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Abstract: Renormalization to low energies is widely used in condensed matter theory to reveal the low energy degrees of freedom of a system, or in
high energy physics to cure divergence problems. Here we ask which states can be seen as the result of such a renormalization procedure, that is,
which states can &€oaenormalized to high energies'. Intuitively, the continuum limit is the limit of this "renormalization” procedure. We consider
three definitions of continuum limit and characterise which states satisfy either one in the context of Matrix Product States.

Joint work with N. Schuch, D. Perez-Garciaand |. Cirac.
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Theory with continuous degrees of freedom
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Lattice version of the theory
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Quantum field theory

Theory with continuous degrees of freedom

Regularization “the continuum limit”

Lattice version of the theory

Here: Which discrete states are lattice versions of some continuum theory?

Which discrete states have a continuum limit?

Tensor network approach to this problem
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* Tensor networks:

Introduced to describe quantum many-body systems
Capture “physical corner” of the Hilbert space.

States that obey the area law.
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* Tensor networks:

Introduced to describe quantum many-body systems
Capture “physical corner” of the Hilbert space.

States that obey the area law.

* Goal:
Mathematical properties Physical properties
of the tensors of the state
Local Global

Analyse properties of
tensors using quantum
information theory

Does the state have a
continuum limit?

Define and characterize This work | 1n 1D, translational invariant,

Continuum limit for particular RG transformations

Matrix Product States
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Outline

The setting

RG transformations for MPS

RG transformations in terms of Quantum channels

Continuum limit 1

Continuum limit 2

Conclusions & Outlook
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The setting

We focus on the case * In 1 spatial dimension
* Translational invariant

* with Periodic Boundary Conditions
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The setting

* Given a set of matrices A, € M), with i € {1,..., d}
bond dimension physical dimension
d
define the state Un)=cn Y Tr(AiAip ... Aiy)lir .. in)
i Ly =]

Pirsa: 15050075 Page 17/75



The setting

* Given a set of matrices A, € M with 1€ {1,..., d}

bond dimension physical dimension

define the state YN) =N Z Tr(Ai Aiy - .. Aiy)lt1 .. . iN)

The As determine the state up

to a similarity trafo X' A,.X '
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* Given a set of matrices

define the state W

The setting

.", € .\/t]) with L€ {l .....

bond dimension
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physical dimension
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to a similarity trafo X' A,.X '
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* Given a set of matrices

define the state W

N) =CN E

The setting

.", - .\/I;; with

bond dimension

normalization constant

d

21...1N ]

physical dimension

The As determine the state up

to a similarity trafo X' A,.X '
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The setting

* Given a set of matrices A, € M), with i € {1,..., d}

bond dimension physical dimension

normalization constant

define the state YN) = CN Z Tr(Ai Aiy .. Ay )i .. iN)

i L]
] |’I_= IN
l | D | The As determine the state up
VN | A — A
I_ T to a similarity trafo X' A, X '
Matrix Product State (MPS)

Pirsa: 15050075 Page 21/75



The setting

11’
* The state YN) = CN Z Tr(Ai, Aiy . .- Aiy)|i1 .. iN)

+—>
describes a spin chain ®© 6000 00
/ Na
* Our “state” is the family of states ) = {|YN)IN
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The setting

'l’
* The state YN) = CN Z Tr(Aiy Aiy oo Aig)|in i

Wl
describes a spin chain ®© 6060 0 00
/ Na
* Our “state” is the family of states ) = {|Yn) In
L fixed
* Usually the continuum limit means a—0 L
N X

Here it will mean « — (0 but N is not fixed.

fixed lattice spacing a
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RG transformations

for MPS
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Coarse-grain

. initi . Iy . . \
Definition: ") is the coarse-grained version of |0’

if there is an isometry |/ such that forall N
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Coarse-grain

. initi . 1y - . \
Definition: " ") is the coarse-grained version of |v’)

if there is an isometry |/ such that forall N

1\ @N
Yy ) =1
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Coarse-grain

. initi . 1y & . » \
Definition: " 7) is the coarse-grained version of |¢’)

if there is an isometry |V such that forall N

1\ r@N [,/
{ '\ [ = \ |
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Coarse-grain

. initi . 1y - . \
Definition: " 7) is the coarse-grained version of |¢’)

if there is an isometry |V such that forall N
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Coarse-grain

* Definition: W) is the coarse-grained version of |u’)
if there is an isometry |V such that forall N
t“l.\,l —‘ \l )N
* Remarks:

* This trafo was defined in Verstraete, Rico, Latorre, Cirac & Wolf PRL 2005
to study the RG fixed points with MPS.
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Coarse-grain

* Definition: W) s the coarse-grained version of |V’)
if there is an isometry |V such that forall N
Yy ) = VN [han
Other possible choices:
* Remarks: MERA, TNR ...

* This trafo was defined in Verstraete, Rico, Latorre, Cirac & Wolf PRL 2005
to study the RG fixed points with MPS.

* Exact transformation.
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Coarse-grain

* Definition: W) s the coarse-grained version of |1’)
if there is an isometry |V such that forall N
| -\rI::i — \ : -\-il )N
Other possible choices:
* Remarks: MERA, TNR ...

* This trafo was defined in Verstraete, Rico, Latorre, Cirac & Wolf PRL 2005
to study the RG fixed points with MPS.

* Exact transformation.

* Because of the structure of MPS, same bond dim., same physical dim.
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The transfer matrix

+ Definition The transfer matrix of a state is

d
E = Z,x, R A;
=]
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The transfer matrix

* Definition The transfer matrix of a state is —

d
E=) Ai®A; -
=1

E.g. the norm of the state (v |vy) = |en|” Tr(EY)

* Facts:

The transfer matrix is a completely positive map.

It can be made trace preserving by a choice of the gauge.
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Coarse-graining

* Observation: Coarse-graining a state corresponds to

taking the square of its transfer matrix.
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Coarse-graining

* Observation: Coarse-graining a state corresponds to

taking the square of its transfer matrix.

* Note:
The square of a quantum channel is Every state can be
always a valid quantum channel. coarse-grained.

Pirsa: 15050075 Page 38/75



Fine-graining

* Proposition: A state can be fine-grained once if and only if

its transfer matrix has a square root

which is a valid transfer matrix.
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Fine-graining

* Proposition: A state can be fine-grained once if and only if

its transfer matrix has a square root

which is a valid transfer matrix.

* Proof: (if) £ = EE; meansthat *L—H' —[]

( 1)
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Fine-graining

* Proposition: A state can be fine-grained once if and only if

its transfer matrix has a square root

which is a valid transfer matrix.

* Proof: (if) L = EE; meansthat *L—H' —E

1¢

which means that

which means that rﬂ_\)—(_llj [’ ¢ M {‘_h
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Fine-graining

* Proposition: A state can be fine-grained once if and only if

its transfer matrix has a square root

which is a valid transfer matrix.

* Observe:
Not every quantum channel is divisible Not every state can
into two quantum channels. be fine-grained
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Continuum limit 1

* Definition: A state has a Continuum limit 1

if it can be fine-grained infinitely many times.

Pirsa: 15050075 Page 43/75



Continuum limit 1

* Definition: A state has a Continuum limit 1

if it can be fine-grained infinitely many times.

Continuum limit 1

fine-grain
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Continuum limit 1

* Observation: A state has a continuum limit 1 if and only if

its transfer matrix can be divided into any power of 2

Pirsa: 15050075 Page 45/75



Continuum limit 1

“A channel is divisible by 2”
means that it has a square root

* Observation: A state has a continuum limit 1 if and only if

its transfer matrix can be divided into any power of 2
E = (Ey)® forall [

* Conjecture: If Eis divisble by any power of 2, then it is divisble by any natural.
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Continuum limit 1

“A channel is divisible by 2”
means that it has a square root

* Observation: A state has a continuum limit 1 if and only if

its transfer matrix can be divided into any power of 2
E = (Ey)® forall [

* Conjecture: If Eis divisble by any power of 2, then it is divisble by any natural.

E=(Ey)? forall &N . FE=(E,)" forall n€N

Infinitely divisible channel

From now on, | will assume it is true.
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Continuum limit 1

* Characterisation:
A state has a Continuum limit 1 if and only if

its transfer matrix is an infinitely divisible channel.
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Continuum limit 1

* Characterisation:
A state has a Continuum limit 1 if and only if

its transfer matrix is an infinitely divisible channel.
* Theorem [Holevo, Denisov]:

A channel E is infinitely divisible if and only if it is of the form F = Fye”

where L is a Liouvillian of Lindblad form, £ = F, and Ey LE, = E,L
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Continuum limit 1

* Characterisation:
A state has a Continuum limit 1 if and only if

its transfer matrix is an infinitely divisible channel.
* Theorem [Holevo, Denisov]:
A channel E is infinitely divisible if and only if it is of the form FE = Eye”

where L is a Liouvillian of Lindblad form, £ = F, and E\LE, = E,L

« “Markovian channels” are of the form E = ¢“ where L is a Liouvillian of Lindblad form

tL . .
¢ is avalid quantum channel forall 7 > 0
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Continuum limit 1

« Continuous MPS have a transfer matrix £ = ¢”

They describe non-relativistic quantum field theories

Verstraete & Cirac PRL 2010

Pirsa: 15050075 Page 52/75



Continuum limit 1

« Continuous MPS have a transfer matrix £ = ¢”

They describe non-relativistic quantum field theories

Verstraete & Cirac PRL 2010

* Corollary: The continuum limit 1 is strictly larger than the set of cMPS

Pirsa: 15050075 Page 53/75



Continuum limit 1

« Continuous MPS have a transfer matrix £ = ¢”

They describe non-relativistic quantum field theories

Verstraete & Cirac PRL 2010

* Corollary: The continuum limit 1 is strictly larger than the set of cMPS

We were expecting to find the continuous MPS, but we find a larger class.

We need to extend the definition of cMPS.

Pirsa: 15050075 Page 54/75



Continuum limit 2

+ Definition: A state has a Continuum limit 2 if it has a Continuum limit 1

after a finite number of coarse-graining steps
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Continuum limit 2

* Definition: A state has a Continuum limit 2 if it has a Continuum limit 1

after a finite number of coarse-graining steps

000 0O0OOOONONOGOINOSNOSNOPS
r - A F A e e -
then fine-grain e o e o o o e o
A A A A
to infinity
3 L] ® ] : ;
) first coarse-grain

a finite number of times
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Continuum limit 2

* Characterisation: A state has a Continuum limit 2 if

there exists a p € N such that £7 is infinitely divisble

Pirsa: 15050075 Page 57/75



Pirsa: 15050075

Continuum limit 2

* Characterisation: A state has a Continuum limit 2 if
there exists a p € N such that £7 is infinitely divisble
* Proposition 1: The class of states with a Continuum limit 2 is larger than

that with Continuum limit 1.
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Continuum limit 2

* Characterisation: A state has a Continuum limit 2 if
there exists a p € N such that £7 is infinitely divisble
* Proposition 1: The class of states with a Continuum limit 2 is larger than

that with Continuum limit 1.

* Example: Holevo channel (Qubit channel)

State:
‘ I . ,
E(p) 3 (p" + ITx(p)) Indivisible —+ Concatenated 0000s and 11111s
, 1 - . .
E*(p) = 5 (p+ 4 Tx(p)) Markovian —  Essentially all 1111s

Every odd power is not infinitely divisible, and every even power is Markovian.
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Continuum limit 2

* Proposition 2: ~ Not all states have a Continuum limit 2.

* Example: Pancake channel £ = diag(l,a,a, a®/2) in the Pauli basis

Image in the Bloch sphere: &)

Wolf & Cirac , CMP 2008
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Continuum limit 2

* Proposition 2: ~ Not all states have a Continuum limit 2.

* Example: Pancake channel £ = diag(l,a,a, a®/2) in the Pauli basis

Note: arbitrarily close to the closure of Markovian channels

Quantum channels

Unital channels

depolarizing channel

_ with various strengths
Markovian channels
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Conclusions
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Conclusions

1D, Translationally invariant,
Periodic Boundary Conditions

Which discrete states have a continuum limit?

With Matrix Product States

* Transfer matrix of a state is a

quantum channel.

* A state can be fine-grained once iff
its transfer matrix can be divided into

two transfer matrices.
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Conclusions

* Continuum limit 1: the limit of the fine-graining process
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Conclusions

* Continuum limit 1: the limit of the fine-graining process
(ajsu .
m'ng Cop:

All states whose transfer matrix is an infinitely divisble channel ]ecfure)
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Conclusions

* Continuum limit 1: the limit of the fine-graining process

(a
J.Sum’.ng
Co

All states whose transfer matrix is an infinitely divisble channel

The continuum limit 1 is broader than cMPS

* Continuum limit 2: the limit of the fine-graining process of the state,

at some coarse-grained level

n]@c(ure)
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Conclusions

* Continuum limit 1: the limit of the fine-graining process
(ajsu .
m'ng Cop :

All states whose transfer matrix is an infinitely divisble channel n’eqwe)
The continuum limit 1 is broader than cMPS

* Continuum limit 2: the limit of the fine-graining process of the state,

at some coarse-grained level

All states whose transfer matrix to some power is infinitely divisible.
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Conclusions

* Continuum limit 1: the limit of the fine-graining process
(
aJSum’.ngc
- TP . onj,
All states whose transfer matrix is an infinitely divisble channel ]equre)

The continuum limit 1 is broader than cMPS

* Continuum limit 2: the limit of the fine-graining process of the state,

at some coarse-grained level

All states whose transfer matrix to some power is infinitely divisible.

Larger class than those with continuum limit 1.

Pirsa: 15050075 Page 72/75



Outlook

(after completion of this work)

Continuum limit 3:
based on expectation
values of observables
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Outlook

(after completion of this work)

s " Conti limit 3:
Many natural generalisations of this work: PSSR S

based on expectation
* Non-translational invariant values of observables
* Boundary conditions
* Other RG schemes: MERA?

* Non-exact RG transformations

* States in more spatial dimensions

Compare with approaches by Osborne / Beny /

Brockt, Haegeman, Jennings, Osborne, Verstraete
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Continuum limit 2

* Proposition 2: ~ Not all states have a Continuum limit 2.

* Example: Pancake channel £ = diag(l,a,a, a®/2) in the Pauli basis

Note: arbitrarily close to the closure of Markovian channels
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