Title: Entropy, majorization, and thermodynamics in general probabilistic theories.
Date: May 11, 2015 02:15PM
URL: http://pirsa.org/15050073

Abstract: Much progress has recently been made on the fine-grained thermodynamics and statistical mechanics of microscopic physical systems, by
conceiving of thermodynamics as a resource theory: one which governs which transitions between states are possible using specified
"thermodynamic” (e.g. adiabatic or isothermal) means. In this talk we lay some groundwork for investigating thermodynamics in generalized
probabilistic theories. We describe simple, but fairly strong, postulates: unique spectrality, projectivity, and symmetry of transition probabilities, that
imply that a system has a well-behaved convex analogue of the spectrum, and show that the spectrum of a state majorizes the outcome probabilities
of any fine-grained measurement, allowing the operationally defined measurement entropy (and Schur-concave analogues) to be calculated from the
spectrum. These are implied by, but probably weaker than, Axioms 1 (weak spectrality) and 2 (strong symmetry) of a recent characterization of
Jordan-algebraic and quantum systems by Barnum, Mueller, and Ududec. It is an open question whether theories beyond the Jordan-algebraic ones
satisfy them. We describe how part of von Neumann's argument that spectral entropy is a good candidate for thermodynamic entropy generalizes to
systems satisfying our postulates, and discuss whether its assumptions are reasonable there, suggesting that the extendibility of certain processes to
reversible onesis crucial. We will discuss further postulates and results that might suffice to obtain, in this more general setting, a thermodynamical
resource theory similar to the one that is emerging for quantum theory.

(Joint work with Jon Barrett, Marius Krumm, Matt Leifer, Markus Mueller.)

Pirsa: 15050073 Page 1/35



@ PIMay2015thermo.pdf - Adobe Reade: T T T E R ﬁer—‘p—;—wj

6] L

File Edit View Window Help x

Do @R E S| 8 (@) [1]aom | [19%]~] | [f] = Tools | Fill &Sign = Comment
L]

=)

Recycle Bin® foobar i

o

Entropy, majorization and thermodynamics in

general probabilistic systems

.
Brott e
ciovrei Howard Barnum
=
Cygwin . . )
Termingl 201 University of New Mexico
&
Cyawinod SR Librec
Terminal 4 . .
Perimeter Institute, May 11, 2015
e &
DjView Moz
Firef
o & hnbarnum@aol.com
emacs + M2 M
on0 Navigat Collaborators: Markus Mueller (Western; Heidelberg; Pl); Cozmin Ududec (Invenia Technical Computing; PI; Waterloo), Jon

of " Barrett (Oxford), Marius Krumm (Heidelberg)

FLAC
Frontend

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 1/31

‘;* il

_— I &
2 D B A

Pirsa: 15050073 Page 2/35



Pirsa: 15050073

Entropy, majorization and thermodynamics in
general probabilistic systems

Howard Barnum

University of New Mexico

Perimeter Institute, May 11, 2015

hnbarnum@aol.com

Collaborators: Markus Mueller (Western; Heidelberg; Pl); Cozmin Ududec (Invenia Technical Computing; Pl; Waterloo), Jon

Barrett (Oxford), Marius Krumm (Heidelberg)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 1/31

Page 3/35



Probabilistic Theories

Theory: Set of systems

System: Specified by bounded convex sets of allowed states, allowed
measurements, allowed dynamics compatible with each measurement
outcome. (Could view as a category.)

Composite systems: Rules for combining systems to get a composite
system, e.g. tensor product in QM. (Could view as making it a
symmetric monoidal category)

Remark: Framework (e.g. convexity, monoidality...) justified
operationally. Very weakly constraining.
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Background: characterization of quantum systems
HB, Markus Muller, Cozmin Ududec

@ Weak Spectrality: every state is in convex hull of a set of
perfectly distinguishable pure (i.e. extremal) states

© Strong Symmetry: Every set of perfectly distinguishable pure
states transforms to any other such set of the same size
reversibly.

©Q No irreducibly three-slit (or more) interference.

Q Energy observability: Systems have nontrivial continuously
parametrized reversible dynamics. Generators of one-parameter
continuous subgroups (“Hamiltonians”) are associated with
nontrivial conserved observables.

e1 —4 — standard quantum system (over C)
e1 —3 — irreducible Jordan algebraic systems, and classical.

o1 —2 — "“projective” (filters onto faces), self-dual systems

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 3/3
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State spaces and measurements

Normalized states of system A: Convex compact set Q24 of dimension
d — 1, embedded in A~RY as the base of a regular cone A_. of
unnormalized states (nonnegative multiples of Q).

Measurement outcomes: linear functionals A — R called effects
whose values on states in Q4 are in [0, 1].

Unit effect uy has us(Q4) = 1.

Measurements: Indexed sets of effects e; with ¥, &; = u, (or
continuous analogues).

Effects generate the dual cone A*_, of functionals nonnegative on A...
Sometimes we may wish to restrict measurement outcomes to a
(regular) subcone, call it A7, of A%.. If no restriction, system saturated.
(AL is regular: closed, generating, convex, pointed. It makes A an
ordered linear space (inequalities can be added and multiplied by
positive scalars), withordera>b:=a—-be A..)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 5/31
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Inner products, internal representation of the dual and
self-duality

In a real vector space A an inner product (_, ) is equivalent to a linear
isomorphism A — A*. y € A corresponds to the functional x — (y. x).
GPT theories often represented this way (Hardy, Barrett...).

@ Internal dual of A, relative to inner product:
Ant.—= 1y e A:¥x € A.(y,x) >0} . Isomorphic to A% ).

e If there exists an inner product relative to which AX" = A_., Ais
called self-dual.

@ Self-duality is stronger than A. affinely isomorphic to A% !
(examples)

@ related to time reversal

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 6/31
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Examples

Classical: A is the space of n-tuples of real numbers; u(x) =Y, X;.
So Q4 is the probability simplex, A the positive (i.e.nonnegative)
orthantx: x; >0,ie1,....n

Quantum: A = #;(H) = self-adjoint operators on complex (f.d.) Hilbert
space H; us(X) = Tr(X). Then Q4 = density operators. A, = positive
semidefinite operators.

Squit (or P/Rbit): Q4 a square, A, a four-faced polyhedral cone in R3.

Inner-product representations: (X.Y) = tr XY (Quantum)
(x,y) =Y;xiyi (Classical)

Quantum and classical cones are self-dual! Squit cone is not, but is
iIsomorphic to dual.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 7/31
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Jordan Algebraic Systems

@ Pascual Jordan, (Z. Phys, 1932 or 1933):
e Jordan algebra: abstracts properties of Hermitian operators.
e Symmetric product e abstracts Ae B = %(AB* BA).
o Jordan identity: ae (bea?) = (aeb)e a°.
o Formally real JA: &% + b° =0 = a= b =0. Makes the cone of
squares a candidate for unnormalized state space.
@ Jordan, von Neumann, Wigner (Ann. Math., 35, 29-34 (1934)):
irreducible f.d. formally real Jordan algebras are:

@ quantum systems (self-adjoint matrices) over R.C, and H;
e systems whose state space is a ball (aka “spin factors”);
e 3 x 3 Hermitian octonionic matrices (“exceptional” JA).

@ f.d. homogeneous self-dual cones are precisely the cones of
squares in f.d. formally real Jordan algebras. (Koecher 1958,
Vinberg 1960)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015
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Faces of convex sets

Face of convex C: subset S suchthatif x € S & x =Y, A;y;, where
yie C,Ai>0,Y;A=1,theny; € S.

Exposed face: intersection of C with a supporting hyperplane.
Classical, quantum, squit examples.

For effects e, FJ :={x € Q):e(x)=0}and Fl :={x e Q:e(x)=1}
are exposed faces of Q2.
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Filters

Convex abstraction of QM'’s Projection Postulate (Llders version):

p — QpQ where Q is the orthogonal projector onto a subspace of
Hilbert space .77 .

Helpful in abstracting interference.

Filter := Normalized positive linear map P: A — A: P2 = P, with P and
P* both complemented.

Complemented means 3 filter P’ such that im PNA. =kerP' nA..
Normalized means Vo € Q u(Pw) < 1.

@ Dual of Alfsen and Shultz’ notion of compression.
@ Filters are neutral: u(Pw) = u(w) —= Po = .

@ () called projective if every face is the positive part of the image
of a filter.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 12/ 31

Pirsa: 15050073 Page 17/35



Consequences of Postulates 1 and 2

Postulates 1 and 2 together have many important consequences
including:

@ Saturation: effect cone is full dual cone.

® Self-duality. (Mueller and Ududec, PRL: saturation plus special
case of postulate 2, reversible transitivity on pairs of pure states
= self-duality.)

Perfection: every face is self-dual in its span according to the
restriction of the same inner product

Every face of Q is generated by a frame. If F < G, a frame for F
extends to one for G. All frames for F have same size.

The orthogonal (in self-dualizing inner product) projection onto the
span of a face F is positive, in fact it's a filter (defined soon).
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The lattice of faces

@ Lattice: partially ordered set such that every pair of elements has
a least upper bound xVvy and a greatest lower bound xAy.

@ The faces of any convex set, ordered by set inclusion, form a
|lattice.

@ Complemented lattice: bounded lattice in which every element x

has a complement: x’ such that xvx’ =1, xAx" = 0. (Remark: x’
not necessarily unique.)

@ orthocomplemented if equipped with an order-reversing
complementation: x <y = x’ > y’. (Remark: still not
necessarily unique.)

@ Orthocomplemented lattices satisfy DeMorgan’s laws.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 14/ 31
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Orthomodularity

@ Orthomodularity: F < G — G = FV(GAF). (draw)

@ For projective systems, define F' :=im . Pr. Then'is an
orthocomplementation, and the face lattice is orthomodular.
(Alfsen & Shultz)

@ OMLs are “Quantum logics”

@ OMLs are precisely those orthocomplemented lattices that are
determined by their Boolean subalgebras.

@ Closely related to Principle of Consistent Exclusivity (A.
Cabello, S. Severini, A. Winter, arxiv 1010.2163):
If a set of sharp outcomes e, are pairwise jointly measurable, their
probabilities sum to 1 or less in any state.
Limit on noncontextuality.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 15/ 31
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Multi-slit interference |

To adapt Rafael Sorkin's k-th order interference to our framework,
need k-slit experiments.

k-slit mask: Set of filters P;.,.... P, onto distinguishable faces. Define
P :=VcyPi. (Notation: P ,=PF;vPiv-.-vPp)

In QM: maps p — Q;p Q;, where Q; are projectors onto orthogonal
subspaces S; of 7.
¢ 2nd-order interference if for some 2-slit mask,

P1 T P2 ;ﬁ P12.

¢ 3rd-order interference if for some 3-slit mask,
P12+ P13+ Po3 — Py — P2 — Py # Pyas.

(Zero in quantum theory; easy to check at Hilbert space/pure-state
level.)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 16/ 31
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Multi-slit interference ||

k-th order interference if for some mask M = {Ps,... P},

k—1

Y (1) Y Pj#Pu.

r=1 |J|=k—l’
e Equivalently Fyy =linU _x_1 Fy (no “k-th order coherence”).
(Ududec, Barnum, Emerson, Found. Phys. 46: 396-405 (2011).
(arxiv: 0909.4787) for k =3, in prep. arbitrary k ( & CU thesis).)

Components of a state in Fy\ linUy—x_1 Fy are k-th order
“coherences”. In QM: off-block-diagonal density matrix elements.

e No k-th order = no k + 1-st order.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 17/ 31
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Symmetry of transition probabilities

e Given projectivity, for each atomic projective unit p = P*u (P an
atomic (.= minimal nonzero) filter) the face PQ2 contains a single pure
state, call it p.

p+— pis 1:1 from atomic projective units onto extremal points of Q
(pure states).

e Symmetry of transition probabilities: for atomic projective units
a.b, a(b) = b(a).

A self-dual projective cone has symmetry of transition probabilities.

Theorem (Araki 1980; we rediscovered...)
Projectivity — (STP = Perfection).

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 18/ 31
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Characterizing Jordan algebraic systems

Theorem (Adaptation of Alfsen & Shultz, Thm 9.3.3)
Let a finite-dimensional system satisfy

(a) Projectivity: there is a filter onto each face

(b) Symmetry of Transition Probabilities, and

(c) Filters Preserve Purity: if w is a pure state, then Pw is a
nonnegative multiple of a pure state.

Then Q2 is the state space of a formally real Jordan algebra.

Theorem (Barnum, Mller, Ududec)

(Weak Spectrality & Strong Symmetry) — Projectivity & STP;
WS & SS & No Higher Interference — Filters Preserve Purity.
Jordan algebraic system thus obtained must be either irreducible or
classical. (All such satisfy WS, SS, No HOI.)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 19/ 31
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Energy Observability

Let A, Q2 be a system with a group of reversible transformations ¥
having non-trivial Lie algebra ga.
Energy observable assignment: injective linear map ¢ : g4 — A*
such that

@ ¢o(X)oX =0forall X € gp

@ Up Zran(¢).

We say that “energy is an observable” in A if g4 # {0} and if there
exists an energy observable assignment.

Theorem (Barnum, Miller, Ududec)

A finite dimensional system satisfies Weak Spectrality, Strong
Symmetry, No Higher Interference, and Energy Observability /ff it
is a standard quantum system (over a complex Hilbert space).

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 20/ 31
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Covering Law

An alternative to Filters Preserve Purity in Alfsen-Shultz theorem is
the Covering Law for face lattice:

Definition
Element b of lattice covers element a if a < b and there is nothing
between them. Atom: covers 0.

Covering law: For every element F and atom a, either Fva=aor
F\vacovers a. (draw)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 21/ 31
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Thermodynamics and the geometry of systems

Thermo/stat mech phenomena are a natural arena for
information-related principles to play a role in physics.

Thermodynamic protocols (e.g. for moving between nonequilibrium
states using adiabatic and isothermal processes at cost governed by
E — TS in some limit) tend to involve

@ Spectra (provided by Unique Spectrality),

@ Plenty of reversible transformations (provided by Strong
Symmetry),

@ Possibly, measurements using filters (Maxwell's demon?)
(provided by Projectivity).

@ Association of reversible evolution with conserved energy, cf.
Energy observability.

@ Maybe don't need No HOI , or Filters Preserve Purity?

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015
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Initial results relevant to thermo

(HB, Jonathan Barrett, Markus Mueller, Marius Krumm)
(QPL 2015, submitted, and M. Krumm, masters’ thesis Heidelberg)

Definition

Unique Spectrality: every state has a decomposition into perfectly
distinguishable pure states and all such decompositions use the same
probabilities.

Stronger than Weak Spectrality (example), but implied by Weak
Spectrality and Strong Symmetry.

Definition

For x,y e R”, x <y, x is majorized by y, means that ¥, x* < y&_, v/
fork=1,...,n—1,and X0, x =Y, y.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 23/ 3
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Spectral measurement probabilities majorize

A measurement {e;} is fine-grained if e; are on extremal rays of A,..

Theorem (H. Barnum, J. Barrett, M. Muller, M. Krumm)

Let a system satisfy Unique Spectrality, Symmetry of Transition
Probabilities, and Projectivity. (Equivalently, Perfection and Unique
Spectrality.) Then for any state w and fine-grained measurement
e1,..., en, the vector p = [e1(w), ..., en(®)] is majorized by the vector of
probabilities of outcomes for a spectral measurement on .

Letw' = [, du(T)T,(p), where du(T) is a normalized measure on the
compact group K of reversible transformations. Then o < o'.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 24/ 3
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Definition
A function f: R” — R is called Schur-concave if for every v, w € R", v
majorizes w implies f(v) < f(w).

Entropy-like; mixing-monotone.

Proposition
Every concave symmetric function is Schur-concave.

Definition (Measurement, preparation, spectral “entropies”)
Let ¥ be a Schur-concave function. Define

x"%(w) = MiNfine—grained measurements X ([€1(®). .., €4 outcomes(®)])-

x ™35 (w) = minimum over convex decompositions of m = ¥ ; pjw;) of
into pure states, of x(p).

£ o= 2cpesio))

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 25/ 31
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Rényi entropies

Definition (Rényi entropies)

Ha(p) := - 1(1 log ():p?‘)

for o € (0,1)U(1,0).

Ho(p) := lim Hy(p) = —log|supp p|.

a—0

Hi(p) = lim Ha(p) = H(Pp)-

Of—rc0

H.(p) = lim Hy(p) = —logmax p;.
J

Concave, Schur-concave.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 26/ 31
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Proposition (Corollary of “spectral probabilities majorize”.)

In a perfect system (equivalently one with spectrality, projectivity,
and STP), any concave and Schur-concave function of finegrained
measurement outcome probabilities is minimized by the spectral
measurement.

So Rényi measurement entropy = spectral Rényi entropy.

Proposition

Assume Weak Spectrality, Strong Symmetry. Then Hy'® = HJeas.
(“Collision entropies”.)

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 27131
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Proposition

Assume Weak Spectrality, Strong Symmetry. If H)' = H'®a then
No Higher Interference holds (and vice versa). (So systems are
Jordan-algebraic.)

Because H))'*" = H™®3S is basically the covering law given the
background assumptlons

Could enable some purification axiom that implies Hy'* = H"®3S via
steering (e.g. locally tomographic purification with adent|cal margmals)
to imply Jordan-algebraic systems.

Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 28/ 31
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Further observations:

Filters allow for emergent classicality: generalized decoherence onto
classical subsets of the state space: w +— Piw + Pow +---+ Ppp, P;
filters.

Open question: the operator projecting out higher-order interference
Is a projector. Is it positive? If so, higher-order decoherence possible.
Could make HOI more plausible as potential trans-quantum physics.

Filters might be useful in information-processing protocols like
computation, data compression (“project onto typical subspace”),
coding.

Postulate 4 recalls Noether’s theorem. Relation to a moment map?

von Neumann argument for spectral entropy may work. Does it require
dilating certain transformations to reversible ones?

Failure of local tomography— a problem for extensivity?
Barnum (UNM) Entropy, majorization and thermodynamics May 11, 2015 30/ 31
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