Title: Flavorful New Physics

Date: May 07, 2015 01:00 PM

URL: http://pirsa.org/15050008

Abstract: The known basic building blocks of matter, the quarks and leptons, come in three generations or flavors.

br>

The masses and interactions of the different flavors show a very hierarchical structure and the origin of these hierarchies remains an unsolved mystery of particle physics. The same hierarchies lead to a very high sensitivity of flavor changing processes to new undiscovered particles even outside the reach of direct searches at particle colliders.

In this colloquium I will present recent developments in constructing a theory of flavor and highlight the complementarity of flavor, Higgs, and collider physics in searching for new phenomena at the TeV scale and beyond. $<\!/p>$

Pirsa: 15050008 Page 1/44

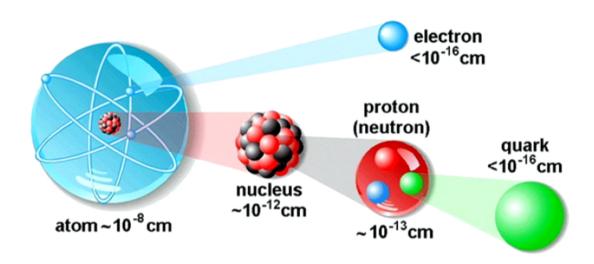
Flavorful New Physics

Wolfgang Altmannshofer waltmannshofer@perimeterinstitute.ca

Colloquium

May 7, 2015

Wolfgang Altmannshofer


Flavorful New Physics

May 7, 2015

1/39

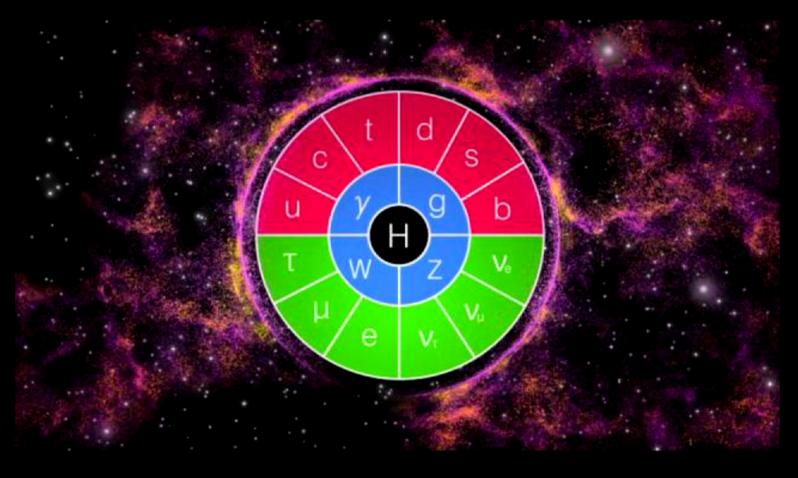
Pirsa: 15050008 Page 2/44

The Search for the Fundamental

What is the world made of?

What holds it together?

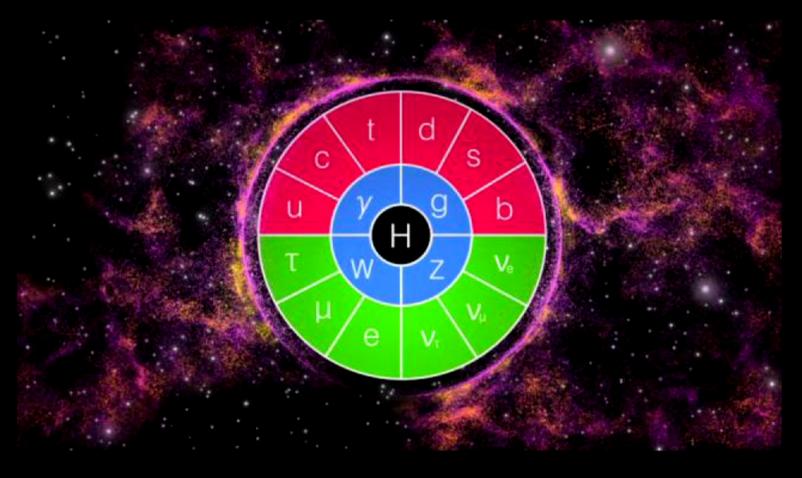
Wolfgang Altmannshofer


Flavorful New Physics

May 7, 2015

2/39

Pirsa: 15050008 Page 3/44

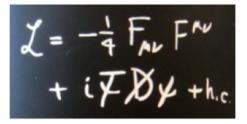

The Standard Model Particle Content

particlefever.com

Pirsa: 15050008 Page 4/44

The Standard Model Particle Content

particlefever.com


Pirsa: 15050008 Page 5/44

The Standard Model on a Cup of Coffee Z= - ¼ F_{Aν} F^{Aν} + i F Dy + h.c. + Y: Y: y × y + h.c. + | Dy |² - V(β) Wolfgang Altmannshofer Flavorful New Physics May 7, 2015 4/39

Pirsa: 15050008 Page 6/44

Flavor and the Proliferation of Parameters

gauge sector

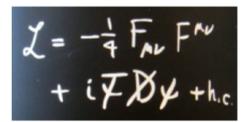
describes the gauge interactions of the quarks and leptons

parametrized by 3 gauge couplings g_1, g_2, g_3

symmetric under a large flavor symmetry $G_{SM} = SU(3)^5$

Wolfgang Altmannshofer

Flavorful New Physics


May 7, 2015

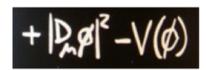
5/39

Pirsa: 15050008 Page 7/44

Flavor and the Proliferation of Parameters

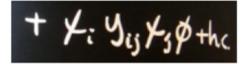
gauge sector

describes the gauge interactions of the quarks and leptons


parametrized by 3 gauge couplings g_1, g_2, g_3

symmetric under a large flavor symmetry $G_{SM} = SU(3)^5$

Wolfgang Altmannshofer

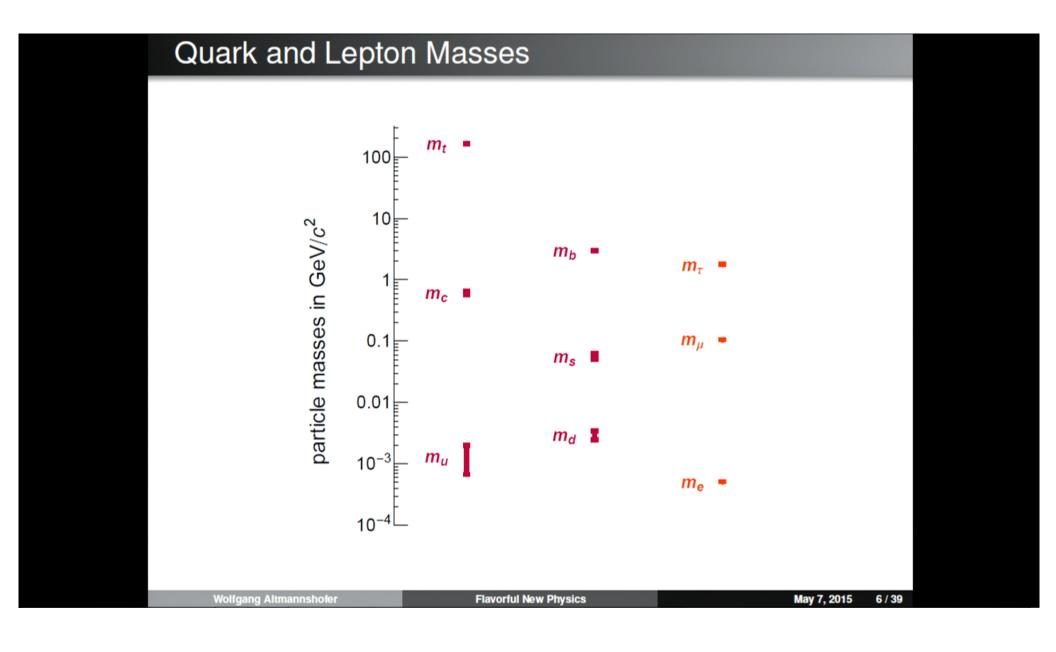

Flavorful New Physics

Higgs sector

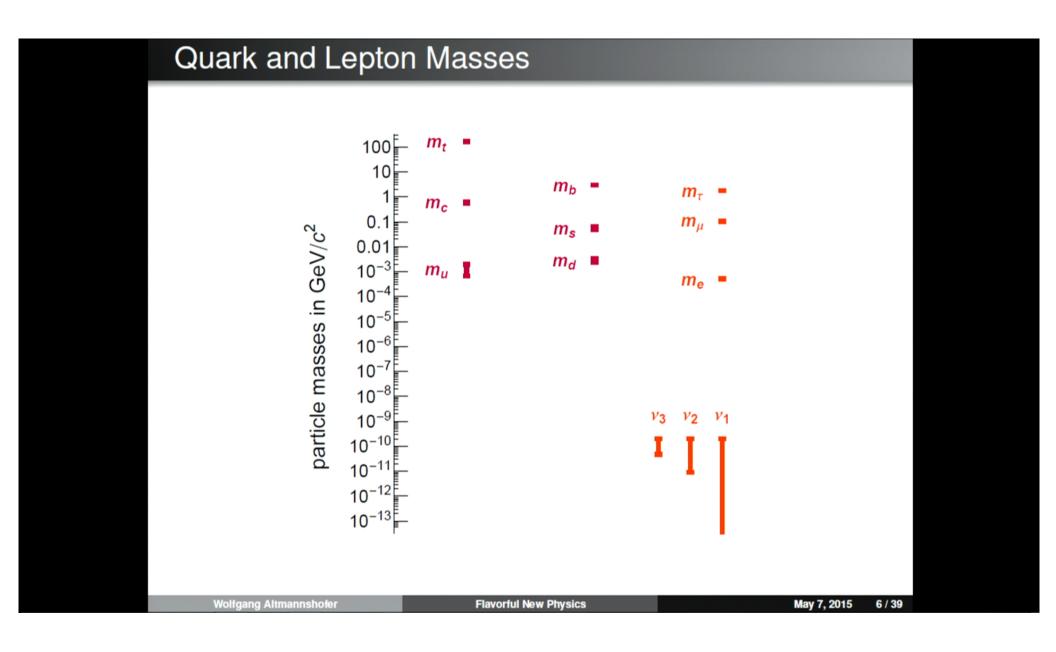
breaks electro-weak symmetry and gives mass to the W^{\pm} and Z bosons

2 free parameters Higgs mass Higgs vev flavor sector

leads to masses and mixings of the quarks and leptons

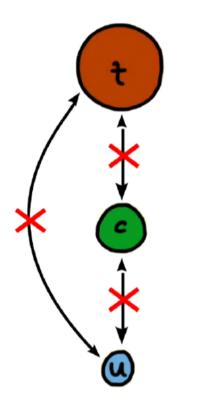

22 free parameters to describe the masses and mixings of the quarks and leptons

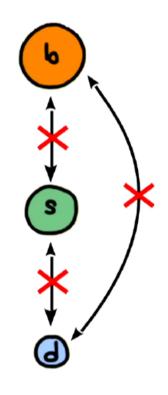
only source of flavor symmetry breaking


May 7, 2015

5/39

Pirsa: 15050008 Page 8/44




Pirsa: 15050008 Page 9/44

Pirsa: 15050008 Page 10/44

Distinct Decay Pattern of the Quarks in the SM

in the Standard Model there are no direct transitions within up-type or down-type quarks

> → GIM mechanism (Glashow, Iliopoulos, Maiani)

no flavor changing neutral currents (FCNCs) at tree level

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

/ 39

Pirsa: 15050008 Page 11/44

Testing the CKM Picture of Flavor Violation

CKM matrix is the only source of quark flavor violation in the Standard Model

depends on only 4 parameters

 λ , A, $\bar{\rho}$, $\bar{\eta}$

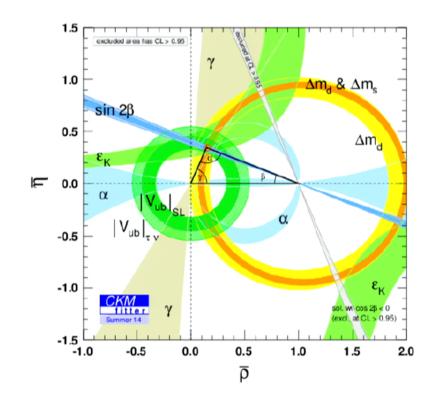
measuring many flavor
transitions allows to
over-constrain
the 4 CKM parameters
and to test the CKM picture of
quark flavor violation

Wolfgang Altmannshofer Flavorful New Physics May 7, 2015 8 / 3

Pirsa: 15050008 Page 12/44

A Consistent Description of All Data

Within the experimental and theoretical uncertainties, the CKM matrix gives a consistent description of the observed flavor changing phenomena


Nobel Prize 2008 for

Makoto Kobayashi

Toshihide Maskawa

Wolfgang Altmannshofer

Flavorful New Physics

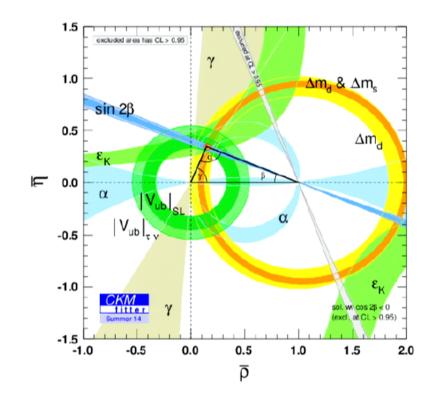
May 7, 2015

9/39

Pirsa: 15050008 Page 13/44

A Consistent Description of All Data

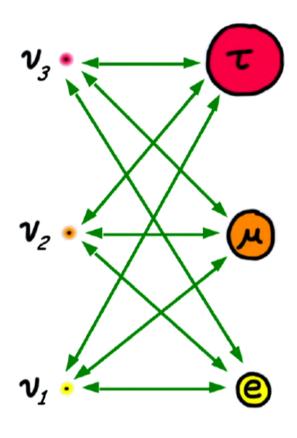
Within the experimental and theoretical uncertainties, the CKM matrix gives a consistent description of the observed flavor changing phenomena


Nobel Prize 2008 for

Makoto Kobayashi

Toshihide Maskawa

Wolfgang Altmannshofer


Flavorful New Physics

May 7, 2015

9/39

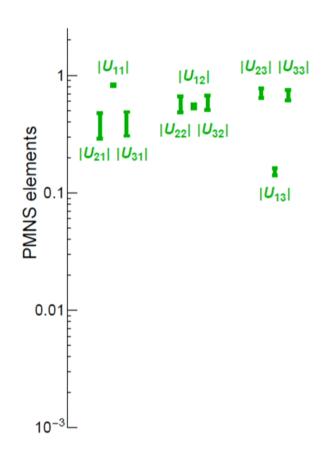
Pirsa: 15050008 Page 14/44

Flavor Mixing in the Lepton Sector

since the observation of neutrino oscillations, we know that there is also mixing in the lepton sector

as in the quark sector, no FCNCs

lepton flavor mixing is parametrized by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix


$$U_{\mathsf{PMNS}} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix}$$

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

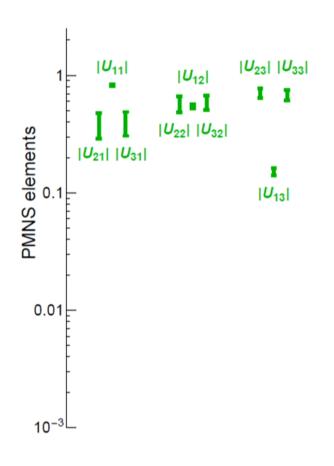
Status of Lepton Mixing

unlike the CKM elements, the PMNS elements do not show a hierarchical pattern

is the PMNS matrix tri-bimaximal?

$$|U| \simeq \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

or is it anarchic?


$$|U| \simeq \begin{pmatrix} O(0.6) & O(0.6) & O(0.6) \\ O(0.6) & O(0.6) & O(0.6) \\ O(0.6) & O(0.6) & O(0.6) \end{pmatrix}$$

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

Status of Lepton Mixing

unlike the CKM elements, the PMNS elements do not show a hierarchical pattern

is the PMNS matrix tri-bimaximal?

$$|U| \simeq \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

or is it anarchic?

$$|U| \simeq \begin{pmatrix} O(0.6) & O(0.6) & O(0.6) \\ O(0.6) & O(0.6) & O(0.6) \\ O(0.6) & O(0.6) & O(0.6) \end{pmatrix}$$

Wolfgang Altmannshofer

Flavorful New Physics

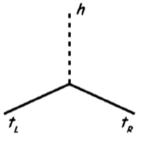
May 7, 2015

The Standard Model Flavor Puzzle

we are lacking a theory of flavor

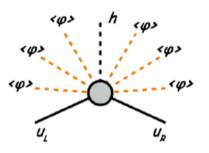
The Standard Model gives a reasonable description of all flavor transitions measured up to now, but it does not explain its mysteries

- ▶ Why are there three generations of quarks and leptons?
- ► What is the origin of the hierarchies in the fermion spectrum?
- ➤ What is the origin of the hierarchies in the quark mixing?
- ▶ Is lepton mixing anarchic?


Wolfgang Altmannshofer Flavorful New Physics May 7, 2015 13 / 3

Pirsa: 15050008 Page 18/44

Hierarchy from Symmetry


(Froggatt, Nielsen '79; ...)

fermion masses are forbidden by flavor symmetries and arise only after spontaneous breaking of the symmetry

 $h\bar{t}_R t_L$

$$\frac{\varphi^6}{M^6}h\bar{u}_Ru_L$$

Simple U(1) model:

$$Q(t_L) = Q(t_R) = 0$$

 $Q(u_L) = -Q(u_R) = 3$
 $Q(h) = 0$
 $Q(\phi) = -1$

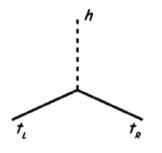
mass and mixing hierarchies given by powers of the "spurion" $\langle \varphi \rangle / M$

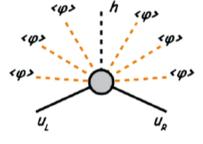
$$rac{m_u}{m_t} \sim \left(rac{\langle arphi
angle}{M}
ight)^n$$

can lead to characteristic new physics effects in flavor observables

(WA, Guadagnoli, Raby, Straub '08;WA, Buras, Gori, Paradisi, Straub '09;WA, Buras, Paradisi '10)

Wolfgang Altmannshofer


Flavorful New Physics


May 7, 2015

Hierarchy from Symmetry

(Froggatt, Nielsen '79; ...)

fermion masses are forbidden by flavor symmetries and arise only after spontaneous breaking of the symmetry

Simple U(1) model:

$$Q(t_L)=Q(t_R)=0$$

 $Q(u_L)=-Q(u_R)=3$
 $Q(h)=0$
 $Q(\phi)=-1$

$$h\bar{t}_R t_L$$

$$rac{arphi^6}{M^6} h ar{u}_R u_L$$

mass and mixing hierarchies given by powers of the "spurion" $\langle \varphi \rangle / M$

$$rac{m_u}{m_t} \sim \left(rac{\langle arphi
angle}{M}
ight)^n$$

can lead to characteristic new physics effects in flavor observables

(WA, Guadagnoli, Raby, Straub '08; WA, Buras, Gori, Paradisi, Straub '09; WA, Buras, Paradisi '10)

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

Hierarchy without Symmetry: Geometry

(Arkani-Hamed, Schmaltz '99; ...)

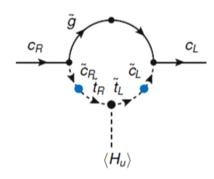
fermions are localized at different positions in an extra dimension

hierarchies from exponentially small wave-function overlap between left-handed and right-handed fermions

$$rac{m_u}{m_t}\sim e^{-\Delta}$$

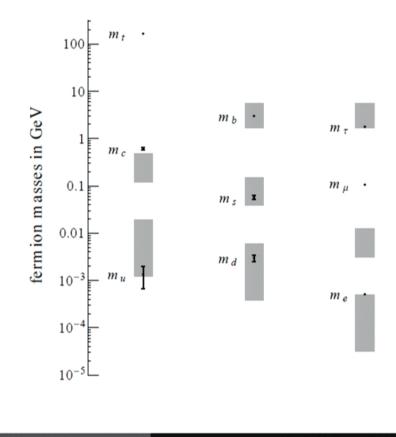
Wolfgang Altmannshofer

Flavorful New Physics


May 7, 2015

Fermion Hierarchy from Sfermion Anarchy

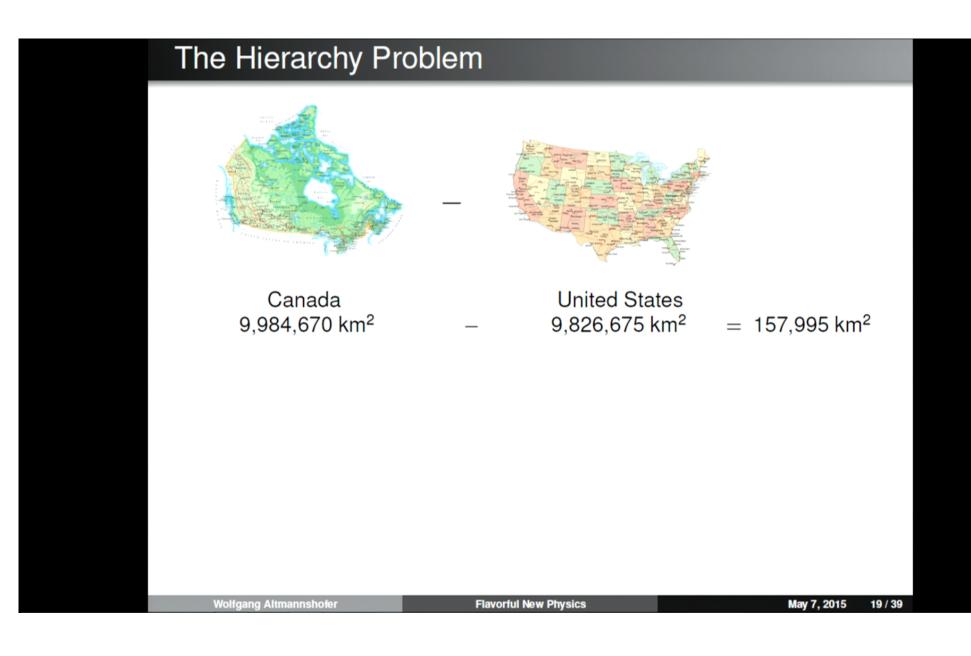
(WA, Frugiuele, Harnik '14)


A simple setup for loop induced fermion masses:

- ▶ MSSM particle content
- ▶ rank 1 Yukawa couplings
- flavor anarchic sfermion masses ("superpartners" of SM fermions)

Works remarkably well!

(muon mass can be fixed by adding new gauge interactions)


Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

17/39

Pirsa: 15050008 Page 22/44

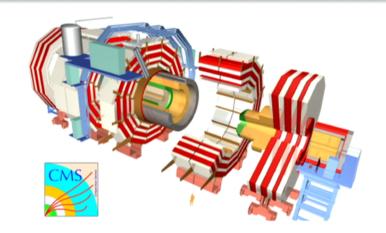
Pirsa: 15050008 Page 23/44

The Hierarchy Problem

tuning of the Higgs mass would correspond to the surface area of Canada and the United States differing by approximately the size of an atom!

In order to protect the Higgs mass
from huge quantum corrections and to avoid finetuning,
we expect New Physics at or below the TeV scale
not far above the mass of the Higgs

Wolfgang Altmannshofer Flavorful New Physics May 7, 2015 19

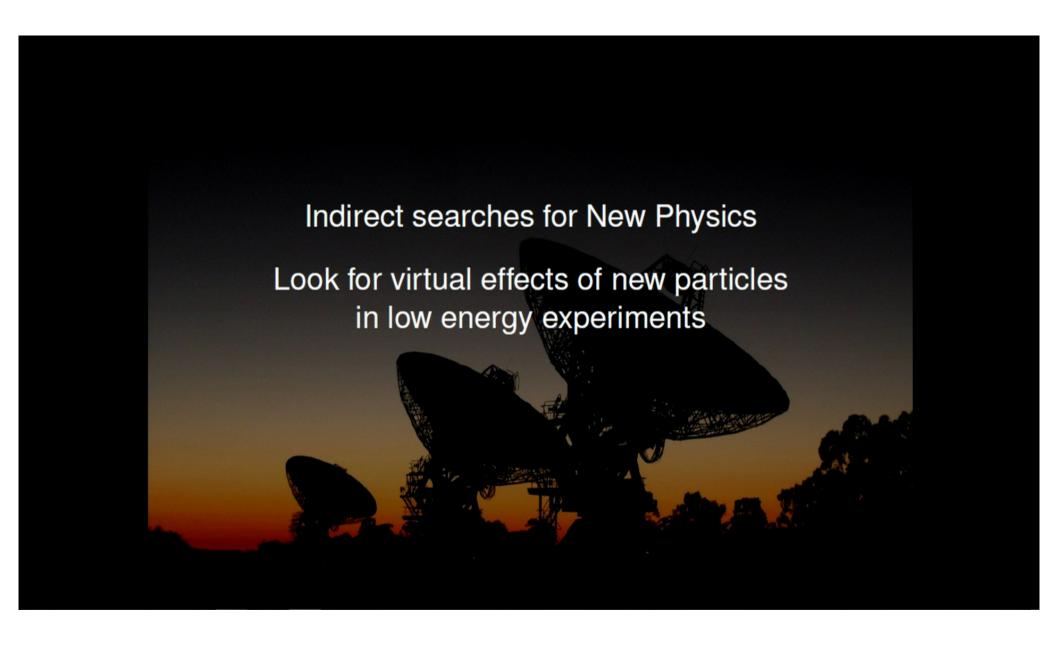

Pirsa: 15050008 Page 24/44

Direct Searches for New Physics

unique effort towards high energies

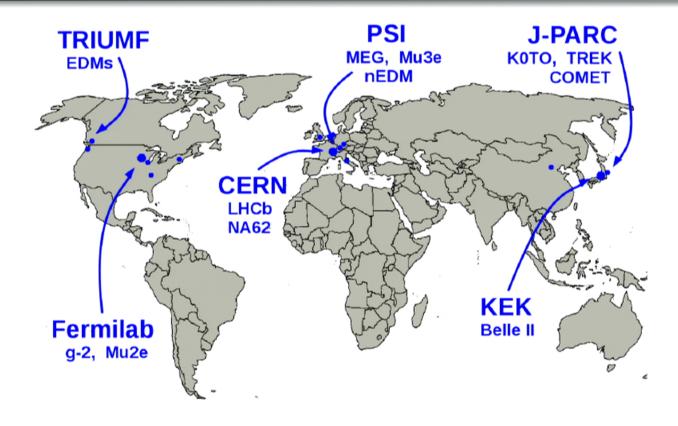
a very successful approach:

- ➤ Super Proton Synchrotron at CERN (center of mass energy 0.54 TeV) discovery of the W and Z bosons 1983
- ► Tevatron at Fermilab (center of mass energy 1.96 TeV) discovery of the top quark 1995
- ► Large Hadron Collider at CERN (center of mass energy 8 TeV) discovery of the Higgs boson 2012
- ► Run II of the Large Hadron Collider (center of mass energy 13 TeV) discovery of ??? in 2016?


Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015


21 / 39

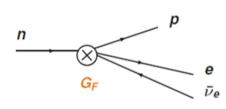
Pirsa: 15050008 Page 25/44

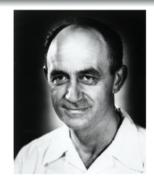
Pirsa: 15050008 Page 26/44

A Broad and Diverse Experimental Program

searching for flavor violating processes involving B and D mesons, rare Kaon decays, lepton flavor violating decays, lepton flavor universality tests, electric dipole moments, the g-2 of the muon, ...

Wolfgang Altmannshofer


Flavorful New Physics


May 7, 2015

24 / 39

Pirsa: 15050008 Page 27/44

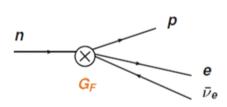
Historic Example: Beta Decay

effective low energy description of nuclear beta decay by a 4 fermion contact interaction

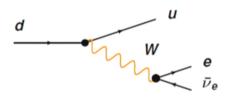
the interaction strength is given by the Fermi constant

$$G_F \simeq 1.17 \times 10^{-5} \text{ GeV}^{-2}$$

this defines an energy scale


$$\Lambda = (G_F\sqrt{2})^{-1/2} \simeq 246 \text{ GeV}$$


Wolfgang Altmannshofer


Flavorful New Physics

May 7, 2015

Historic Example: Beta Decay

of nuclear beta decay by a
4 fermion contact interaction

the interaction strength is given by the Fermi constant

$$G_F \simeq 1.17 \times 10^{-5} \text{ GeV}^{-2}$$

this defines an energy scale

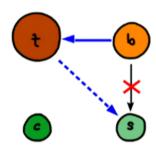
$$\Lambda = (G_F\sqrt{2})^{-1/2} \simeq 246 \text{ GeV}$$

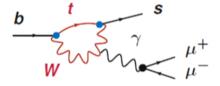
in the Standard Model
we understand beta decay
as consequence of
the exchange of virtual
weak gauge bosons

$$\frac{G_F}{\sqrt{2}} = \frac{g_2^2}{8m_W^2}$$

$$m_W \simeq 80 \; {\rm GeV}$$

Wolfgang Altmannshofer


Flavorful New Physics


May 7, 2015

Flavor Changing Neutral Currents in the SM

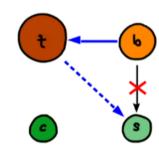
In the SM, flavor changing neutral currents (FCNCs) are absent at the tree level

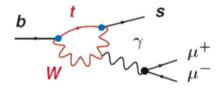
FCNCs can arise at the loop level they are suppressed by loop factors and small CKM elements

$$b$$
 G
 μ^+

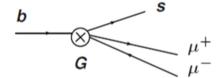
$$G \sim rac{1}{16\pi^2} rac{g^4}{m_W^2} rac{m_t^2}{m_W^2} V_{tb} V_{ts}^*$$

Wolfgang Altmannshofer


Flavorful New Physics


May 7, 2015

Flavor Changing Neutral Currents in the SM


In the SM, flavor changing neutral currents (FCNCs) are absent at the tree level

FCNCs can arise at the loop level they are suppressed by loop factors and small CKM elements

Wolfgang Altmannshofer

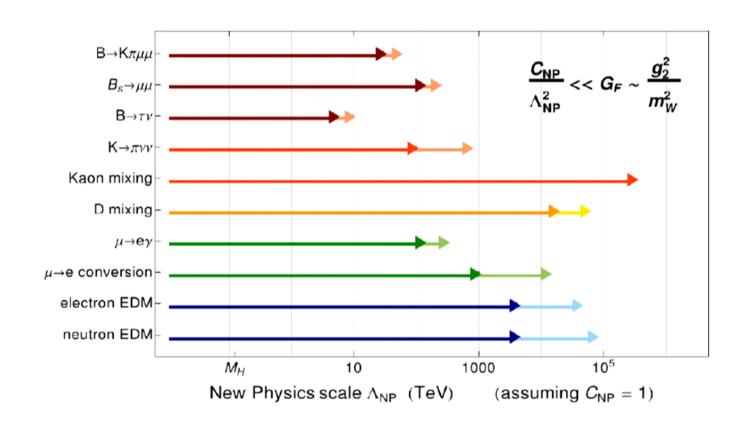
Flavorful New Physics

May 7, 2015

The New Physics Flavor Puzzle

Low energy flavor observables are sensitive to New Physics far beyond the TeV scale

Wolfgang Altmannshofer

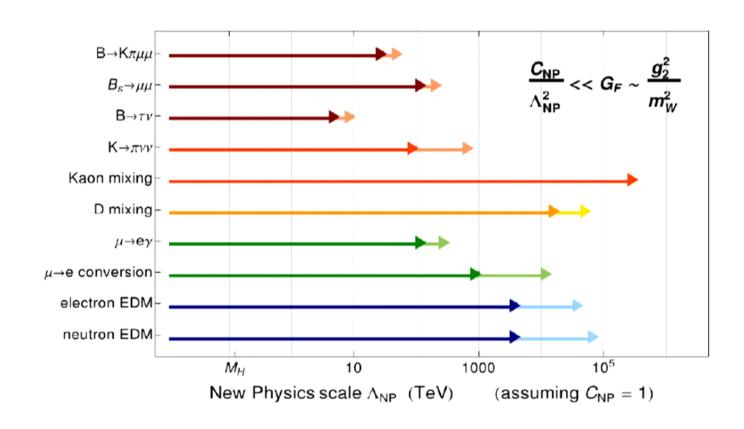

Flavorful New Physics

May 7, 2015

28 / 39

Pirsa: 15050008 Page 32/44

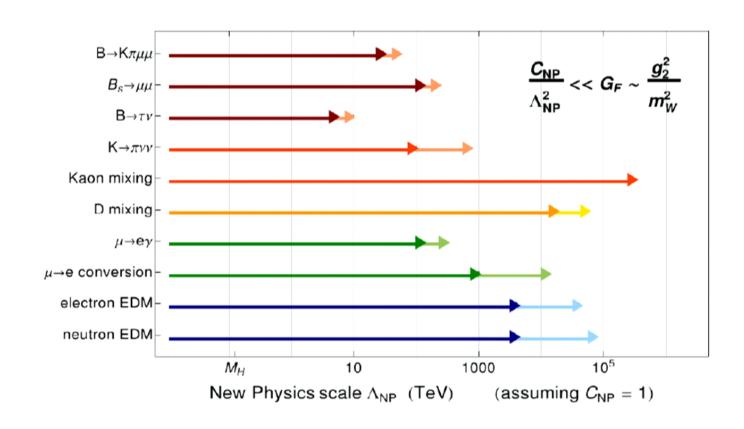
Wolfgang Altmannshofer


Flavorful New Physics

May 7, 2015

27 / 39

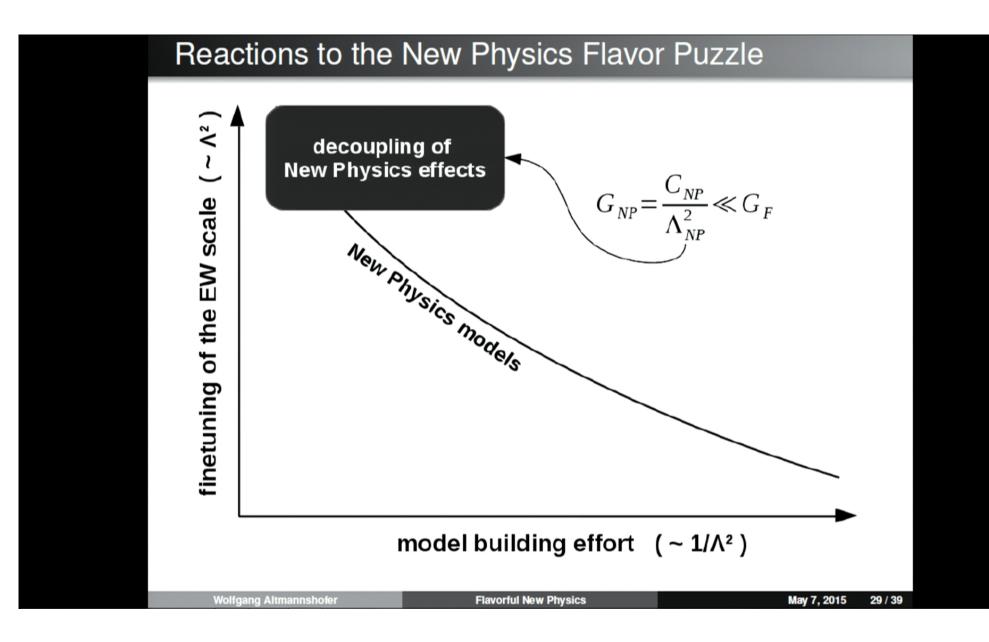
Page 33/44

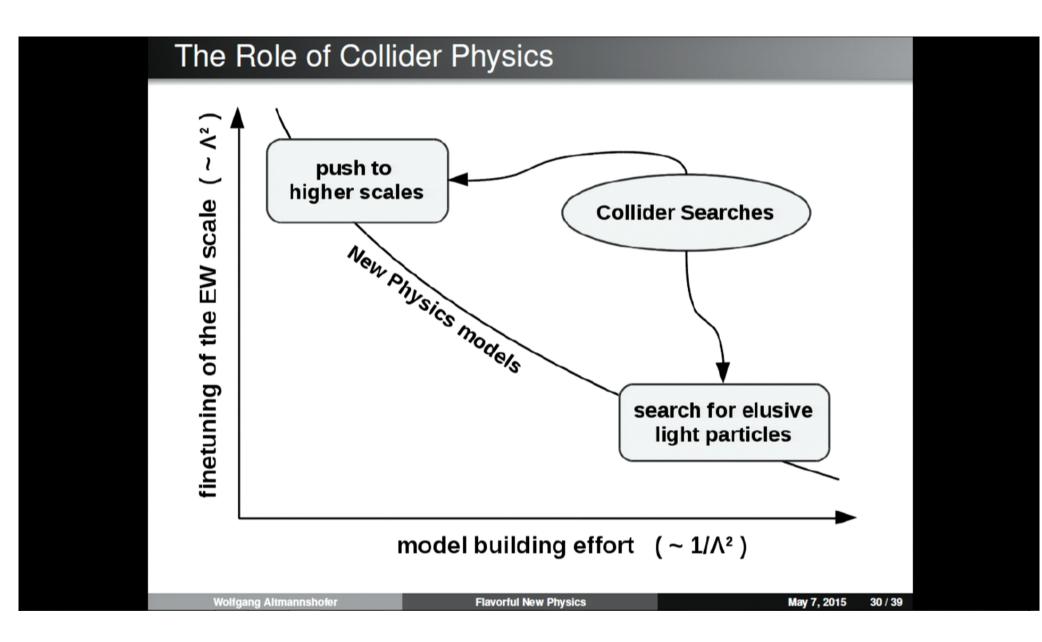


Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015




Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

Pirsa: 15050008 Page 36/44

Pirsa: 15050008 Page 37/44

The Flavor of the Higgs

$$\mathcal{L}_{Yukawa} = Y_{ij} \bar{\Psi}_i \Psi_j H$$

In the Standard Model the Yukawa couplings are the only sources of flavor and CP violation

→ the couplings of the Higgs to fermion mass eigenstates are flavor diagonal and CP conserving

$$\frac{1}{v} \begin{pmatrix} m_{u,d,e} & 0 & 0 \\ 0 & m_{c,s,\mu} & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix}$$

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

The Flavor of the Higgs

$$\mathcal{L}_{\text{Yukawa}} = Y_{ij} \bar{\Psi}_i \Psi_j H + \frac{\tilde{Y}_{ij}}{\Lambda^2} \bar{\Psi}_i \Psi_j H^3$$

In the Standard Model the Yukawa couplings are the only sources of flavor and CP violation

→ the couplings of the Higgs to fermion mass eigenstates are flavor diagonal and CP conserving

$$\frac{1}{v}\begin{pmatrix} m_{u,d,e} & 0 & 0 \\ 0 & m_{c,s,\mu} & 0 \\ 0 & 0 & m_{t,b,\tau} \end{pmatrix} + \frac{v^2}{\Lambda^2}\begin{pmatrix} \star & \star & \star \\ \star & \star & \star \\ \star & \star & \star \end{pmatrix}$$

- 1) New Physics can modify the flavor diagonal Higgs couplings
- 2) New Physics can lead to flavor and CP violating Higgs couplings

Wolfgang Altmannshofer

Flavorful New Physics

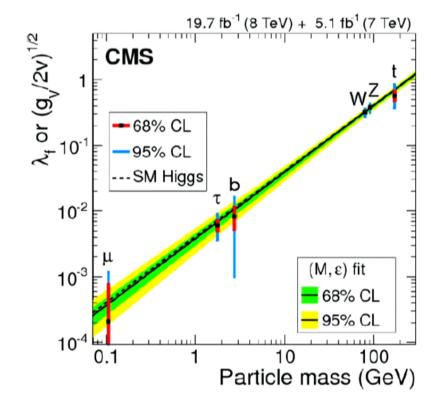
May 7, 2015

Flavor Conserving Higgs Couplings

flavor diagonal couplings directly measured at the LHC with current accuracy for $3rd gen. \sim 30\% - 50\%$

can be improved to: $\sim 5\% - 10\%$ at a HL-LHC few % at a ILC

1st and 2nd generation couplings?


charm

Bodwin et al. '13; Delaunay et al. '13; Perez et al. '15

> up, down, strange Kagan et al. '14

> > electrons

WA, Brod, Schmaltz '15

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

34 / 39

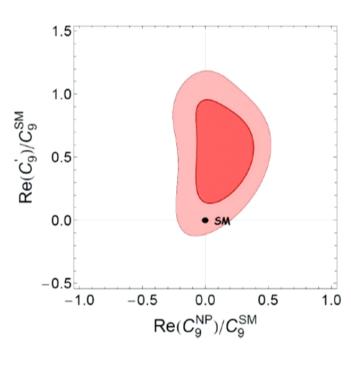
Pirsa: 15050008 Page 40/44

The $B o K^*(o K\pi)\mu^+\mu^-$ Decay

loop suppressed, CKM suppressed

a rare decay:

only 1 out of \sim 2.5 million B mesons decays in that way


we proposed observables that are theoretically clean and highly sensitive to new physics

(WA, Ball, Bharucha, Buras, Straub, Wick '08)

the LHCb experiment at the Large Hadron Collider has already collected thousands $B \to K^* \mu^+ \mu^-$ events and is starting to systematically measure the proposed observables

favored new physics parameter space

2011

(WA, Straub '13, '14)

Wolfgang Altmannshofer

Flavorful New Physics

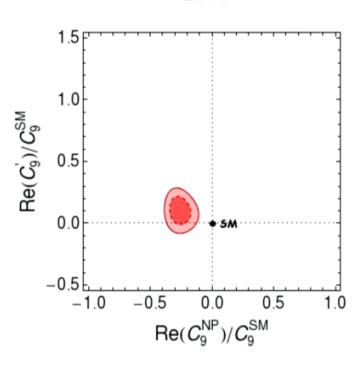
May 7, 2015

The $B o K^*(o K\pi)\mu^+\mu^-$ Decay

loop suppressed, CKM suppressed

a rare decay:

only 1 out of \sim 2.5 million B mesons decays in that way


we proposed observables that are theoretically clean and highly sensitive to new physics

(WA, Ball, Bharucha, Buras, Straub, Wick '08)

the LHCb experiment at the Large Hadron Collider has already collected thousands $B \to K^* \mu^+ \mu^-$ events and is starting to systematically measure the proposed observables

favored new physics parameter space

2015

(WA, Straub '13, '14)

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015

37 / 39

Pirsa: 15050008 Page 42/44

Summary

Flavor is the most puzzling aspect of the Standard Model

What is the origin of the hierarchies in the masses and mixings of the Standard Model quarks and leptons? The peculiar flavor structure of the Standard Model makes flavor observabels highly sensitive to New Physics effects

> If there is New Physics at or below the TeV scale, why have we not seen it yet in flavor observables?

Wolfgang Altmannshofer Flavorful New Physics May 7, 2015 39 / 39

Pirsa: 15050008 Page 43/44

Summary

Flavor is the most puzzling aspect of the Standard Model

The peculiar flavor structure of the Standard Model makes flavor observabels highly sensitive to New Physics effects

What is the origin of the hierarchies in the masses and mixings of the Standard Model quarks and leptons? If there is New Physics at or below the TeV scale, why have we not seen it yet in flavor observables?

Flavor and Collider Physics complement each other in our search for New Phenomena at the TeV scale and beyond

- New Physics found at colliders: need to measure flavor observables to understand its flavor/CP properties
- 2) New Physics found in low energy flavor experiments: defines a scale to be directly explored with future colliders

Wolfgang Altmannshofer

Flavorful New Physics

May 7, 2015