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Abstract: Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the
distinctiveness of each subsystem. Thisis an expression of Leibniz's principles of sufficient reason and the identity of the indiscernible.

The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and
similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their
distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's
guantum potential. As aresult the probability distribution for the ensemble is governed by the Schroedinger equation.

The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of
similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems.
Consequently their collective coordinates may evolve deterministically.

This proposa could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial
complexity, can be expected to have no natural copies.
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We are still seeking the answer to Johnny Wheeler’s
question,

Why the quantum?
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Two roads to the answer:

*Interpretational approaches: Assume the dynamics and
kinematics of QM are correct and that the measurement problem and
other foundational issues reflect a defect in our understanding of the
theory. Seek to reformulate the theory, keeping its physical content
unchallanged.

Copenhagen, Everett, information theoretic reconstructions

*Dynamical approaches: Assume the measurement problem and
other issues arise because QM is an incomplete description of nature.
Seek to find the correct completion, which will resolve the
measurement problem and have an unproblematic interpretation.

deBroglie-Bohm, spontaneous collapse, hidden variables, Nelson,
many classical interacting worlds (MIW), matrix models...

4
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Physics is a weird combination of local and non-local.
*Local propagation of energy and information
*Non-local entanglement.

But quantum gravity suggests space is emergent. But then locality must be
emergent too.

Valentini tells us that the price or reward of going out of quantum equilibrium is
non-local signaling, ie locality is a feature only of quantum equilibrium. The world
is awash in non-local interactions that are hidden by equilibrium. (Embrace “fine

tuning”’)
Locality is also relative to position and motion of the observer.

Are there then defects in locality? Events that are far away in the emergent
geometry of space that are causal neighbors? Is this the origin of entanglement?
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The view of an event is the information reached there from the past, it
contains information about the past causal neighborhood.

Events nearby in spacetime have similar views.
Reverse this:

Events that have similar views can interact, by virtue of that
similarity.

Sometimes this results in their being nearby in the emergent spacetime.

But sometimes it is just because they have similar preparations, even if they are far
away.
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Heuristic Principles
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Principle of the identity of the indiscernible (PIl): any two events
or objects with isomorphic relational properties are to be identified.
*Global symmetries cannot be fundamental. Indeed GR has none and all
the global symmetries in the standard model are accidental or broken.
* Relative locality: Localization is a consequence of identity, ie something is
uniquely localized if it is distinguished by having a unique causal
neighborhood.

*Hypothesis: the fundamental geometry is built from distinctiveness based on
causal neighborhoods. Distance is a consequence of having disimilar causal
neighborhoods.

*There are defects in this causal geometry. Two systems with very similar
causal neighborhoods are nearby causally, even if distant in the coarse
grained macroscopic metric. Hence they interact.

*The interactions induced between two similar systems are repulsive in that
they act to increase their distinctiveness. Thus the Pll is protected
dynamically.
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Il forces local physics to be non-deterministic:

By the PII each event has a unique causal neighborhood (arXiv:1307.6167):
*Suppose two events A and B have isomorphic causal pasts:

P(A) = P(B)
Then to prevent a violation of the PII their causal futures must be different
= F(A) ¥ F(B)

Thus the same causal past implies a different causal future. Hence
local physics cannot be deterministic.

The basic hypothesis: there is a non-local interaction between similar systems
which acts to increase their differences. This is the origin of quantum
physics. This interaction is driven by a potential energy which measures

the distinctiveness of all the pairs of similar subsystems in nature.
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Assumptions
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I) Quantum mechanics is necessarily a description of subsystems of the
universe. It is an approximation to some other, very different theory, which
might be applied to the universe as a whole.
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2) The real ensemble hypothesis: A quantum state refers to an
ensemble of similar systems present in the universe at a given time. By
similar systems we mean systems with the same constituents, whose
dynamics are subject to (within errors that can be ignored) the same
Hamiltonian, and which have very similar histories and hence, in
operational terms, the same preparation. arXiv:1104.2822

3) The basic hypothesis: Similar systems have a new kind of
interaction with each other, just by virtue of their similarities. This
interaction takes place amongst similar systems, regardless of how far
apart they may be situated in space, and thus, this is how non-locality
enters quantum phenomena. These interactions prevent similar systems from
becoming identical and hence protect the principle of the identity of the
indiscernible.
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4) The principle of maximal variety.
(Julian Barbour and LS, hep-th/9203041)

The variety of a system of relations,V, is a measure of how easy it
is to distinguish the neighborhood of every element from that of
every other. This can be used as a measure of complexity, or self-
organization. Ve also proposed this as a dynamical principle.

This principle turns the identity of the indiscernible into a
dynamical principle that introduces a repulsive interaction to
prevent two subsystems from having isomorphic neighborhoods.
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The variety of a network, G, representing a system of relations.

*N (k) is the I'th neighborhood of node k.
*This is the subgraph of G including those nodes | steps from k.

*For any pair of nodes, ) '
*ny is the smallest n such that PORN), Ty s o .

*N (k) is not isomorphic to Ny (l). . ;-.;"i.fs;; W
*The distinctiveness of the pair is "" *
{ 7 it e N
D(A. ]) _ — ‘ .".....'-;-_' ..”’ ”..,03.- ': .:.:.
Mkl e\ !
*The variety of G is ot
1 | |
V= D(k,l) = —
1\"‘7(1\"? — l) Z ( ) A\_(A\T — l) Nl
k#l k#l

14
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Configuration beables, views and variety.
Our system is an ensemble consisting of N similar subsystems.

Each has a d-dimensional configuration beable x*. k=1, ..N, a = 1,...d.
We assume these live in a vector space with metric.

20
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Configuration beables, views and variety.
Our system is an ensemble consisting of N similar subsystems.

Each has a d-dimensional configuration beable x% . k=1, ..N, a=1,...,d.
We assume these live in a vector space with metric.

Each subsystem, i, has a view of the rest of the system:

W __ a __ na
V'.A'u — L — Ly L
" D(i,k)?  |x% — x¢|?

t 'I'A'

Differences between views give the distinctiveness of a pair of
subsystems: 1

rka rka 2
Lij = A?Z(Vi - Vi)
A.
Sum this over all pairs to define the variety:

A A 1. N 2
V= NG ZLJ - N3 Z Z (Vi - Vf'k)

T i i#j k

22
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From the variety define an interaction between subsystems in terms of

a potential energy. This is the inter-ensemble interaction.

v I h* A Ao
U Sl S ~ 8m N3 ZZ (L?R B LJL)
i#£7 k

8m.

k2 — I8 T
“8m NO Z Z l:r - ’z::l l:c.. -

Energy is minimized by maximizing the variety!
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From the variety define an interaction between subsystems in terms of
a potential energy. This is the inter-ensemble interaction.

, h? 9
bl A. &
U = ——Vy = -V
&m ~ 8m N3 J )
£k
(1 e
_ e T B
o 3 |2 a a2
~&m N oy ¢ — x| [z — )

Energy is minimized by maximizing the variety!
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Phase beable:

If this were classical mechanics we would define a momenta beable p.*
conjugate to the configuration beable x3 .

But in quantum mechanics the momentum density is the gradient of a
phase, and this imposes restrictions on the p.* (Wallstrom).

So we posit that each subsystem has a phase beable

1gq,
wy = en-k

From these and the views we define a relational momenta:

1 - W
g = —1— VA In [ -2
bk N Z A ( (f‘A->
J#k
These give us the kinetic energy:

Zh? 1 ]
K.E.=Re——7—= Y

J 25

2

Pirsa: 15050087 Page 24/42



Phase beable:

If this were classical mechanics we would define a momenta beable p.*
conjugate to the configuration beable x3 .

But in quantum mechanics the momentum density is the gradient of a
phase, and this imposes restrictions on the p.* (Wallstrom).

So we posit that each subsystem has a phase beable

1q,
Wy = enh

From these and the views we define a relational momenta:

1 - W
. = —1— VA In [ -2
& N Z A ( Wi )
J#k
These give us the kinetic energy:

Zh? 1 ]
K.E. =Re——m; I {

J 25

2

Pirsa: 15050087 Page 25/42



The fundamental action

d
(w,x /(HZ _Z”Z x4V — 7 [111 (“’>] — Hlz, w]
dl

Ly,
JFk

The Hamiltonian

9

. ) ’ hg ’ rjay2 Wwj ) rha ka2 g
H[r, w e (Z!X:(\L ) {l“(”';.->] \ZA:Z (V. l,; ) | Z( ()
ool 9 t58 1

k

U(x) is a standard potential, within each subsystem.

In the large N limit this reproduces quantum dynamics

26
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The large N limit and the continuum approximation.
The average of a function is given by a probability density p(x).
| :
< O >= N ;(,')(.I'A.) — / dzp(2)p(z)

For double sums we use:

1 R
~ Z O(Thtis Th) —> / dzp(z + 2)d(z + x, 2)
‘ ; Ja

The short distance cutoff is a, reflecting the fact that for finite N
nearest neighbors are not likely to come nearer to each other than

1
a(z) = (Np(z)):

&=

For the large scale cutoff, we rescale R by N/ : R—= —
We hold r’ fixed as we vary N. N d

for large R, r’ is independent of p(z) 5
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We next express variety in the continuum

approximation.
/ a a A e 2
V A Z Z £y — .I'L, A j A L
- N3 ey |z —xp|? |2 — xf)?
; L= .

' R R a a
T TR
Vy=A / (ld,:;/)(,:;) / d%a / (1";/[(7 — J—_z)“)/)(,: +x)p(z + )

. . £L“ U
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The continuum approximation to the variety is:

. ‘R R . a
V:A/(/d,‘:p(:)/ (id.r/ (1’/(/[(I—H — U—) plz+x)p(z+y)

X 1°
Fix limits of integration:

1 r!
a(z) = 1 R=—;
(Np())’ N

Scale x = a, and expand in |/N:

1 . :
p(z +aa) = p(z) +aa0up(2z) + Su.z(\-”nb{ 2 0(2).

e

Choose normalization constant:

,f'~] —

<
f -I
'\
/

The result is:

N i . 1 d 5 (V?p)?
Y = //d,p( /(—()p) 1+ : r”‘( f)) —{—)
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The kinetic energy:

We extend the phase factors to a function of configurations. This exists
because the configurations are unique.

w(ry) = wg
Turn the sums over configurations to integrals:
Zh? 1 W,
KFE.=R ~ |[In '
“omN? Z (v — x;)? [ (u' )]
Z

: R
e

)m

— / dd- ( (0,9) >F O(—)
2m N i

32

Pirsa: 15050087 Page 30/42



For large r’ and large N:

' ,5)? 1 1
K.E. = / dzp(z) (9a5) -+ ()( )+ +0(+)
, 2m N

So the Hamiltonian becomes:

' 7,5)%  h* 1 1
H = /(]‘1.:'/)(::) {(( ) + | (— ()u/)) + V 4+ O(- )+()(\)]

2m 8m  p r

33
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The last step is the symplectic structure:

S (w,x) = -2, / dt Z;)f‘,'.r‘,f
. .

K ‘I‘ rja *y *y
The velocity of the momenta: ph = y Z {—IV,;.} (5_,- — SA-”
J7Fk

In the continuum:

SV 5 —Z,N /(N/ 1‘[,/) 2Da(2)

cf \
N / dt / d 1/) )S (2 )//)

R ‘
Pa(2) = / d's=5 (mﬁ: Fx)S(z + ) = p(2)8(2))
Ja x4
R y .
- / ‘/d-"_rg x" 0, (,u( 2)S(2) + .. )

Q(rd l).) ( { }S.'( ))
- ¥ ( (l N2 ) 2
34 dNp(z) f
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Putting everything together:

' ' . (0.9 k1 N 1 1
S = /(n /fr’.:,,(,:) [.s*+ Gad)” W Ly o +U+003) +()(—.)}
' . 2m 8m p r N
Equations of motion: quantum
potential

1
(@) = .)” o uba))'sv 7@
p(x®) = 0ulp—g™0p5(2")) /

§_ L oS 0S8 h? V2/p
-5 = —¢ — Y-
2m I OTne OTpa 2m  \/p

ab

+ U

These are the real and imaginary parts of the Schroedinger equation:

AV h® _,
lh(— = (—)—V” -+ U) \/

dt 2m

g

35

W(x,t) = \/pe
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Putting everything together:

' ' . (0.9 k1 — 1 1
S = /(u /fr’.:,;(;-) [.s*+ Gad)” | W7 Ly 24+ +0(—)+0(—.)}
' . 2m 8m p r N
Equations of motion: quantum
potential

1
(1) = -)” el ubo))bv 7@
p(x®) = Oalp—g™0p5(2")) /

g L w05, 08 I V2,/p

— - ' - ~— + U
2m’ OTne OTpa 2m \/p

These are the real and imaginary parts of the Schroedinger equation:

[\ B4 _.
1/1.(— = (—’—V” -+ U) \/

dt 2m

U(x, t) = ﬁ(’f’f‘q 35
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P(x) is the ensemble probability distribution.
Pk(x) is the probability distribution in the k'th subsystem.
Ergodic hypothesis:

Over time, for all k, pk(x) = p(x)

36
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Quantum statistics: p(x)

Let us have a system of M identical particles with configurations
X I=1,...M, a=I,...d, k=lI,...n and phases wy

Pll: there is no effect of switching the coordinates of two identical
particles, so we require

0

P(Thos Ty ey t)

P50 Thyy - - - t)

P(Th1, Thoy s t)

P(Xh, Thoy oy t)

We plug these into the equations of motion to deduce
S(Thy, Ty, t) = S(Xho Thyy- -, t) + ¢
Doing this twice, and recalling that S is defined up to 2zn, we find

W(xp1, o) = €72 TR1TR2) (g0 211) = tw(xpr, Tho)

ie bosons and fermions.
37
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The solution to the measurement problem:

Microscopic systems are quantum because they have large numbers of
near copies in the universe, hence the variety interaction works on

them and they find themselves members of large ensembles of similar
systems.

Macroscopic systems are unique. They have no copies and are not
parts of any ensembles. Hence they are not subject to quantum
uncertainty. Their collective coordinates obey the fundamental
deterministic dynamics.

38
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Experimental tests?

39
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Non-linear corrections to the Schroedinger equation:

The leading correction to the variety potential is:

) h? 1 h=r'* [ | P
USY = — =AY = —— / dlzp (=V?p)?
8 Ni 8&m . P

This gives a correction to the quantum potential
: 1 as ., 0S h? V=4./p
—§ = —g )( )+ U — - VP + AUQ(/))
2m  \/p

2m’ OTue OTpa
Which adds a non-linear term to the Schroedinger equation

A b o .
h— = (V2 + U + AUQ(IV) | O
dt 2m

This gives a correction to energy eigenvalues
/AE = / A TAUQ (D)W >

40
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This gives a correction to energy eigenvalues

AFE = /d(’.:\pAU‘-?(\w)qf

The leading correction is

12 2 1 2 )2 a 2
A(_/‘r(") = ’ . d _ _h Vv P o 2(V ‘/)) o 2(v /))(vrfv /))
Nid+22m | p p? p?
This gives an order of magnitude correction to atomic energy levels.
AFE 1 7
E Ni a?

Can we use rare states where N is small and d is large?

41
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More possible experimental tests

*Could we construct mesoscopic systems that by their combinatorial
complexity are unique, and so have no natural copies! Could we see
that they do not obey quantum mechanics but instead obey the
fundamental theory? This might be done with a modest number of
entangled g-bits.

*|f we can do this, can we construct systems with small N=2,3,4,...and
study the variety potential in detail’

42
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Thank you
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