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Abstract: In the last decade there were proposed several new information theoretic frameworks (in particular, symmetric monoidal categories and
"operationa” convex sets), allowing for an axiomatic derivation of finite dimensional quantum mechanics as a specific case of a larger universe of
information processing theories. Parallel to this, there was an influential development of quantum versions of bayesianism and causality, and
relationships between quantum information and space-time structure. In the face of structural problems encountered when moving beyond finite
dimensional quantum mechanics, as well as the lack of a mathematically and predictively sound nonperturbative framework for quantum field
theories, a question appears. which of the existing structural assumptions of quantum information theory should be relaxed, and how?

In thistalk | will present a new approach to the information theoretic foundations of a "general” quantum theory (i.e., beyond guantum mechanics),
that is a specific answer to the above question, with a hope to reconstruct both emergent space-times and emergent QFTs. Its mathematical setting is
based on using quantum information geometry and integration over noncomutative algebras as structural and conceptual replacements of spectral
theory and probability theory, respectively. This corresponds to a paradigmatic change: considering expectation values as more fundamental than
eigenvalues. We construct a nonlinear generalisation of quantum kinematics using quantum relative entropies and spaces of states over W*-algebras.
Unitary evolution is generalised to nonlinear hamiltonian flows, while Bayes and Lueders rules are generalised to constrained relative entropy
maximisations. Combined together, they provide a framework for nonlinear causal inference (information dynamics), that is a generalisation and
replacement of completely positive maps. As a result, we construct a large class of information processing theories, containing Hilbert space based
QM and probability theory as two specia cases. On the conceptual level, we propose a hew approach to quantum bayesianism, that is ontically
agnostic, intersubjective, and concerned with the relationships between experimental design, model construction, and their mutual predictive
verifiability. Finally, we propose a procedure for the emergence of space-times from the geometry of quantum correlations and quantum causality
structure, and discuss (briefly) the possibility of reconstructing emergent QFTSs.

Pirsa: 15050090 Page 1/29



Quantum information geometric foundations:
Beyond the spectral paradigm

Ryszard Pawet Kostecki

Perimeter Institute for Theoretical Physics

arXiv:1505.soon!

Information Theoretic Foundations for Physics
Perimeter Institute, Waterloo

14 May 2015

Pirsa: 15050090 Page 2/29



«Unlike the Riemannian manifolds the quantum mechanical unit spheres do not differ
one from another: they are all isomorphic. The worlds of the present-day quantum
mechanics thus present a picture of structural monotony: they are all ‘painted’ on the
same standard ideally symmetric surface. The formalism of the quantum theory of
infinite systems and quantum field theory is not very different from that. (...) the basic
structural framework of the theory is conserved at the cost of quantitative multiplication:
when meeting a new level of physical reality the quantum theory responds by simply
producing infinite tensor products of its basic structure. (...) It may be that present day
quantum theory still represents a relatively primitive stage of development and lacks some
essential evolutionary steps leading towards structural flexibility. If this were so, further
development would involve a programme opposite to the ‘quantization of gravity':
instead of modifying general relativity to fit quantum mechanics one should rather modify
quantum mechanics to fit general relativity.»

Bogdan Mielnik, 1976, Quantum logic: is it necessarily orthocomplemented?
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Plan

© Nonlinear generalisation of quantum dynamics

» Geometric structures on quantum states: relative entropies & Poisson brackets
» Liiders' rules — constrained relative entropy maximisations
» Unitary evolution — nonlinear hamiltonian flows

Q@ Geometric framework for quantum information theories
beyond quantum mechanics

Quantum states = integrals on W*-algebras

Quantum theoretic kinematics = a generalisation of probability theory

Quantum theoretic dynamics = a generalisation of causal statistical inference
Reconstruction of QM and probability theory

Quantum theoretic semantics beyond spectral theory, probabilities, and Born rule
Intersubjective bayesian coherence

yvyvyvyvyy

© Emergence of space-time theories

» Space-time geometry = geometry of local correlations and causality
» Emergent QFTs?
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Quantum information models and quantum information distances

trace class operators: T(H) :={p € B(H) | p = 0, trylp| < oo}
we will consider arbitrary sets of denormalised quantum states: M(H) C 7 (H)"

’Quantum information distances D : M(H) x M(H) — [0,x]s.t. D(p,o) =0 < p=o0.

o Eg.
» Di(p,o) = try(plogp — plog o) [Umegaki'62]

for ran(p) C ran(e), and with all D(p, o) := +oc otherwise.

@ Various “quantum geometries” will arise from different additional conditions imposed on
pairs (M(H), D):

» Different choices of M(H) reflect different assumptions on the available possible
knowledge (description of experimental situation).

» Different choices of D reflect different assumptions regarding the convention of
“best/optimal” estimation/inference.

» Both choices are case-to-case-dependent and should be operationally justified.
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Quantum entropic projections

Let @ C T(H)" be such that '
for each ) € M(H) M) W

there exists a unique solution

\1:8(3_-) — arginf”_:Q {D(V‘ ")} -

It will be called an entropic projection.

Eg
(1 1 -
o for Dy,2(p, o) ry(5p+ 30 — /PVO),
: . . Dy,
consider the entropic projections 33 5'/?
where Q are images of closed convex subspaces Q C K™ := &,(H)™"

under the mapping Q > \/p— p € Q.

They coincide with the ordinary projection operators in B(K) = B(H @ H*).
@ for Di(p, o) = try(plogp — plog o)

and M(H) =T (H);, v € T(H);, h € B(H)™, then [Araki'77, Donald'90]

3P = arginf {D1(p, V) + try(ph)}.
pET(H)]
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Quantum measurement, bayesianity, and maximum relative entropy

@ Liders rules:
P Pnew = Z P,;;)P; ('weak')
]

PpP
try (Pp)
e Bub'77'79, Caves—Fuchs-Schack'01, Fuchs'02, Jacobs'02: Liiders’ rules should be

considered as rules of inference (conditioning) that are quantum analogues of

P Pnew (= (‘strong’)

o p(x)p(b|x)
the Bayes—Laplace rule: p(x) = pnew(Xx) ;= —=——=.
o Williams'80, Warmuth'05, Caticha&Giffin'06: the Bayes—Laplace rule is a special

case of

P(x) = P (1) = arginf {Du(.p)}: Da(a.p)i= [ n(w)ata)tog (5F).

qe @ J X

@ Douven&Romeijn'12: the Bayes—Laplace rule is also a special case of

p — arginf {Di(p, q)} = B (p).

qe

where Do(p, q) = Do(q. p).
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Quantum bayesian inference from quantum entropic projections

e RPK'13'14, F.Hellmann-W.Kaminski-RPK'14:

© weak Liiders’ rule is a special case of

|
]

p—rargintf {D1(p,0)]

with
Q={oeT(H)" |[Pi,o] =0Vi}
@ strong Liders’ rule derived from
p— arginf {D1(p,o)]
with
Q= {(T = T(H)+ I [P_.(T] =0, T‘l‘-H((TP;) = pj VJ}
under the limit pa, ..., pn — 0.

© hence, weak and strong Liiders’ rules are special cases of quantum entropic projection
‘]39,0 based on relative entropy Dg(o, p) = D1(p, o).

Bayes—Laplace and Liiders’ conditionings are special cases of entropic projections
> "quantum bayesianism quantum relative entropism”.
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Quantum Jeffrey’s rule

o Caticha&Giffin'06: under more general constraints, one can derive also Jeffrey's rule
(generalising the Bayes—Laplace rule):

px/\b:;
p(x[1) = Prew(x]1) prb),\ Z e

where n € N,
» {by,..., b,} is a set of exhaustive and mutually exclusive elements of boolean algebra,
» )\ = pnew(bj|n) Vi € {1,..., n},
> p(bj|n) # 0.

o RPK'14: derivation of a quantum analogue of Jeffrey's rule:

Art R _ < _PipPi | 2\
T(H)1 2 P Pnew := a;i'gf{Dl(!’- o)} = ; mf\: eT(H),
where n € N,

> {P1....,Pa} C Proj(B(H)), S0y Pi =1, P;Pj = 8;;P;,
> /\'l = tl‘H (/J]“ \\P ) V! e {1 ..... N},
> try (pP;) # 0.

It generalises Liiders’ rule.
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Quantum Poisson structure

o Consider the space of self-adjoint trace-class operators: T (H)™ := T(H) N B(H)™

@ It can be equipped with a following real Banach smooth manifold structure:
» tangent spaces: T4(7T(H)®*) = T(H)™
» cotangent spaces: T* (T(H)5>) = (T(H)>)* = B(H)*™

e Bona'91,'00: a Poisson manifold structure on 7 (H)** is defined by a commutator of
an algebra:

(h.f}(p) := try (pi[dh(p).df(p)]) VF,h € CTZ(T(H)*;R) Vp e T(H)™

e So, if M(H) C ( )™ is a smooth submanifold of T (H)**,

then every f € C™(M(H);R) determines a hamiltonian vector field:
Xr(p) {,F}p) = try(pild(-).df(p)]).

@ More generally, we can choose arbitrary real Banach Lie subalgebra A of B(H) such
that: (i) it has a unique Banach predual A, in T(H); (ii) there exists at least one
M(H) € T(H)" which is a smooth submanifold of A,.
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Nonlinear quantum hamiltonian dynamics

For each hamiltonian vector field, the corresponding Hamilton equation reads

d

7/ (P(1)) = {h, F}(p(t)) = itry ([o(t), dh(p(t))]df (p(1))).

The above equation is equivalent to the Bona equation ['91'00]

i<Lp(t) = [dh(p(t)), p(t)]-

Hence,

The Poisson structure {-, -} induced by a commutator of B(H) allows to introduce various

nonlinear hamiltonian evolutions on spaces M(H) of quantum states, generated by arbitrary
real-valued smooth functions on M(H).

The solutions of Béna equation are state-dependent unitary operators U(p, t).
They do not form a group, but satisfy a cocycle relationship:

Ulp,t +s) = U((Ad(U(p,t)))(p),s)U(p,t) Vt,s € R.

In a special case, when h(p) = try(pH) for H € B(H)™*,
the Béna equation turns to the von Neumann equation:

i((l—ltp(t) = [H, p(t)].
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Quantum causal inferences by entropic-hamiltonian dynamics

@ Two elementary geometric structures:

» D(-,-) represents the convention of “best estimation/inference”
» {h,-} represents a convention of causality (“internal dynamics”)

@ Two elementary forms of quantum dynamics:
» entropic projections ‘138 generated by quantum distances D(-, )
» hamiltonian flows w/? generated by nonlinear hamiltonian vector fields {h, -}

A general form of quantum dynamics is defined as a causal inference ‘]SR -th.

@ It generalises unitary evolution followed by a “projective measurement'.

@ Postulate: consider the setting of causal inferences 2 o w/ as an alternative to the

paradigm of semigroups of CPTP maps.
@ Basic idea: every CPTP map can be decomposed into:

1) tensor product of initial state with uncorrelated environment,
2) unitary evolution,

3) projective measurement,

4) partial trace.

It remains to prove that 4 and 344 are entropic projections
(ongoing work with M.Munk-Nielsen).

nostec rimet NETITUT
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Towards new foundations

Idea:
e consider spaces M(H) as fundamental
e allow any nonlinear functions M(H) — R as observables
o define geometry of M(H) by means of D(-,-) and {-, -}
o define dynamics of M(H) by means of P3(-,-) and wih)

Questions:
@ what's up with Hilbert spaces? (are they necessary? if not, then what?)
e what's up with spectral theory, probability, Born rule, etc?

Answers:
o replace Hilbert spaces by W™-algebras
o replace density matrices by positive integrals on W"-algebras

@ this setting is an exact generalisation of Kolmogorov's measure theoretic setting for
probability theory

@ build up all remaining semantics for quantum theory
in the analogy to semantics of probability theory and statistical inference
(hence: no Born rule, no probabilities, no spectral theory)
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Probability theory:

@ Underlying structure: measure space (X', 1)

@ Main spaces: Probabilistic models:

M1)€ LX) = {p: X 5 R [ ulpl < o0,p > 0}
J X

(x—m)2
e e.g. Gaussian models: {p(x,(m.s)) = /21__50_ 22 | (m,s) e © CRxR*}

@ Observables (estimators): functions f : A — R

The mapping Li(X, 1) x Loo(X, 1) 3 (p, f) — [, upf € R determines Banach
space duality L1(AX, p)" = Loo (X, p1).

Quantum mechanics:

@ Underlying structure: Hilbert space ‘H

@ Main spaces: Spaces of density matrices:
M(H) CT(H)" == {p € B(H) | tru(|p|) < o0,p = 0}

o e.g. Gibbs states: {e™?" | 3 £]0,00[}, for a fixed self-adjoint H.
@ Observables: self-adjoint operators x : H — H

e The mapping T(H) x B(H) > (p,x) > try(px) € C determines Banach space
duality 7(H)* = B(H).
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W*-algebras and integration

o A W~-algebra N:

» an algebra over R or C with unit I,

» with * operation s.t. (xy)* =y*x", (x+y)" =x"+y", (x")" =x, (Ax)" = A"x",
» that is also a Banach space,
-3
>

with -, +, * continuous in the norm topology (implied by the condition |x* x| = |x|?),
such that there exists a Banach space N, satisfying the Banach space duality:
(Na)* 2N,

@ Special cases:

» if AV is commutative

then 3 a measure space (A, u) s.t. N2 Lo (X, p) and N, = L1( X, p1)
» if NV is “type | factor”

then 3 a Hilbert space ‘H s.t. N = B(H) and N, = T(H).

."

@ Hence, the element ¢ € (N, )™ provides a joint generalisation of probability density
and of density operator. By means of embedding of NV, into N'*, it is also an
integral on \V.

o Key fact: The above setting allows to develop full-fledged integration theory on
noncommutative W™ -algebras, which generalises integration theory on measure
spaces (with partial integration, conditional expectations, L,(N') spaces,...).
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New kinematics: quantum models and observables

General quantum information models:

For any W™-algebra N/, M(N') will be defined as an arbitrary subset of a positive part of
a Banach predual space of N/, M(N') C N .

Special cases:
@ N is commutative = M(N) = M(X, p)
@ N is type | factor = M(N) = M(H).
We do not assume that:
@ M(N) is convex ( <= probabilistic mixing)
@ M(N) is smooth ( <= asymptotic estimation)

@ M(N) is normalised ( <= frequentist interpretation)

Observables:

Observables are defined as arbitrary functions f : M(N)

Hence: smooth observables define hamiltonian vector fields.

Each “observable in the old sense” x € N** determines a corresponding “observable
in the new sense” by f.(¢) := ¢(x).
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New kinematics: quantum information geometry

@ Main change: Consider expectation values as more fundamental than eigenvalues
= foundational role of spectral theory replaced by quantum information geometry

@ Kinematic setting:

(1) spaces: Hilbert spaces H of eigenvectors

spaces M(N) of denormalised expectation functionals on W*-algebras N.
(2) observables: linear functions H — ‘H that have real eigenvalues

nonlinear real valued functions M(N') — R.
(3) geometry: geometry of Hilbert spaces H defined by scalar product

geometry of spaces M(N') defined by quantum relative entropies D(-, -) and

quantum Poisson structures {-, -}.

e Two fundamental geometric structures on M(N\):
a) Quantum distances D(-, -)

* large variety of choices

* allows to derive riemannian geometry (via 9;9;D)
and Hilbert space projective geometry (via ‘Bg for D = Dy /3)
as special cases

b) Quantum Poisson structures {-, -]
* depend on the choice of a real Banach Lie subalgebra of A/
* generalises symplectic geometry

e No Hilbert spaces, no probability theory in foundations (derived as special cases)

noOStccl rimex FLItuUT
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Backwards compatibility

© Reconstruction of quantum mechanics:
» N: type | W*-algebras
» M(N): normalised states
» D: Dy/3 or Do
{-,-}: generated by Banach Lie algebra N/*?
observables: affine functions on M(N)
@ Reconstruction of probability theory:
» N: commutative algebras
M(N): normalised states
D: arbitrary
{-,-}: trivialises for commutative algebras
observables: arbitrary or affine functions on M(N')

Yy

yvyvyy

linear W*
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Smooth quantum information geometries
Under some conditions, D induces a generalisation of smooth riemannian geometry on M(N).

@ Jencova'05: a general construction of smooth manifold structure on the space of all strictly
positive states over arbitrary W™-algebra.

@ Eg. M(H) :={p(0)eT(H)|p@) >0,06c ©CR" open,d + p(f) smooth}

@ Eguchi'83/Ingarden et al'82/Lesniewski-Ruskai'99/Jencova’04:
Every smooth distance D with positive definite hessian determines

a riemannian metric gP and a pair (VD.VDJ[) of torsion-free affine connections:
Bs(U,v) = —04,|¢0y|wD(d, W) |w=0,

g8s((Vy)pv,w) = —04169v 60w wD(o,w)

8s(v, (V])ew) := —0,,04.0y|6 D(¢, w)

I'a.'=u'“
which satisfy the characteristic equation of the Norden['37]-Sen['44] geometry,
D Dt .
gPu,v) =gPY (u),tY  (v)) Yu,ve TMWN).
@ A riemannian geometry (M(N), gP) has Levi-Civita connection V = (VP + \TDT)/2.
@ Eg, MN)=T(H)N{p > 0,try(p) =1} and Di(p,o) = tr(plog p — plog o) give
Mori['55]-Kubo['56]-Bogolyubov['62] gP* and Nagaoka['94]-Hasegawa['95] (VP1, vD1T):

. 1 1 D Dyt
D — vHi _ g, vH _
B, t(x,y) =t (/0 (l).x/\]: - pyM T p) , L (X)) =x—tr(wx), t; , (x)=x.
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Quantum mechanics as a local theory

o Apart from tangent bundle [ J, T, M(N), there is also a bundle of complex (GNS)
Hilbert spaces HM(N') — M(N).

e Vectors in T, M(N) are defined by self-adjoint operators, which can be represented
uniquely as elements of (HsM(N))z.

e Under some (mild) conditions: T, M(N) C (HeM(N))r.

@ Thus, as opposed to C"-algebraic approach:

» Spaces of quantum states are equipped with rich geometric structure, allowing for
model construction, state estimation, and nonlinear dynamics.

» Quantum mechanics is reconstructed not only as a global special case of a framework,
but also is present locally at each point of a manifold, as an extension of a tangent
space.

» Our framework allows also for a geometric description of renormalisation procedures
(see Cedric Bény's talk).
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Jacobson’'95: Einstein equations *from* space-time thermodynamics

Consider:

a space-time (M, g.p)
@ a point p e M

@ a small 2-dimensional surface element P

@ a Killing vector field x® generating local boost orthogonal to P
Define:
@ a local causal horizon ‘H as a boundary of the past of P, generated
by x?
@ a heat flow 6Q as an energy flux across a local causal horizon:
0Q = -’H (1ZaTab\b
@ a temperature T as an Unruh temperature associated with a
uniformly accelerated observer.
Assume:

@ that entropy S is proportional to the area of H: S = AA
@ that Clausius’ law holds: 6Q = TdS.

Then: 1 o
~Rg., + Ngap = —
2 8ab gab \

Rab - Tab-

Pirsa: 15050090 Page 24/29



Emergent space-times

e Basic idea: Consider a principle of equivalence of euclidean QSM with lorentzian
QFT via Wick rotation as a fundamental principle, analogous to mgrav = Minert.
e Basic mathematical data:
> gf?(-. -) is a correlation functional, representing a convention of a local (asymptotic)

estimation/inference at p.
» {h(p),-} is a dynamical evolution, representing a convention of a local temporal
causality at p.

@ Required assumptions:
» choice of a manifold ¥ that is determined by operational parameters of measurement
of “space” and “time”
» split M(NV) =X x M(N)
» {h(p),-} is well defined on &
@ Implementation:
» consider a riemannian metric g}'? induced by gP on &

» “Poincaré-Wick rotation"” of g}'? to a lorentzian @g'h along a vector field {h,-}:

D D ~ D - . aD.h
8 =8 tepRe,— g —e, e, =gy,
where gi) is @ riemannian metric induced by gED on the submanifolds orthogonal to ey,

D
o, — _ BRUAY) - |
while e, := T T ) is a normalised 1-form of {h,-}.

o . D}
An emergent space-time is a triple (X,g85 ", ep).
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Emergent space-times: comments

@ Operational assumptions that may lead to derivation of 4-dimensionality of 27
— see the talk of Markus Miiller for very interesting ideas.

o Instead of a split M(N) 2 ¥ x M(N), one can consider also a nontrivial fibre
bundle with locally (but not globally) defined operational space-times

T MWN)—= L.

e Every section of a bundle Vl(\) over X defines a global quantum state (&) over
space-time, and this determines a bundle HX — ¥ of GNS Hilbert spaces H )X,
Eel.

@ This allows to use Prugovecki's approach to defining quantum propagators over a
curved space-time. => construction of emergent QF Ts over curved space-time.
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Overview

© Nonlinear generalisation of quantum dynamics

» Geometric structures on quantum states: relative entropies & Poisson brackets
» Liiders' rules — constrained relative entropy maximisations
» Unitary evolution — nonlinear hamiltonian flows

Q Geometric framework for quantum information theories
beyond quantum mechanics

Quantum states = integrals on W*-algebras

Quantum theoretic kinematics = a generalisation of probability theory

Quantum theoretic dynamics = a generalisation of causal statistical inference
Reconstruction of QM and probability theory

Quantum theoretic semantics beyond spectral theory, probabilities, and Born rule
Intersubjective bayesian coherence

yvyvyvyvyy

© Emergence of space-time theories

» Space-time geometry = geometry of local correlations and causality
» Emergent QFTs?
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