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Abstract: <p>By explicit construction, | will show that one can in a simple way introduce and measure gravitational holonomies and Wilson loopsin
|attice formulations of nonperturbative quantum gravity based on (Causal) Dynamical Triangulations.</p>
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Motivation

* Find observables for nonperturbative quantum gravity!

* more specifically,

Is there a meaningful notion of “curvature” on the Planck scale,
which on large scales becomes the curvature of general relativity?

e popular observables, like the spectral and Hausdorff dimensions,
involve lengths and volumes, but no derivative expressions

* in Regge calculus and dynamical triangulations, there is a simple
expression for the scalar curvature in terms of deficit angles, but it
needs to be regularized and renormalized in the continuum limit

= can Wilson loops provide (coarse-grained) measures of curvature?

based on joint work with J. Ambjgrn, A. Gorlich, J. Jurkiewicz,
arXiv:1504.01065
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Wilson loops in gauge field theory

The main motivation comes from nonabelian gauge field theory, where
one can construct a nonlocal, gauge-invariant observable by taking the
(trace of the) path-ordered exponential of the gauge potential A, along
a closed curve y, to obtain the so-called Wilson loop

W.(A) = TrPexp % A

Expanding the path-ordered exponential (“holonomy”) around an
infinitesimal square loop of side length € in the pv-plane, one finds

P exp ié A=1+4+gF¢ X, - ()(63)

oz
n}"[uu]
which contains information about the local curvature F.

Moreover, the scaling behaviour of the Wilson loop provides a
confinement criterion for QCD.
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Wilson loops for (quantum) gravity?

In gravity, one can use the Levi-Civita connection N, to construct
holonomies and analogues of Wilson loops.

The path-ordered exponential of I along a path defines a notion of
parallel transport of tangent vectors.

All physical information contained in the Riemann curvature tensor
RHya can be retrieved from infinitesimal holonomies.

However, Wilson loops are not diffeomorphism-invariant. On
spacetime, they have been little studied or used, with the exception
of the work by G. Modanese in perturbative quantum gravity (see,
e.g. G. Modanese, PRD 49 (1994) 6534).

There are attempts to study Wilson loops in quantum Regge calculus
(H. Hamber, R. Williams, PRD 76 (2007) 084008, 81 (2010) 084048).
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Wilson loops for (quantum) gravity!

Of course, in canonical quantum gravity, Loop Quantum Gravity isin a
way all about (spatial) Wilson loops.

This is somewhat reminiscent of the program to formulate nonabelian
gauge theory purely in terms of Wilson loop variables.

| will talk about something much less radical today, namely, a first
exploration of what we may learn from defining Wilson loops in non-
perturbative quantum gravity using Causal Dynamical Triangulations
(CDT), a path integral approach based on pure geometry (quantum
“rods and clocks”).

| will give only a lightning summary of CDT to provide a framework for
the Wilson loop analysis; for more background, please consult

J. Ambjgrn, A. Gorlich, J. Jurkiewicz & RL, “Nonperturbative Quantum
Gravity”, Physics Report 519 (2012) 127 [arXiv: 1203.3591]
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Recap: Quantum Gravity from coT™

is a nonperturbative implementation of the gravitational path integral,

Newton’s g I H [ ]
constant o g

Ve v / Dg e'7SnoA
Einstein-Hilbert

spacetimes :
cosmological constant geQ action

much in the spirit of lattice quantum field theory, but based on dynamical
triangular lattices, reflecting the dynamical nature of spacetime geometry:

1 cgge
2@y, A et—blimy o 8 o REFevy iy

}\(ft-)() ? 4
— inequiv.
UV cutoff o R ]
triangul.s
TeGa N |Aut(T)|

# building blocks

X recent contributors: J. Ambjgrn, T. Budd, J. Cooperman, D. Coumbe, A. Ipsen,

G. Giasemidis, R. H('J(‘Ium'rm, J. Gizbert-Studnicki, L. Glaser, A. Gorlich, S. Jordan,

Jurkiewicz, A. Kreienbuehl, J. Laiho, B. Ruyl, Y. Sato, S. Smith, Y. Watabiki
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Key properties and ingredients of the CDT
approach to quantum gravity

@ CDT uses few ingredients/priors:
® path integral/quantum superposition
principle
® locality and causal structure (this is
not Euclidean quantum gravity)
® notion of (proper) time; can be relaxed
® Wick rotation
® standard tools of quantum field theory (and standard QT!)
® “conservative” configuration space: curved spacetimes of GR are
represented by piecewise flat geometries (the triangulations)
® phase space spanned by few free parameters (A, Gy, A)
@ universal properties (contributes to uniqueness!)
® Crucial: nonperturbative computational tools to extract quantitative
results

piece of causal triangulation
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Why does CDT quantum gravity matter?

® “as simple as it can be, but not simpler”

e it has come a long way, most recent results: 2"9-order phase
transitions; background-independent implementation of RG

e explicit framework; concrete, quantitative results: falsifiable!

® it may actually tell us what quantum gravity is, exhibiting its
universal properties

® CDT QG is a perfect test bed for implementing and measuring
observables, including observables involving Wilson loops

possible objections:

® Wilson loops are all about connections and coordinate frames,
whereas CDT quantum gravity is coordinate-free!?

® CDT works only with two types of simplicial building blocks,
and there will be very strong discretization effects
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Holonomies in gravity

Given a Riemannian manifold M with metric g,v(x), the Levi-Civita

connection M defines the parallel transport of a vector V* along a

curve y*(A). path ordering

/ "
H
V‘”(fi) (77 (‘_ [\ h") /\)t//\) L V“(ll-'i).. (]‘H) , = [V{

K/

Under a coordinate transformation = — #(x), VH(xq)
! oxt(x VH(xi)
with M",(z) = f)} .(,f) Xf
W VN
the path-ordered integral transforms as &

H «
(7)(\ ’,\ [ UU(/)\) , = A.[““,(Jl-'{‘) (7,')(\ ’,\ ™ )u’)\) ﬁ(ﬂ{—l(:lri));’)’p
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Generally, the path y(A)

passes through several
coordinate patches Uy, m w
with coordinates xi*. We ‘W

then compute the path- w

ordered integral in every

patch, with a transition

matrix M(xmid k) inserted at each arbitrary midpoint Xmigk in the kth
overlap region UxnU41. For a closed loop y(A) based at x;, its holonomy is

(P(!_‘qa;! 1‘)': (Pe” S mianan [‘”) M (Zmid,n+1)"

n

H (Pe” Jomidye ") M (2mia k) (Pe” Jo ¢!

k=1
which still transforms under coordinate changes at the base point,

& - _ 0rH(x
(730_ $ r);;, = M(x;) (770_5&I I) ..A[ i), with M",(z) = ()If)'z:("l)'

Xy
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Holonomies in Euclidean(ized) DT

In d dimensions, introduce the .

d-simplex d-sir;plex
same coordinates {xk"} on each flat, Ny '
equilateral d-simplex sk. Since R=0
inside s, for any closed path totally (U, {x1"}) (U, {x2M)

inside sx we have P(exp¢ )= 1.

face o

e w.l.0.g. use piecewise straight paths L between the centres of
neighbouring simplices when constructing holonomies

® can use Cartesian coordinate frames where the metric is constant (to
be specified; in the end, nothing will depend on it)

oxh .
2| = R(sy,s1)", € SO4)

ox}

e the holonomy of a closed, oriented path L, starting and ending at x; is

R[_, = R(.‘:‘] ) S.,,.)R(.S‘,”,, .S'.”Al) v R(Sg, .S'l) e S()(I)

e have transition matrix M", =
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e the holonomy R\ still transforms under a change of the Cartesian
coordinates * — z(x) in the simplex s;, with some A € SO(4):

- oxt (x
R;, — AR AT, A, =2 (z)
ox?
e parallel-transporting a vector V* around loop L gives a rotated vector

Vi, = RV

e the angle between V and V_ is independent of A,

7} W C(C ( Lar )
/ Vi, = arccos
G VV VALV,

Vi

Bvy,

Page 13/23



Relation with local curvature in Regge calculus

Curvature is located at “hinges” = subsimplices of dimension d-2. In four
dimensions it is located at triangles T.

The Gaussian curvature of a small surface perpendicular to the hinge tis
obtained by parallel-transporting a vector along a minimal loop around t.

/N

red: hinge, blue: minimal loop L(t)

In d=4, each hinge tis shared by a ring of four-simplices (not shown).
In each of them we can choose coordinates s.t. T lies in the 3-4 plane.
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What happens to a vector V¥ parallel-transported around L(t)?
a) VM, i.e. V¥ =(0,0,V3V4 = V remains unchanged, V ) = V.
b) VW L1, i.e. V*=(VLV20,0) = Visrotated to some Vi = (V.1,Vi2,0,0).

The plane perpendicular to tis rotated into itself by an SO(2)-subgroup,
parametrized by a single angle g, with
y VL(T) !
COSE = . for V LT

Vv V-V\/VL(T)'L/L(T)

e is the deficit angle associated
with the hinge t in Regge calculus!

COS € sine 0 O
>% —sine cose 0O O
E —
— Rir) 0 s |
d=2 0 0 0 %

holonomy of a minimal loop in 4d:
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Some features of SO(4)

From the point of view of SO(4), this is a special, “simple” rotation.
However, a generic SO(4)-rotation is a “double rotation” characterized

invariantly by two nonvanishing angles 61 and 6, (of two independent
rotations in mutually orthogonal two-planes).

For a general loop L (lattice or cont.), the holonomy R is of the form

cos sin @4 0 0
A —sinfy  cos b, 0 0 T ‘Y
fiz g 0 0 cosfly  sinfy AT, A eSO
0 0 —sinfy coséy

Up to exchange 81€20,, the angles can be extracted from the trace
invariants (“Wilson loops”)

1
t1(Ryp) := = Tr(Ry) = cos 0y + cos by

[\

to(Rr) := ~ Tr(R7) + 1 = cos® 0y + cos® 0,

= =
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Concrete holonomy computations in CDT

An orthonormal coordinate system for a flat P1
equilateral d-simplex s, with origin at the bary-

centre of s, is defined - up to a permutation of d=2
the vertex labels - by requiring the vectors 7;,

i=1,..,d+1, to the vertices P; to satisfy P2 ‘

- 1
— 2 . —t — — . .
T =1, T, =0, Z; T;=——,1%
L ‘ E ! , X T ik #J Ps
In d =4, there are 5! = 120 different choices of such frames.

In the Monte Carlo simulations of CDT quantum gravity, all four-
simplices are assigned vertex labels from the outset. We only need
to tabulate finitely many transition matrices R(si+1,si) - for all possible
pairings of coordinate systems of adjacent four-simplices siand sjs1 -
and multiply them together when following a lattice loop L.
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Wilson loop observables in CDT

In nonperturbative quantum gravity, observables must be invariantly
defined, without reference to coordinates or any background (unless
obtained dynamically). Standard QFT observables can sometimes be
adapted to be meaningful in the functional integral over geometry.

Ex. 1: the use of physical scales as part of a renormalization group
analysis in CDT in4d - JA, AG, JJ, AK & RL, CQG 31 (2014) 165003

Ex. 2: a two-point function Gz(x,y) is not a good observable, since we
cannot fix specific points x and y in the path integral, but

(‘/( /’D[q,,u —Slguv] /(hdq\/ N9(y)Ge(x,y)d(r—dg, (z,y)) is.

geodesic distance

Wilson loops do not just refer to points, but to entire curves. We could
consider classes of loops sharing certain invariant geometric features.
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Defining physical Wilson loops in CDT

We let the loop L coincide with the world
line of a particle moving forward in time. The
loops wind once around the compactified
time direction of the triangulated
spacetimes, which have topology S x S3.

Correspondingly, we add to the action a
term for a free massive point particle

SPP =m /rH — S&pp = moNL

where N = number of four-simplices along L.

We then perform Monte Carlo simulations for the combined gravity-
particle system, updating both, for time extension T = 80, and
spacetime volume N4 = 20.000. We measure the trace invariants ti(Ry()
and t2(Ry) introduced earlier, and extract the two angles 8; and 95.
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The Haar measure on SO(4)

How would the two measured angles 81, 0, be distributed if the
holonomies R, were distributed evenly (with respect to the Haar
measure) over the group manifold SO(4)? — How to find out:

e supplement 64, 0, (parametrizing the “maximal torus”) by four
more angles xi, i=1, ..., 4, to get a parametrization of all of SO(4)

e compute the invariant Haar measure in terms of {0;, xi}, for
example, from the left-invariant one-forms on the group

¢ integrate the associated volume form over the variables {xi},
resulting in a two-form p(61,06,)d01d0,

e normalize p(61,0;) to obtain the desired distribution

10, ., /6,0 o {61 — 6
P(61,0;) = = Sillz( A 2)snﬁ( ' “’)

2 2 2
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The measured distribution P(0,,0)

The outcome of our Monte Carlo measurements is shown here and is
in almost perfect agreement with the theoretical “even” distribution

1 o (01 +6 o (01 — 0
P(0,,05) = — .s'iuz( I;r 2)sin‘z( l 2).

2 2
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Wilson loops in CDT: Conclusions

® one could have worried about the suitability of this “coordinate-
free” approach

® one could have worried about large discretization effects
(equilateral simplices have only one interior angle)

® the holonomy group of quantum spacetime appears to be SO(4)
® the holonomies are evenly distributed over the group manifold,
no sign that they “average out” to something near the identity

= the CDT formulation seems to be perfectly suited for investigating
Wilson loop observables

The challenge is now to construct Wilson loop observables which
give us nontrivial information about the quantum geometry of
spacetime, for example, some “average curvature” on larger scales.
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