Title: What is Entropy?
Date: May 20, 2015 02:00 PM
URL: http://pirsa.org/15050038

Abstract: <p>Entropy comes up all over physics and mathematics in many different guises. However, as one tries to understand its conceptual

meaning, entropy often evades the question by shifting into a different shape. Here, | will try to capture the beast by surrounding it from al sides.
Assistance by the audience will increase the chance of success.</p>
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Why entropy?

(Slightly different talk from what was announced. Sorry!)
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Given finite sets X and Y/, a stochastic map f: X ~» Y assigns
real number f,, to each pair x € X,y € Y in such a way that for
any x, the numbers f,, form a probability distribution on Y.

We call f,x the probability of y given x.

So, we demand:

» f,x >0forall xe X,y €Y,

> ij,leforallxeX.
yeyY
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We can compose stochastic maps f: X — Y and g: Y — Z by
matrix multiplication:

(g O zC)zx = Z 8zy fyz-

yeyY
This way, we get a stochastic map gof: X — Z.

We let FinStoch be the category with

» finite sets as objects,

» stochastic maps f: X ~» Y as morphisms.

Every genuine function f: X — Y is a stochastic map, so we get
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We can compose stochastic maps f: X — Y and g: Y — Z by
matrix multiplication:

(gof)x = Zgzyﬂ/z-
yeyY

This way, we get a stochastic map gof: X — Z.

We let FinStoch be the category with

» finite sets as objects,

» stochastic maps f: X ~~ Y as morphisms.*

Every genuine function f: X — Y is a stochastic map, so we get

FinSet < FinStoch.
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Let 1 be your favourite 1-element set. A stochastic map

1 ~2 X

Is a probability distribution on X.

We call p: 1 ~ X a finite probability space.
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A measure-preserving map between finite probability spaces is a

commuting triangle
1
/ \
X - »Y

So, f: X — Y sends the probability distribution on X to that on

Y:
Z Px

x: f(x
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We can compose measure—preserving maps:

1

X »Y » Z

So, we get a category FinProb with
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Any finite probability space p: 1 ~ X has an entropy:

S(p) == _ pxInp
xeX
This says how ‘evenly spread’ p is.
Or: how much information you learn, on average, when someone

tells you an element x € X, if all you'd known was that it was
randomly distributed according to p.
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Flip a coin!
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1) =1In2
so you learn In2 nats of information on average, or 1 bit.
But if p, = 1, pt = 0 you learn

S(X.,p)=—(1In1+0In0) = 0.
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What's so good about entropy? Let's focus on the information
loss of a measure-preserving map:

1

X » Y

IL(f) = S(X.p)— S(Y.q)

The data processing inequality says that

IL(f) > 0

Deterministic processing of random data always decreases entropy!
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For two composable measure-preserving maps:

1

we have
IL(gof) = S(X,p)—-S(Z.r)
= S(X,p)—=S(Y.q)+S5(Y.q)—S(Z.r)
= IL(f)+ IL(g)

So, information loss should be a functor from FinProb to a
category with numbers [0, oc) as morphisms and addition as
composition.
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Indeed there is a category [0, o) with:

» one object *,
» nonnegative real numbers ¢ as morphisms ¢c: * — x,

» addition as composition.

We've just seen that
IL: FinProb — [0, o0)
is a functor. Can we characterize this functor?

Yes. The key is that IL is ‘convex-linear’ and ‘continuous’.
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We can define convex linear combinations of objects in
FinProb. Forany 0 < ¢ <1, let

c(X.p) ® (1-¢)(Y.q)

stand for the disjoint union of X and Y, with the probability
distribution given by cp on X and (1 —c)gon Y.

We can also define convex linear combinations of morphisms:
fr(X.p) = (X' P),  g:(Y.q) = (Y'.q)

give

cfd(l—c)g: c(X.p)B(1—c)Y.q) — (X, p)B(1-c)(Y'.q)

This is simply the function that equals f on X and g on Y.
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Information loss i1s convex linear:

IL(cf + (1 —c)g) = cIL(f) + (1 —¢)IL(g)

The reason is that
S(c(X.p)+(L—-c)(Y.,q)) =cS(X,p) + (1 —¢c)S5(Y,q) + S

where
Sc = —(clnc + (1 —=c¢)In(1 - c))

Is the entropy of a coin with probability ¢ of landing heads-up.
This extra term cancels when we compute information loss.
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FinProb and [0, o) are also topological categories: they have
topological spaces of objects and morphisms, and the category
operations are continuous.
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Theorem (Baez, Fritz, Leinster). Any continuous convex-linear

functor
F: FinProb — [0, o0)

Is a constant multiple of the information loss: for some a > 0,

g: (X,p) = (Y.q) = F(g)=alIL(g)

The easy part of the proof: show that

F(g) = ®(X,p) —®(Y.q)

for some quantity ®(X, p). The hard part: show that

(X, p) = —a Z px In py

xeX

This part relies on an earlier characterization due to Faddeev.
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Information loss i1s convex linear:

IL(cf + (1 —c)g) = cIL(f) + (1 —¢)IL(g)

The reason is that
S(c(X.p)+(1—-¢c)(Y.q) =cS(X.,p) + (1 —¢c)S5(Y.q) + S

where
Se = —(clnc + (1 =¢)In(1 - c))

Is the entropy of a coin with probability ¢ of landing heads-up.
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Theorem (Baez, Fritz, Leinster). Any continuous convex-linear
functor
F: FinProb — [0, o0)

Is a constant multiple of the information loss: for some a > 0,

g: (X,p) = (Y.,q) = F(g)=alIL(g)
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Two generalizations:

1) There is precisely a one-parameter family of convex structures
on the category [0,00). Using these we get information loss
functors

ILs: FinProb — [0, o)

based on Tsallis entropy:

Ss(X,p) = jil(l— Zpﬁ)

xeX

which reduces to the ordinary entropy as 3 — 1.
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2) The entropy of one probability distribution on X relative to
another:

D(pllg) = Y pxIn (—)

xeX

Is the expected amount of information you gain when you thought
the right probability distribution was g and you discover it's really
p. It can be infinite!

There is also category-theoretic characterization of relative entropy.
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This uses a category FinStat where the objects are finite
probability spaces, but the morphisms look like this:

1

fop = ¢
fos 1y

We have a measure-preserving map f: X — Y equipped with a
stochastic right inverse s: Y ~» X. Think of f as a ‘'measurement

process' and s as a ‘hypothesis’ about the state in X given the
measurement in Y.

Pirsa: 15050038 Page 22/28



Any morphism in FinStat

—_—
f
fop = g
fos = ].y
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Any morphism in FinStat

~_—
f

fop = g

fos = ].y

gives a relative entropy D(p|| s o g). This says how much
information we gain when we learn the ‘true’ probability
distribution p on the states of the measured system, given our
‘guess’ s o g based on the measurements g and our hypothesis s.
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S y
f
fop = ¢
fos = ].y

Our hypothesis s is optimal if p = s o g: our guessed probability
distribution equals the true one!
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—_
f

fop = ¢q

fos = ].y

Our hypothesis s is optimal if p = s o g: our guessed probability
distribution equals the true one! In this case D(p||so q) = 0.
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—
f

fop = q

fos = ].y

Our hypothesis s is optimal if p = s o g: our guessed probability
distribution equals the true one! In this case D(p||so q) = 0.

Morphisms with an optimal hypothesis form a subcategory

FP «— FinStat
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Theorem (Baez, Fritz). Any lower semicontinuous convex-linear
functor
F: FinStat — [0, o]

vanishing on morphisms in FP is a constant multiple of relative
entropy.

The proof is hard! Can you simplify it?
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