Title: What is Entropy?

Date: May 20, 2015 02:00 PM

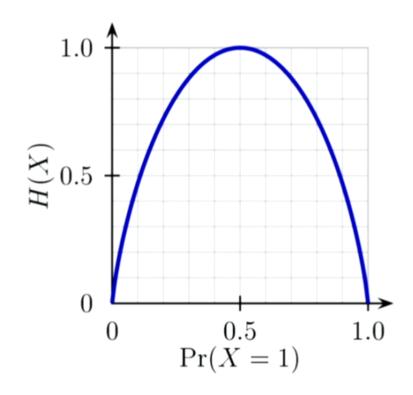
URL: http://pirsa.org/15050038

Abstract: Entropy comes up all over physics and mathematics in many different guises. However, as one tries to understand its conceptual meaning, entropy often evades the question by shifting into a different shape. Here, I will try to capture the beast by surrounding it from all sides. Assistance by the audience will increase the chance of success.

Pirsa: 15050038 Page 1/28

Why entropy?

(Slightly different talk from what was announced. Sorry!)



Pirsa: 15050038 Page 2/28

Given finite sets X and Y, a **stochastic map** $f: X \rightsquigarrow Y$ assigns real number f_{yx} to each pair $x \in X, y \in Y$ in such a way that for any x, the numbers f_{yx} form a probability distribution on Y.

We call f_{yx} the probability of y given x.

So, we demand:

- $f_{yx} \ge 0$ for all $x \in X$, $y \in Y$,
- $\sum_{y\in Y} f_{yx} = 1 \text{ for all } x\in X.$

We can compose stochastic maps $f: X \to Y$ and $g: Y \to Z$ by matrix multiplication:

$$(g \circ f)_{zx} = \sum_{y \in Y} g_{zy} f_{yz}.$$

This way, we get a stochastic map $g \circ f : X \to Z$.

We let FinStoch be the category with

- finite sets as objects,
- ▶ stochastic maps $f: X \rightsquigarrow Y$ as morphisms.

Every genuine function $f: X \to Y$ is a stochastic map, so we get

Pirsa: 15050038 Page 4/28

We can compose stochastic maps $f: X \to Y$ and $g: Y \to Z$ by matrix multiplication:

$$(g \circ f)_{zx} = \sum_{y \in Y} g_{zy} f_{yz}.$$

This way, we get a stochastic map $g \circ f : X \to Z$.

We let FinStoch be the category with

- finite sets as objects,
- stochastic maps f: X → Y as morphisms.

Every genuine function $f: X \to Y$ is a stochastic map, so we get

 $\mathtt{FinSet} \hookrightarrow \mathtt{FinStoch}.$

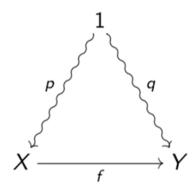
Let 1 be your favourite 1-element set. A stochastic map

$$1 \stackrel{p}{\sim} X$$

is a probability distribution on X.

We call $p: 1 \leadsto X$ a finite probability space.

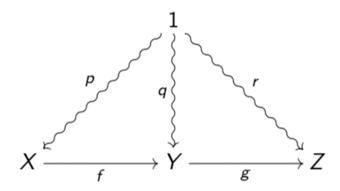
A **measure-preserving map** between finite probability spaces is a commuting triangle



So, $f: X \to Y$ sends the probability distribution on X to that on Y:

$$q_y = \sum_{x: f(x)=y} p_x$$

We can compose measure-preserving maps:



So, we get a category FinProb with

Any finite probability space $p: 1 \rightsquigarrow X$ has an **entropy**:

$$S(p) = -\sum_{x \in X} p_x \ln p_x$$

This says how 'evenly spread' p is.

Or: how much information you learn, on average, when someone tells you an element $x \in X$, if all you'd known was that it was randomly distributed according to p.

Pirsa: 15050038 Page 9/28

Flip a coin!

If
$$X = \{h, t\}$$
 and $p_h = p_t = \frac{1}{2}$, then

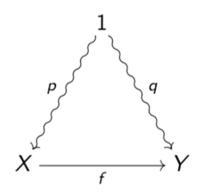
$$S(X, p) = -\left(\frac{1}{2}\ln\frac{1}{2} + \frac{1}{2}\ln\frac{1}{2}\right) = \ln 2$$

so you learn In 2 nats of information on average, or 1 bit.

But if $p_h = 1, p_t = 0$ you learn

$$S(X, p) = -(1 \ln 1 + 0 \ln 0) = 0.$$

What's so good about entropy? Let's focus on the **information loss** of a measure-preserving map:



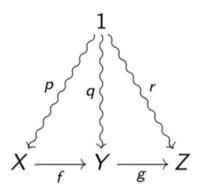
$$IL(f) = S(X, p) - S(Y, q)$$

The data processing inequality says that

$$\mathrm{IL}(f) \geq 0$$

Deterministic processing of random data always decreases entropy!

For two composable measure-preserving maps:



we have

$$IL(g \circ f) = S(X,p) - S(Z,r)$$

$$= S(X,p) - S(Y,q) + S(Y,q) - S(Z,r)$$

$$= IL(f) + IL(g)$$

So, information loss should be a *functor* from FinProb to a category with numbers $[0, \infty)$ as morphisms and addition as composition.

Indeed there is a category $[0, \infty)$ with:

- ▶ one object *,
- ▶ nonnegative real numbers c as morphisms $c: * \rightarrow *$,
- addition as composition.

We've just seen that

$$\mathtt{IL}\colon \mathtt{FinProb}\to [0,\infty)$$

is a functor. Can we characterize this functor?

Yes. The key is that IL is 'convex-linear' and 'continuous'.

Pirsa: 15050038

We can define **convex linear combinations** of objects in FinProb. For any $0 \le c \le 1$, let

$$c(X,p) \oplus (1-c)(Y,q)$$

stand for the disjoint union of X and Y, with the probability distribution given by cp on X and (1-c)q on Y.

We can also define convex linear combinations of morphisms:

$$f: (X,p) \rightarrow (X',p'), \qquad g: (Y,q) \rightarrow (Y',q')$$

give

$$cf \oplus (1-c)g : c(X,p) \oplus (1-c)(Y,q) \longrightarrow c(X',p') \oplus (1-c)(Y',q')$$

This is simply the function that equals f on X and g on Y.

Information loss is convex linear:

$$\operatorname{IL}(cf + (1-c)g) = c \operatorname{IL}(f) + (1-c) \operatorname{IL}(g)$$

The reason is that

$$S(c(X,p)+(1-c)(Y,q))=c\,S(X,p)\,+\,(1-c)\,S(Y,q)\,+\,S_c$$

where

$$S_c = -\Big(c\ln c + (1-c)\ln(1-c)\Big)$$

is the entropy of a coin with probability c of landing heads-up. This extra term cancels when we compute information loss.

FinProb and $[0,\infty)$ are also **topological categories**: they have topological spaces of objects and morphisms, and the category operations are continuous.

Pirsa: 15050038 Page 16/28

Theorem (Baez, Fritz, Leinster). Any continuous convex-linear functor

$$F: \mathtt{FinProb} \to [0, \infty)$$

is a constant multiple of the information loss: for some $\alpha \geq 0$,

$$g: (X, p) \to (Y, q) \implies F(g) = \alpha \text{ IL}(g).$$

The easy part of the proof: show that

$$F(g) = \Phi(X, p) - \Phi(Y, q)$$

for some quantity $\Phi(X, p)$. The hard part: show that

$$\Phi(X,p) = -\alpha \sum_{x \in X} p_x \ln p_x$$

This part relies on an earlier characterization due to Faddeev.

Information loss is convex linear:

$$\operatorname{IL}(cf + (1-c)g) = c \operatorname{IL}(f) + (1-c) \operatorname{IL}(g)$$

The reason is that

$$S(c(X,p)+(1-c)(Y,q))=c\,S(X,p)\,+\,(1-c)\,S(Y,q)\,+\,S_c$$

where

$$S_c = -\Big(c\ln c + (1-c)\ln(1-c)\Big)$$

is the entropy of a coin with probability c of landing heads-up.

Pirsa: 15050038

Theorem (Baez, Fritz, Leinster). Any continuous convex-linear functor

$$F: \mathtt{FinProb} \to [0, \infty)$$

is a constant multiple of the information loss: for some $\alpha \geq 0$,

$$g:(X,p)\to (Y,q) \implies F(g)=\alpha \text{ IL}(g).$$

Pirsa: 15050038 Page 19/28

Two generalizations:

1) There is precisely a one-parameter family of convex structures on the category $[0,\infty)$. Using these we get information loss functors

$$\mathtt{IL}_{eta} \colon \mathtt{FinProb} o [0,\infty)$$

based on Tsallis entropy:

$$S_{eta}(X,p) = rac{1}{eta-1}igg(1-\sum_{x\in X}p_x^etaigg)$$

which reduces to the ordinary entropy as $\beta \to 1$.

2) The entropy of one probability distribution on *X* relative to another:

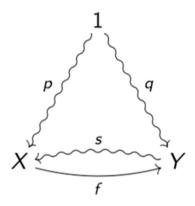
$$D(p||q) = \sum_{x \in X} p_x \ln \left(rac{p_x}{q_x}
ight)$$

is the expected amount of information you gain when you thought the right probability distribution was q and you discover it's really p. It can be infinite!

There is also category-theoretic characterization of relative entropy.

Pirsa: 15050038

This uses a category FinStat where the objects are finite probability spaces, but the morphisms look like this:

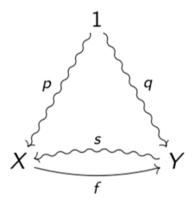


$$\begin{array}{rcl}
f \circ p & = & q \\
f \circ s & = & 1_Y
\end{array}$$

We have a measure-preserving map $f: X \to Y$ equipped with a stochastic right inverse $s: Y \leadsto X$. Think of f as a 'measurement process' and s as a 'hypothesis' about the state in X given the measurement in Y.

Pirsa: 15050038

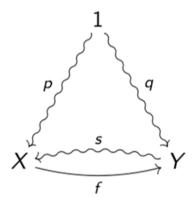
Any morphism in FinStat



$$f \circ p = q$$

 $f \circ s = 1$

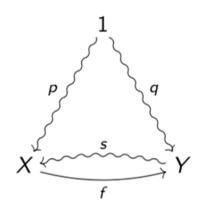
Any morphism in FinStat



$$f \circ p = q$$

 $f \circ s = 1$

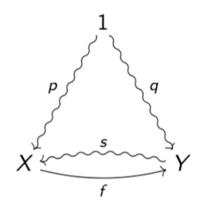
gives a relative entropy $D(p || s \circ q)$. This says how much information we gain when we learn the 'true' probability distribution p on the states of the measured system, given our 'guess' $s \circ q$ based on the measurements q and our hypothesis s.



$$f \circ p = q$$

 $f \circ s = 1_Y$

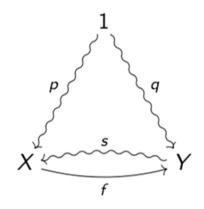
Our hypothesis s is **optimal** if $p = s \circ q$: our guessed probability distribution equals the true one!



$$f \circ p = q$$

 $f \circ s = 1_Y$

Our hypothesis s is **optimal** if $p = s \circ q$: our guessed probability distribution equals the true one! In this case $D(p || s \circ q) = 0$.



$$f \circ p = q$$

 $f \circ s = 1$

Our hypothesis s is **optimal** if $p = s \circ q$: our guessed probability distribution equals the true one! In this case $D(p || s \circ q) = 0$.

Morphisms with an optimal hypothesis form a subcategory

 $\mathtt{FP} \hookrightarrow \mathtt{FinStat}$

Theorem (Baez, Fritz). Any lower semicontinuous convex-linear functor

$$F: \mathtt{FinStat} \to [0, \infty]$$

vanishing on morphisms in FP is a constant multiple of relative entropy.

The proof is hard! Can you simplify it?

Pirsa: 15050038 Page 28/28