Title: Symbolic dynamics, modular curves, and Bianchi IX cosmologies

Date: Apr 23, 2015 11:00 AM

URL: http://pirsa.org/15040187

Abstract:

Pirsa: 15040187 Page 1/39

Symbolic Dynamics, Modular Curves, and Bianchi IX Cosmologies

Matilde Marcolli

Perimeter Institute, Cosmology Seminar, April 2015

Matilde Marcolli

Bianchi IX Cosmologies

Pirsa: 15040187 Page 2/39

Pirsa: 15040187 Page 3/39

Based on:

 Yuri Manin, Matilde Marcolli, Symbolic Dynamics, Modular Curves, and Bianchi IX Cosmologies, arXiv:1504.04005 [gr-qc]

Matilde Marcolli

Bianchi IX Cosmologies

Pirsa: 15040187 Page 4/39

Kasner metrics

ullet real circle in \mathbb{R}^3 defined by equations

$$p_a + p_b + p_c = 1, \qquad p_a^2 + p_b^2 + p_c^2 = 1$$

 each point on this circle defines a metric with Minkowskian (or Euclidean) signature

$$\pm dt^2 + a(t)^2 dx^2 + b(t)^2 dy^2 + c(t)^2 dz^2$$

with scaling factors a, b, c:

$$a(t) = t^{\rho_a}, \quad b(t) = t^{\rho_b}, \quad c(t) = t^{\rho_c}, t > 0.$$

Kasner metric with exponents (p_a, p_b, p_c) .

u-parameterization

• Points (p_a, p_b, p_c) on the circle parameterized by a coordinate $u \in [1, \infty]$

$$p_1^{(u)} := -\frac{u}{1+u+u^2} \in [-1/3,0]$$
 $p_2^{(u)} := \frac{1+u}{1+u+u^2} \in [0,2/3]$
 $p_3^{(u)} := \frac{u(1+u)}{1+u+u^2} \in [2/3,1]$

• Rearrange the exponents $p_1^{(u)} \le p_2^{(u)} \le p_3^{(u)}$ by a bijection $(1,2,3) \to (a,b,c)$ (permutation of the 3 space axes)

Mixmaster Universe (1970s)

V. Belinskii, I.M. Khalatnikov, E.M. Lifshitz, *Oscillatory approach* to singular point in Relativistic cosmology. Adv. Phys. 19 (1970), 525–551.

- Anisotropic cosmologies
- Locally described by a Kasner metric
- Sequence of Kasner metrics (Kasner epochs and cycles)
- Within each epoch one direction dominates expansion, the other two oscillate in a series of Kasner cycles
- At the end of each epoch a bounce occurs and a possibly different direction becomes responsible for expansion
- Approach: model the dynamics by a discrete dynamical system that determines epochs and cycles
- ⇒ continued fraction expansion

Matilde Marcolli

 Dynamical system: (partial map) invertible two sided shift

$$\widetilde{T}: [0,1]^2 \to [0,1]^2 \qquad \widetilde{T}: (x,y) \mapsto \left(\frac{1}{x} - \left[\frac{1}{x}\right], \frac{1}{y + [1/x]}\right)$$

ullet On $[0,1]^2\cap(\mathbb{R}^2\smallsetminus\mathbb{Q}^2)$ uniquely defined $k_s\in\mathbb{N}$

$$x = [0, k_0, k_1, k_2, \ldots], \qquad y = [0, k_{-1}, k_{-2}, \ldots]$$

$$\frac{1}{x} - \left[\frac{1}{x}\right] = [0, k_1, k_2, \dots], \quad \frac{1}{y + [1/x]} = \frac{1}{k_0 + y} = [0, k_0, k_{-1}, k_{-2}, \dots]$$

ullet On this subset $\widetilde{\mathcal{T}}$ bijective with invariant density

$$d\mu(x,y) = \frac{dx\,dy}{\log\,2\cdot(1+xy)^2}$$

• encode $(x,y) \in [0,1]^2 \cap (\mathbb{R}^2 \setminus \mathbb{Q}^2)$ with doubly infinite sequence $(k) := [\ldots k_{-2}, k_{-1}, k_0, k_1, k_2, \ldots], k_i \in \mathbb{N}$ where $T(k)_s = k_{s+1}$ invertible shift

Matilde Marcolli

Continued fractions and Mixmaster Universe

- typical solutions of Einstein equations Bianchi IX type with SO(3)—symmetry oscillates (near the initial singularity) close to a sequence of Kasner type solutions
- ullet local logarithmic time $d\Omega := -rac{dt}{abc}$
- for $\Omega \cong -\log t \to +\infty$:
- increasing sequence of times $\Omega_0 < \Omega_1 < \cdots < \Omega_n < \ldots$
- sequence of irrational real numbers $u_n \in (1, +\infty), \ n=0,1,2,\ldots$
- semi-interval $[\Omega_n, \Omega_{n+1})$ is n-th Kasner epoch
- ullet start at time Ω_n with a value $u=u_n>1$:

$$p_1 = -rac{u}{1+u+u^2}, \quad p_2 = rac{1+u}{1+u+u^2}, \quad p_3 = rac{u(1+u)}{1+u+u^2}$$

• Kasner cycles (within same Kasner epoch) $u = u_n - 1$, $u_n - 2$, . . ., with corresponding Kasner metrics

Matilde Marcolli

ullet after $k_n := [u_n]$ cycles inside the same Kasner epoch, a jump to the next epoch with new parameter

$$u_{n+1}=\frac{1}{u_n-[u_n]}$$

- at the end of each epoch a reshuffling of space axes (also determined by the discrete dynamical system)
- ullet sequence of logarithmic times Ω_n specified by a sequence δ_n

$$\Omega_{n+1} = [1 + \delta_n k_n (u_n + 1/\{u_n\})]\Omega_n$$

• setting $\eta_n = (1 - \delta_n)/\delta_n$ recursion

$$\eta_{n+1}x_n=\frac{1}{k_n+\eta_nx_{n_1}}$$

with $x_n = u_n - k_n$

Matilde Marcolli

- I. M. Khalatnikov, E. M. Lifshitz, K. M. Khanin, L. N. Shchur, and Ya. G. Sinai. *On the stochasticity in relativistic cosmology.* Journ. Stat. Phys., Vol. 38, Nos. 1/2 (1985), 97–114
- D.H. Mayer, Relaxation properties of the Mixmaster Universe, Phys. Lett. A 121 (1987), no. 8,9, 390–394

Conclusion:

• trajectories of mixmaster universe dynamics are parameterized by pairs $(x, y) \in [0, 1]^2 \cap (\mathbb{R}^2 \setminus \mathbb{Q}^2)$

$$x = [0, k_0, k_1, k_2, \ldots], \qquad y = [0, k_{-1}, k_{-2}, \ldots]$$

x specifies number of Kasner cycles in each Kasner epoch, y specifies the Kasner logarithmic times

 transition from one Kasner epoch to the next is given by the action of the double sided shift of the continued fraction

$$\widetilde{T}: (x,y) \mapsto \left(\frac{1}{x} - \left[\frac{1}{x}\right], \frac{1}{y + [1/x]}\right)$$

Matilde Marcolli

Matilde Marcolli

Bianchi IX Cosmologies

Pirsa: 15040187 Page 13/39

Elliptic curves and modular curve

(detail from an image by Christian Wuthrich)

Matilde Marcolli

Bianchi IX Cosmologies

Pirsa: 15040187 Page 14/39

Farey tessellation

- ullet adding cusps to the upper half plane: $\overline{\mathbb{H}}:=\mathbb{H}\cup\{\mathbb{Q}\cup\{\infty\}\}$
- ullet vertical lines $\Re(z)=n, n\in\mathbb{Z}$, and semicircles in $\overline{\mathbb{H}}$ connecting pairs of finite cusps (p/q,p'/q') with $pq'-p'q=\pm 1$
- ullet these cut $\overline{\mathbb{H}}$ into a union of geodesic ideal triangles: Farey tessellation
- C.Series, The modular surface and continued fractions, J. London MS, Vol. 2, no. 31 (1985), 69–80
- ullet coding of geodesics on $\mathcal{M}=\mathbb{H}/\mathrm{PSL}_2(\mathbb{Z})$ using Farey tessellation and continued fraction

Matilde Marcolli

• \mathcal{B} set of oriented geodesics β in \mathbb{H} with ideal irrational endpoints $\beta_{-\infty}, \beta_{\infty}$ in \mathbb{R} , such that

$$\beta_{-\infty} \in (-1,0), \quad \beta_{\infty} \in (1,\infty)$$

continued fraction expansion of endpoints

$$\beta_{-\infty} = -[0, k_0, k_{-1}, k_{-2}, \ldots], \qquad \beta_{\infty} = [k_1, k_2, k_3, \ldots], \quad k_i \in \mathbb{N},$$

ullet eta determined by endpoints, by doubly infinite sequence of continued fraction digits

$$[\ldots k_{-2}, k_{-1}, k_0, k_1, k_2, \ldots]$$

- ullet intersection point x=x(eta) of eta with imaginary semiaxis in $\mathbb H$
- ullet moving along eta: intersect infinite sequence of Farey triangles
- enter each triangle through one side and leave through a different one: the ideal intersection point of these two sides is either to the left or to the right
- infinite sequences in alphabet $\{L, R\}$ (moving in both directions)

$$\dots L^{k_{-3}}R^{k_{-2}}L^{k_{-1}}R^{k_0} \qquad L^{k_1}R^{k_2}L^{k_3}R^{k_4}\dots$$

Matilde Marcolli

Pirsa: 15040187 Page 17/39

• \mathcal{B} set of oriented geodesics β in \mathbb{H} with ideal irrational endpoints $\beta_{-\infty}, \beta_{\infty}$ in \mathbb{R} , such that

$$\beta_{-\infty} \in (-1,0), \quad \beta_{\infty} \in (1,\infty)$$

continued fraction expansion of endpoints

$$\beta_{-\infty} = -[0, k_0, k_{-1}, k_{-2}, \ldots], \qquad \beta_{\infty} = [k_1, k_2, k_3, \ldots], \quad k_i \in \mathbb{N},$$

ullet eta determined by endpoints, by doubly infinite sequence of continued fraction digits

$$[\ldots k_{-2}, k_{-1}, k_0, k_1, k_2, \ldots]$$

- ullet intersection point x=x(eta) of eta with imaginary semiaxis in $\mathbb H$
- ullet moving along eta: intersect infinite sequence of Farey triangles
- enter each triangle through one side and leave through a different one: the ideal intersection point of these two sides is either to the left or to the right
- infinite sequences in alphabet $\{L, R\}$ (moving in both directions)

$$\dots L^{k_{-3}}R^{k_{-2}}L^{k_{-1}}R^{k_0} \qquad L^{k_1}R^{k_2}L^{k_3}R^{k_4}\dots$$

Matilde Marcolli

• \mathcal{B} set of oriented geodesics β in \mathbb{H} with ideal irrational endpoints $\beta_{-\infty}, \beta_{\infty}$ in \mathbb{R} , such that

$$\beta_{-\infty} \in (-1,0), \quad \beta_{\infty} \in (1,\infty)$$

continued fraction expansion of endpoints

$$\beta_{-\infty} = -[0, k_0, k_{-1}, k_{-2}, \ldots], \qquad \beta_{\infty} = [k_1, k_2, k_3, \ldots], \quad k_i \in \mathbb{N},$$

ullet eta determined by endpoints, by doubly infinite sequence of continued fraction digits

$$[\ldots k_{-2}, k_{-1}, k_0, k_1, k_2, \ldots]$$

- ullet intersection point x=x(eta) of eta with imaginary semiaxis in $\mathbb H$
- ullet moving along eta: intersect infinite sequence of Farey triangles
- enter each triangle through one side and leave through a different one: the ideal intersection point of these two sides is either to the left or to the right
- infinite sequences in alphabet $\{L, R\}$ (moving in both directions)

$$\dots L^{k_{-3}}R^{k_{-2}}L^{k_{-1}}R^{k_0} \qquad L^{k_1}R^{k_2}L^{k_3}R^{k_4}\dots$$

Matilde Marcolli

Other billiard models for Mixmaster dynamics

(from Beverly Berger, "Numerical Approaches to Spacetime Singularities")

Matilde Marcolli

Bianchi IX Cosmologies

Pirsa: 15040187 Page 20/39

Enriched encoding of geodesics and Mixmaster trajectories

• hyperbolic billiard as above: insert between consecutive powers of L, R the intersection points of β with sides of Farey triangles:

$$\ldots L^{k_{-1}} x_{-1} R^{k_0} x_0 L^{k_1} x_1 R^{k_2} x_2 L^{k_3} x_3 R^{k_4} \ldots$$

• Result: when $s \to \infty$, $s \in \mathbb{N}$

$$\log \frac{\Omega_{2s}}{\Omega_0} \simeq 2 \sum_{r=0}^{s-1} \mathrm{dist}(x_{2r}, x_{2r+1}),$$

dist = hyperbolic distance between consecutive intersection points of the geodesic with sides of the Farey tesselation

Matilde Marcolli

Pirsa: 15040187 Page 22/39

Sketch of argument: known from mixmaster dynamics that

$$\log rac{\Omega_{2s}}{\Omega_0} \simeq -\sum_{
ho=1}^{2s} \log(x_
ho^+ x_
ho^-)$$

$$=\sum_{\rho=1}^{2s}\log([k_{\rho-1},k_{\rho-2},k_{\rho-3},\ldots]\cdot[k_{\rho},k_{\rho+1},k_{\rho+2},\ldots])$$

From coding of geodesics also know that

$$\operatorname{dist}(x_0, x_1) = \frac{1}{2} \log([k_0, k_{-1}, k_{-2}, \dots] \cdot [k_1, k_2, \dots] \cdot [k_1, k_0, k_{-1}, \dots] \cdot [k_2, k_3, \dots])$$

and more generally dist (x_{2r}, x_{2r+1}) is given by

$$\frac{1}{2}\log([k_{2r},k_{2r-1},k_{2r-2},\ldots]\cdot[k_{2r+1},k_{2r+2},\ldots]\cdot [k_{2r+1},k_{2r},k_{2r-1},\ldots]\cdot[k_{2r+2},k_{2r+3},\ldots])$$

Consequence: identification of distance along geodesic with logarithmic cosmological time

Matilde Marcolli

Painlevé VI equations

- Painlevé transcendents: solutions of nonlinear second-order ODEs in the plane with Painlevé property (the only movable singularities are poles) not solvable in terms of elementary functions; classification in types
- Painlevé VI: 4-parameter family $(\alpha, \beta, \gamma, \delta)$

$$\frac{d^2X}{dt^2} = \frac{1}{2} \left(\frac{1}{X} + \frac{1}{X-1} + \frac{1}{X-t} \right) \left(\frac{dX}{dt} \right)^2$$

$$- \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{X-t} \right) \frac{dX}{dt} +$$

$$+ \frac{X(X-1)(X-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{X^2} + \gamma \frac{t-1}{(X-1)^2} + \delta \frac{t(t-1)}{(X-t)^2} \right).$$

Painlevé VI and elliptic curves

Painlevé VI rewritten as (Fuchs)

$$t(1-t)\left[t(1-t)\frac{d^2}{dt^2} + (1-2t)\frac{d}{dt} - \frac{1}{4}\right] \int_{\infty}^{(X,Y)} \frac{dx}{\sqrt{x(x-1)(x-t)}} =$$

$$= \alpha Y + \beta \frac{tY}{X^2} + \gamma \frac{(t-1)Y}{(X-1)^2} + (\delta - \frac{1}{2}) \frac{t(t-1)Y}{(X-t)^2}$$

where (X,Y):=(X(t),Y(t)) is a section (local and/or multivalued) P:=(X(t),Y(t)) of the generic elliptic curve $E=E(t):\ Y^2=X(X-1)(X-t)$

• left-hand-side $\mu(P)$ satisfies $\mu(P+Q)=\mu(P)+\mu(Q)$ for P+Q addition on the elliptic curve E (in particular $\mu(Q)=0$ for points of finite order)

Matilde Marcolli

ullet also have, for $e_i(au)=\wp(rac{T_i}{2}, au)$

$$\wp_z(z,\tau)^2=4(\wp(z,\tau)-e_1(\tau))(\wp(z,\tau)-e_2(\tau))(\wp(z,\tau)-e_3(\tau))$$
 so $e_1+e_2+e_3=0$

- ullet a multivalued solution z=z(au) defines a multi-section of the family, which is a covering of $\mathbb H$
- \bullet is know ramification and monodromy can study behavior over geodesics in \mathbb{H}
- Yu.I. Manin, Sixth Painlevé equation, universal elliptic curve, and mirror of \mathbb{P}^2 , in "Geometry of Differential Equations", Amer. Math. Soc. Transl. (2) Vol. 186 (1998) 131–151

Matilde Marcolli

• absolythat electronic of \mathfrak{g} (o) of \mathfrak{g} (elliptic curve $E_{\tau}=\mathbb{C}/\Lambda$ with $\Lambda=\mathbb{Z}+\tau\mathbb{Z}$, with $\tau\in\mathbb{H}$ • Refer PainTeve $(T_{\tau})^2$ of $(R_{\tau})^2$ ($(R_{\tau})^2$) $(R_{\tau})^2$ of $(R_{\tau})^2$ o

so $e_1 + e_2 + e_3 = 0$ $\frac{d^2z}{dz^2} = \frac{1}{(2\pi i)^2} \sum_{j=0}^{3} \alpha_j \wp_z(z + \frac{T_j}{2}, \tau)$ • a multivalued \$\frac{\sqrt{0}}{\sqrt{0}}\text{ution}(\frac{2}{2}\tau i)^2 \text{defines a multi-section of the family, which is a covering of \$\mathbb{H}\$

with know ramfibation (and finding drophy also study behavior over geodesics in The):= $(0,1,\tau,1+\tau)$, and

- Yugl (Manin, Sixth Painlevé equation, universal elliptic curve) and mirror of \mathbb{P}^2 , in Geometry of Differential Equations \mathbb{P}^2 Math. Soc. Transl. (2) Vol. 186 (1998) 131–151

Matilde Marcol

Pirsa: 15040187 Page 28/39

more explicitly

$$\sigma_1 = x_1 \, dx_2 - x_2 \, dx_1 + x_3 \, dx_0 - x_0 \, dx_3 = \frac{1}{2} (d\psi + \cos\theta \, d\phi),$$

$$\sigma_2 = x_2 \, dx_3 - x_3 dx_2 + x_1 \, dx_0 - x_0 \, dx_1 = \frac{1}{2} (\sin\psi \, d\theta - \sin\theta \cos\psi \, d\phi),$$

$$\sigma_3 = x_3 \, dx_1 - x_1 \, dx_3 + x_2 \, dx_0 - x_0 \, dx_2 = \frac{1}{2} (-\cos\psi \, d\theta - \sin\theta \, \sin\psi \, d\phi),$$
 Euler angles $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$ and $0 \le \psi \le 4\pi$ (SU(2) case)

- identifying S^3 with unit quaternions SU(2)
- The metrics on S^3

$$\frac{W_2 W_3}{W_1} \sigma_1^2 + \frac{W_1 W_3}{W_2} \sigma_2^2 + \frac{W_1 W_2}{W_3} \sigma_3^2$$

are left-invariants under the action of SU(2) but not right-invariant (unlike the round metric on S^3)

Matilde Marcolli

- N.J. Hitchin. Twistor spaces, Einstein metrics and isomonodromic deformations, J.Diff.Geom., Vol. 42, No. 1 (1995), 30–112.
- K.P. Tod. Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A 190 (1994), 221–224.
- S. Okumura. The self-dual Einstein-Weyl metric and classical solutions of Painlevé VI, Lett. in Math. Phys., 46 (1998), 219–232.
- M.V. Babich, D.A. Korotkin, Self-dual SU(2)-Invariant Einstein Metrics and Modular Dependence of Theta-Functions. Lett. Math. Phys. 46 (1998), 323–337

Matilde Marcolli

Blanchi IX gravitational instantons and Painlevé VI

- ullet Euclidean Bianchi IX metrics with SU(2)-symmetry that are
- self-dual (Weyl curvature tensor W self-dual)
- Einstein metrics (Ricci tensor proportional to the metric)
- ullet Self-dual equations for a Riemannian 4-manifold are PDEs; with SU(2)-symmetry reduce to ODEs
- This ODE is a Painlevé VI equation with

$$(\alpha, \beta, \gamma, \delta) = (\frac{1}{8}, -\frac{1}{8}, \frac{1}{8}, \frac{3}{8})$$

Matilde Marcolli

Gravitational instantons and theta characteristics

ullet use notation $\vartheta[p,q]:=\vartheta[p,q](0,i\mu)$, and

$$\vartheta_2 := \vartheta[1/2, 0], \qquad \vartheta_3 := \vartheta[0, 0], \qquad \vartheta_4 := \vartheta[0, 1/2]$$

self-dual metrics

$$g = F \left(d\mu^2 + \frac{\sigma_1^2}{W_1^2} + \frac{\sigma_2^2}{W_2^2} + \frac{\sigma_3^2}{W_3^3} \right)$$

with

$$W_1 = -rac{i}{2}artheta_3artheta_4rac{rac{\partial}{\partial q}artheta[p,q+rac{1}{2}]}{e^{\pi ip}artheta[p,q]}, \quad W_2 = rac{i}{2}artheta_2artheta_4rac{rac{\partial}{\partial q}artheta[p+rac{1}{2},q+rac{1}{2}]}{e^{\pi ip}artheta[p,q]}, \ W_3 = -rac{1}{2}artheta_2artheta_3rac{rac{\partial}{\partial q}artheta[p+rac{1}{2},q]}{artheta[p,q]},$$

with non-zero cosmological constant Λ:

$$F = \frac{2}{\pi \Lambda} \frac{W_1 W_2 W_3}{(\frac{\partial}{\partial q} \log \vartheta[p, q])^2}$$

Matilde Marcolli

Comments

- Singularities (poles) on the real axis: like Taub-NUT infinity
- Sign changes allowed to get all asymptotics with $W_2 \sim W_3 \neq W_1$ (see Babich, Korotkin)
- ullet instanton analogs of Kasner's solutions with $i\mu\in\Delta\subset\mathbb{H}$ in the vicinity of $i\infty$ but not necessarily on the imaginary axis
- ullet behavior $\mu \to \infty$ of these Bianchi IX cosmologies as possible model of (Wick rotated) time at the singularity in algebro-geometric gluing of spacetimes proposed in:
- Yu.I. Manin, M. Marcolli, *Big Bang, blowup, and modular curves: algebraic geometry in cosmology*, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 073, 20 pp.

Matilde Marcolli

Bianchi IX Cosmologies

Pirsa: 15040187 Page 33/39

Spacetime noncommutativity in the early universe

- noncommutativity hypothesis: near the singularity spacetime coordinates acquire noncommutativity as part of quantum effects
- noncommutative deformation should preserve the metric properties
- Connes—Landi isospectral deformations
- \bullet for the 3-sphere S^3 with the round metric: isospectral deformation by making all the tori of the Hopf fibration into noncommutative tori
- ullet do the left-SU(2)-invariant Bianchi IX metrics admit similar noncommutative isospectral deformations?
- ullet not always, but yes in the cases that arise as asymptotic behavior at $\mu o \infty$ of the gravitational instantons

그리 전 그 그들 돌 산의(

Matilde Marcolli

Hopf fibration on S^3

• Hopf coordinates (ξ_1, ξ_2, η)

$$z_1 := x_1 + ix_2 = e^{i(\psi + \phi)}\cos\frac{\theta}{2} = e^{i\xi_1}\cos\eta,$$

$$z_2 := x_3 + ix_0 = e^{i(\psi - \phi)} \sin \frac{\theta}{2} = e^{i\xi_2} \sin \eta.$$

• identifying S^3 with unit quaternions SU(2)

$$q := \begin{pmatrix} z_1 & z_2 \\ -\overline{z}_2 & \overline{z}_1 \end{pmatrix} = \begin{pmatrix} e^{i\xi_1}\cos\eta & e^{i\xi_2}\sin\eta \\ -e^{-i\xi_2}\sin\eta & e^{-i\xi_1}\cos\eta \end{pmatrix}$$

with $|z_1|^2+|z_2|^2=1$ and (ξ_1,ξ_2,η) Hopf coordinates

Hopf fibration

$$S^1 \hookrightarrow S^3 \rightarrow S^2$$

Pirsa: 15040187 Page 36/39

- Deformed C^* -algebra of functions S^3_{θ} : generators $\alpha = U \cos \eta$ and $\beta = V \sin \eta$ relations: $\alpha\beta = e^{2\pi i \theta} \beta \alpha$, $\alpha^*\beta = e^{-2\pi i \theta} \beta \alpha^*$, $\alpha^*\alpha = \alpha \alpha^*$, $\beta^*\beta = \beta\beta^*$ and $\alpha\alpha^* + \beta\beta^* = 1$
- ullet Riemannian geometry in noncommutative setting described by spectral triples $(\mathcal{A},\mathcal{H},\mathcal{D})$, with \mathcal{A} involutive algebra (smooth functions on NC space), \mathcal{H} Hilbert space with representation of \mathcal{A} (spinors), and Dirac operator \mathcal{D}
- Isospectral deformation X_{θ} of a manifold $X: A = C^{\infty}(X_{\theta})$ noncommutative, with $(\mathcal{H}, \mathcal{D}) = (L^2(X, S), \not D_X)$ same as for X
- ullet Connes–Landi: if T^2 acts by isometries on X then $\exists \ X_{ heta}$
- \bullet check when have action of T^2 by isometry on the Bianchi IX, compatible with the Hopf fibration of S^3

Matilde Marcolli

ullet in Hopf coordinates T^2 action on \mathcal{S}^3

$$(t_1,t_2):(\xi_1,\xi_2)\mapsto (\xi_1+t_1,\xi_2+t_2)$$

Euler angles $(u, v): (\phi, \psi) \mapsto (\phi + u, \psi + v)$, with $t_1 = (u + v)/2$ and $t_2 = (v - u)/2$

- U(1)-action $u: \phi \mapsto \phi + u$ leaves 1-forms σ_i invariant (rotates circles $S^1 \hookrightarrow S^3$ of Hopf fibration)
- ullet the form σ_1 also invariant under other U(1)-action $v:\psi\mapsto\psi+v$

$$v^*\sigma_2 = \frac{1}{2}(\sin(\psi+\beta)d\theta - \cos(\psi+\beta)\sin\theta d\phi)$$

$$v^*\sigma_3 = \frac{1}{2}(-\cos(\psi+\beta)d\theta - \sin(\psi+\beta)\sin\theta d\phi),$$

ullet then $v^*g=g$ for a Bianchi IX metric

$$g = d\mu^2 + a^2 \sigma_1^2 + b^2 \sigma_2^2 + c^2 \sigma_3^2$$

if and only if b = c

Matilde Marcolli

- This class of Bianchi IX metrics include
 - Taub-NUT and Eguchi-Hanson gravitational instantons
 - asymptotic form of the general Bianchui IX gravitational instantons

Dirac operator:

• Berger sphere S^3 with $\lambda^2 \sigma_1^2 + \sigma_2^2 + \sigma_3^2$

$$D_B = -i \begin{pmatrix} \frac{1}{\lambda} X_1 & X_2 + i X_3 \\ X_2 - i X_3 & -\frac{1}{\lambda} X_1 \end{pmatrix} + \frac{\lambda^2 + 2}{2\lambda},$$

with $\{X_1, X_2, X_3\}$ basis of the Lie algebra

on the Bianchi IX (Euclidean) spacetime

$$\mathcal{D} = rac{1}{W_1^{1/2}W}\left(\gamma^0\left(rac{\partial}{\partial\mu} + rac{1}{2}(rac{\dot{W}}{W} + rac{1}{2}rac{\dot{W_1}}{W_1})
ight) + \left.W_1\left.D_B
ight|_{\lambda=rac{W}{W_1}}
ight)
ight)$$

with $W = W_2 = W_3$

Conclusion: Bianchi IX gravitational instantons are compatible with spacetime noncommutativity (only at $\mu \to \infty$)

Matilde Marcolli