Title: Ambitwistors-strings and amplitudes
Date: May 28, 2015 09:30 AM
URL: http://pirsa.org/15050059
Abstract: These lectures will focus on the geometry of ambitwistor string theories. These are infinite tension analogues of conventional strings and provide the theory that leads to the remarkable formulae for tree amplitudes that have been developed by Cachazo, He and Yuan based on the scattering equations. Although the bosonic ambitwistor string action is expressed in space-time, it will be seen that its target is classically `ambitwistor space', the space of complexified null geodesics in the complexification of a space-time. The lectures will review Ambitwistor constructions from the 70's and 80's that extend the Penrose-Ward twistor constructions for self-dual Yang-Mills and gravitational fields in four dimensions to arbiitrary fields in general dimension. LeBrun showed that the conformal geometry of a space-time is encoded into the complex structure of ambitwistor space. The linearized version encodes linear fields on space-time into sheaf cohomology classes on ambitwistor space. In the case of momentum eigenstates, these give the `scattering equations' that underly the CHY formulae and the ambitwistor string can be used to compute amplitudes via these formulae. If there is time, the lectures will discuss how different matter theories can be obtained, different geometric realizations of ambitwistor space lead to different formulae, the relationship between the asymptotic symmetries of space-time and Weinberg's soft theorems concerning the behaviour of amplitudes when momenta become small, and/or extensions of the ideas to loop amplitudes.

- mbilanstors

13112564 . 1312.3828
Dare Skinner
$1404.6219,14.05 .5122,14.0614 .62+$ Collabolations with:
Tim Adamo

+ Cocharo. He , aiuen
Eduardo Casali, Yvome Geys

1. Ambilunstors from the lost centiven A Lipslein, R. Monteio
2. Ambitwistor Strings
3. Extensions a Applictious
$\frac{\text { Ambitustors }}{1311.2564 .132 .3828}$
$1404.6219,14.05 .5122,14.0614 .62$

+ Cacharo, He , $\mathrm{a}_{\text {Tusn }} \ldots .$.

1. Ambilunstors from the cost century
2. Ambitwistor Strings
3. Extensions a Applications
voint Wilt
Dare Stinner
+Collaborations With:
Tim Adamo
Eduardo Casali, Yvome Geys
A Lipslein, R. Monteio

3. Extensoons a Applechious

Wiltan, Isenbers Yask.n - Erean 1978 Yens-Milus

$$
\text { LeBan } 1983+M \quad \begin{gathered}
1986,1596 . \\
\text { Gravks }
\end{gathered}
$$

Ambilisistor space $\mathbb{A}=$ Spare of complax
null geobesic in a Complextied space-tinu

Given analylic red spactime $\left(M_{\mathbb{R}}, C_{R}\right)$
extand coors. x^{p} from \mathbb{R}^{d} to $\mathbb{C}^{a} \hat{d}^{-1-\ln m \text { mes }}$ metric
Tansition functions a motric have finte radius of Conecsge.
extend to some small thickenng) $\leadsto d$-dim $(L-m p t a) M$ nolomorphic motric $C_{i N}-1,1=1-d$.

Geodosics are Hamillonien tillow tor $P^{2}=G_{i}^{N \nu} P_{\mu} P_{L}$ genosted by Homiltonian Vector tield

$$
\quad X_{p^{2}}, \quad X_{p^{2}} \underset{\hat{\jmath}}{\lrcorner} \omega+d p^{2}=0
$$

Integal cunres of $X_{p}{ }^{2}=\{G$ coarnation of Vector into form clesic with III propagator $P_{N}, G_{T}^{N \nu} P_{2}$ tengent to Cure?
$A=\left.J^{*} M\right|_{p^{2}=0}$
On $P^{2}=0$

$$
\mathcal{L}_{X_{H}} \omega=0 \quad, X_{H} J \omega=-d T^{2}=0
$$

$$
\mathcal{L}_{x_{H}} \theta=0 \quad\left[x_{H}, \underline{V}\right]=x_{H}
$$

So $(\theta, \omega, \underline{v})$ descend to

$$
\omega=d \theta, \quad \theta=Y\rfloor \omega
$$

$$
\begin{array}{ll}
A^{2+2}=\left.J^{*} M\right|_{p^{2}=0}=\left\{X_{p^{2}}\right\} \\
\text { On } p^{2}=0 \quad & \mathcal{Z}_{x_{H}} \omega=0, \\
& X_{H}, 1 \omega=-d T^{2}=0 \\
& \mathcal{L}_{x_{H}} \theta=0 \quad\left[X_{H,}, Y\right]=X_{H}
\end{array}
$$

So $(0, \omega, \underline{Y})$ desend to \mathbb{A}

$$
\omega=d \theta, \quad \theta=Y\rfloor \omega
$$

$P A^{2}=A / V, L$ Lemede $O Q P P A$
$\bar{O}(n)=\{$ functions hgs we:ght n in $P\}$
$\mathbb{A} \rightarrow P \mathbb{A} \quad$ on $P \mathbb{A} \quad \theta \in \Omega^{100} \otimes \delta(1)$
O(-1)
detines a contact struction (holomophara)
Remh: - Locollon no into in this Simactuose by hol. analajue of Darboux.
$\bar{O}(n)=\{$ functions hgs we:ght n in $P\}$
$\mathbb{A} \rightarrow P \mathbb{A} \quad$ on $P \mathbb{A} \quad \theta \in \Omega^{1,0} \otimes \sigma(1)$
$\overbrace{0}^{(1)}$
detines a conract struction (hol omarphas)

$$
\theta_{n}(\Delta \theta)^{d-2} \neq 0 \text {. }
$$

Renh:- Locollon No into in this Shactorst by hal analajue of Darboux.
$\bar{O}(n)=\{$ funchons hgs weight n in $P\}$
$\mathbb{A} \rightarrow P \mathbb{A}$
$O(-1)$
on PA
$\theta \in \Omega^{10} \otimes \sigma(1)$
detines ar contact Structura (holonophanc)

$$
\theta_{1}(d \theta)^{d-2} \neq 0
$$

Remh: Locdln no into in this Structures by hol. analozine of Darboux.

- Contomadly in vanant only requires $[G]$ contormal cquilass G~ $\Omega^{2} G \quad \Omega \neq 0$ to on M.

2. Stable under small detonations of \mathbb{C}-str of $P A$ but must allow ($M,[\xi],[\nabla]$) null geodesics of a torsion connection $[\nabla]$.
3. $[\nabla]$ is tossing - tree if detonation preserves $J \theta$.

NIIII geodesics of a torion connection $[\nabla]$.
3. $[\nabla]$ is torsion- free if deformation Preserves $\exists \theta$ contact

Sketch Proot: - Kodara theors

- I. Each $x \in M \leftrightarrow$ Pojectine lishtrone

Give $4 \times / 2$
reconstruct $M=\left\{\right.$ Mocuali space of dotomotions of $\left.Q_{*}\right\}$

$$
N_{x}=\text { Nomal bunale of } Q_{x} \subset \mathbb{P} \mathbb{A}
$$

Wodair It $H^{\prime}\left(Q_{x}, N_{x}\right)=0=H^{\prime}\left(Q_{a}, E \sim N_{x}\right)$ Then J a manifold M of defornctions of Q_{x}

$$
\overbrace{1 \uparrow \hat{1} Q_{x}}, T_{x} M=1^{\circ}\left(Q_{v}, N_{v}\right)
$$

given $l \in \mathbb{P} / \mathbb{A}$

define count $\gamma_{l} \subset M$

$$
\left\{|1|^{11} Q_{y}>c\right\}
$$

Those or geodesics of a Torsion connection Torsion $=0$ it θ descends to PA

Coatact sti delemunus \mathbb{C}-str is a top degree-hol-tom and so Amihilation
Détomations of \mathbb{C} - Str preveving $\exists 0$ Es $\delta(\theta \in M \Omega \theta(1)$
$\delta S \theta=0$ detinad midulo exact $\delta \theta \in H^{\prime}(P /, O(I))$
$O(n)=\{$ funchons hgs weight n in $P\}$
Propn: $H^{\prime}(P \mathbb{A}, O(n))=\left\{\begin{array}{l}\text { Trace-tree symmetric } \\ \text { tenso } \text { a krith }\end{array}\right.$

$$
=\frac{\left\{\begin{array}{l}
\text { Trace - tree symmeinc } \\
\text { tenson } g^{\prime \mu+}(x)
\end{array} \text { 强 } M\right\}}{\left\{\nabla^{\left(\mu_{0} \cdot f^{\left.\mu_{1} \cdot \mu_{n}\right)}(x)\right.}\right\}}
$$

Propn:

$$
\begin{aligned}
& H^{\prime}(P A, O(x))=\left\{\begin{array}{l}
\text { trace }- \text { tree symmeitic }
\end{array}\right. \\
& \text { tenson } g^{\mu_{r} \cdot p_{n}}(x) \text { on } M \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{1} / P V^{Q M}
\end{aligned}
$$

$g^{\mu \cdot r_{n}}(x)=\epsilon^{\mu} \epsilon^{\mu}$ $2 \pi \cdot x \cdot x$ $g=g^{\mu_{2} \cdot \mu_{4}}(x) P_{\mu_{0}} \cdots P_{\mu_{n}}=(E \cdot P)^{n_{+1}} e^{2 \pi k \cdot x}$

Want
h in $\theta(n)$ s.t P. $\nabla h=g$

$$
k=\frac{(E \cdot P)^{n+1}}{2 \pi i(k \cdot P)} e^{2 \pi i k x}
$$

$$
\begin{aligned}
& \text { Ex. } \left.\quad g^{\mu \cdot \mu_{n}}(x)=\epsilon^{\mu} \epsilon^{\mu} \cdot \epsilon^{\mu} e^{2 \pi \cdot \alpha x} \beta_{\mu} \beta_{1}\right) \\
& W_{1}+g_{1}=g^{k \cdot} \cdot(a) P_{\mu} \cdot P_{\mu}=(G \cdot P)^{n \cdot} e^{2 \pi i k x} \\
& \text { Want } h \text { in } \theta(n) \text { set } P \cdot \nabla h=g \\
& h=\frac{(E \cdot P)^{n-1}}{2 \pi i(k \cdot P)} e^{2 \pi i k x} \\
& \delta(g)=V=\bar{\partial} h=(\epsilon \cdot P)^{n-1} e^{2 \pi \cdot K x} \bar{\delta}(K \cdot P)
\end{aligned}
$$

$$
\begin{array}{ll}
\bar{\delta}(z)=\delta \frac{1}{2 \pi / z}=\delta(\operatorname{Re} z) \delta(I n z) d \bar{z} \\
P \nabla V=0 & V \in H^{\prime}(P A, \sigma(n)) \\
\text { For } n=2 & g=S\left(P^{2}\right) \quad S=S G^{\prime N}
\end{array}
$$

δ - ton Jupport $\delta(V r) \Rightarrow$ Scattening equ.

$$
P \mathbb{A} \angle \frac{\mathbb{C} \mathbb{R}^{2} \times \mathbb{C} \mathbb{R}^{3 *}}{Z}
$$

$$
\tau_{2, \psi}
$$

