variables.

Pirsa: 15050117 Page 19/57

Dictionary

fields $\phi \longleftrightarrow$ composite operators \mathcal{O} gauge \longleftrightarrow global $A_{\mu} \longleftrightarrow J_{\mu}$ $m_{\rm pl} \longleftrightarrow$ central charge c $1/e \longleftrightarrow$ flavor central charge κ

Pirsa: 15050117 Page 20/57

Violation of CFT Noether theorem

$$e \to 0$$
 at fixed $m_{\rm pl}$ $\kappa \to \infty$ at fixed c

- At infinite flavor central charge, the conserved current decouples
- Intuitively, the central charge should be tied to flavor central charge

Pirsa: 15050117 Page 21/57

The conformal bootstrap

- The conformal bootstrap equations are a set of consistency conditions that all CFTs must; satisfy.
- Try to show that for large enough flavor central charge, a "CFT" cannot satisfy the conformal bootstrap equations.

Pirsa: 15050117 Page 22/57

The conformal bootstrap

- The conformal bootstrap equations are a set of consistency conditions that all CFTs must; satisfy.
- Try to show that for large enough flavor central charge, a "CFT" cannot satisfy the conformal bootstrap equations.

Pirsa: 15050117 Page 23/57

Messages

- The WGC is the CFT version of Noether's theorem.
- The WGC requires model builders to include particles and cutoffs that ensure all black holes can decay.
- Despite recent claims, two-axion models can achieve transplanckian field transits while remaining consistent with the WGC.

Page 22 of 60

Pirsa: 15050117 Page 24/57

Messages

- The WGC is the CFT version of Noether's theorem.
- The WGC requires model builders to include particles and cutoffs that ensure all black holes can decay.
- Despite recent claims, two-axion models can achieve transplanckian field transits while remaining consistent with the WGC.

Pirsa: 15050117 Page 25/57

Model building rules to satisfy WGC

- Do not impose exact global symmetries.
- Make sure all electric and magnetic black holes can decay.
- Take into account cutoffs due to magnetic monopoles.

Pirsa: 15050117 Page 26/57

Do not impose exact global symmetries.

 Don't tune an infinite number of higher dimension operators to zero

.

All global symmetries are just accidental

Pirsa: 15050117 Page 27/57

Make sure all electric and magnetic black holes can decay.

- Generalize the WGC to multiple U(1)'s.
- For each U(1), assume there exists both in magnetically and electrically charged black holes.

Pirsa: 15050117 Page 28/57

Consider a BH be charged under multiple *U(1)*'s

$$\vec{Q} = \sum n_i \vec{q}_i \qquad M > \sum n_i m_i$$

The convex hull in charge-to-mass ratio space must contain the unit ball.

Consistent with WGC

in consistent with WGC

Pirsa: 15050117 Page 30/57

Take into account cutoffs due to magnetic monopoles.

UV Theory

U(1) with monopoles

Lattice Gauge Theory Extra Dimensions Grand Unified Theories

$$R_{
m mon} \sim rac{1}{\Lambda}$$

$$m_{\rm mon} \sim \frac{\Lambda}{e^2}$$

Model building rules to satisfy WGC

- Do not impose exact global symmetries.
- Make sure all electric and magnetic black holes can decay.
- Take into account cutoffs due to magnetic monopoles.

Pirsa: 15050117 Page 32/57

Messages

- The WGC is the CFT version of Noether's theorem.
- The WGC requires model builders to include particles and cutoffs that ensure all black holes can decay.
- Despite recent claims, two-axion models can achieve transplanckian field transits while remaining consistent with the WGC.

Page 31 of 60

Pirsa: 15050117 Page 33/57

Background: transplanckian field transits and axions

Pirsa: 15050117 Page 34/57

The transplanckian problem

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - m_{\rm pl}^4 \sum c_n \left(\frac{\phi}{m_{\rm pl}} \right)^n$$

Want a weakly broken shift symmetry

$$\phi \equiv \phi + c$$

An angular variable seems like a good starting point

$$\Sigma = \sigma e^{i\phi/f}$$

Corrections are periodic.

$$V = V_0 \left[e^{-S} \cos \frac{\phi}{f} + e^{-2S} \cos \frac{2\phi}{f} + \cdots \right]$$

$$S > 1$$
 $f > m_{\rm pl}$

Axions in string theory

• p-form gauge fields $A_{\mu},~B_{\mu
u},~C_{\mu
u \sigma}$

$$A_{\mu}
ightarrow A_{\mu} + \partial_{\mu} \Lambda \ B_{\mu
u}
ightarrow B_{\mu
u} + \partial_{\mu} \Lambda_{
u} - \partial_{
u} \Lambda_{\mu}$$

Axions are the extra-dimensional components of gauge fields

Ŧ

$$a = \int_0^{2\pi r} dx^5 A_5, \quad \int dx^5 dx^6 B_{56}, \quad \cdots$$

Field space is periodic due to invariance under large gauge transformations.

$$a \to a + \Lambda(2\pi r) - \Lambda(0)$$

 $\psi \to e^{i\Lambda}\psi$

$$\Lambda(2\pi r) - \Lambda(0) = 2\pi n$$

Use various dualities to relate axions to U(1)'s. Then apply WGC.

Pirsa: 15050117 Page 41/57

WGC translated to decay constants and instanton actions

$$m \leftrightarrow S$$

$$e \leftrightarrow \frac{1}{f}$$

$$m < e m_{\rm pl} \longleftrightarrow S < \frac{m_{\rm pl}}{f}$$

WGC translated to decay constants and instanton actions

$$m \leftrightarrow S$$

$$e \leftrightarrow \frac{1}{f}$$

$$m < e m_{\rm pl} \longleftrightarrow S < \frac{m_{\rm pl}}{f}$$

Corrections are periodic.

$$V = V_0 \left[e^{-S} \cos \frac{\phi}{f} + e^{-2S} \cos \frac{2\phi}{f} + \cdots \right]$$

$$S > 1$$
 $f > m_{\rm pl}$

Pirsa: 15050117 Page 45/57

Convex hull

Pirsa: 15050117 Page 46/57

No-go "theorem"

- Cannot have an effective f greater than $m_{\rm pl}$ and have all $S_i > 1$
- Therefore, transplanckian field transits via multiple axions is "impossible."
- Really, it just explains why explicit constructions from string theory are extra hard

Pirsa: 15050117 Page 47/57

Our model

2 Gauge fields A and B

1 massless particle of charge (1,N)¹

1 massless particle of charge (0,1)

Pirsa: 15050117 Page 48/57

Further reduces to a single axion potential with transplanckian *f*.

$$V = V_0 \cos \frac{2\pi R e_A A}{N}$$

$$f = \frac{N}{2\pi Re_A}$$

Evades theorem because S = 0.

- Convex hull condition trivially satisfied.
- From gauge field perspective, we have massless charged particles.

Pirsa: 15050117 Page 50/57

The higher harmonics have been explicitly calculated.

$$V = \frac{1}{R^4} \sum \frac{1}{n^5} \cos \frac{n\phi}{f}$$

Pirsa: 15050117 Page 52/57

 From the bottom up, we can specify the spectrum and then calculate

Pirsa: 15050117 Page 53/57

- From the bottom up, we can specify the spectrum and then calculate
- From the top down, perhaps just moving the problem elsewhere

Pirsa: 15050117 Page 54/57

- From the bottom up, we can specify the spectrum and then calculate
- From the top down, perhaps just moving the problem elsewhere
- From the bottom up, exactly!

Pirsa: 15050117 Page 55/57

The WGC for everyone

- For formal field / string theorists
 - Rephrasing in terms of CFT Noether theorem

Pirsa: 15050117 Page 56/57

The WGC for everyone

- For formal field / string theorists
 - Rephrasing in terms of CFT Noether theorem.
- For model builders
 - Requires extra particles and cutoffs
- The WGC for string phenomenologists
 - Would explain why some potentials are hard to realize

Pirsa: 15050117 Page 57/57