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PLAN

1. Conventional approach and its shortcomings

2. Off-shell amplitudes

3. 1PI effective string field theory

We shall follow RNS formalism with picture changing
operators.

But our considerations are quite general and might
extend to other approaches as well.
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Conventional approach to computing g-loop S-matrix
elements in superstring theory

1. Represent physical states by BRST invariant vertex
operators in the world-sheet superconformal field
theory of matter and ghost system.

2. Compute correlation functions of vertex operators
inserted at ‘punctures’ and additional ghost and
‘picture changing operators’ on a genus g Riemann
surface.

3. Integrate the result over the moduli space of the
Riemann surface with punctures.
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However this approach is insufficient for addressing
many issues even within the perturbation theory.

1. Mass renormalization

2. Vacuum shift
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LSZ formula for S-matrix elements in QFT

n

im Gy .. g (Ki.ooka) []{Z 2 x (K2 +m?))
d---a 1 n i i i.p
ki2_>_mi2.p 1 " i—1

G(M: n-point Green’s function
aq, - ap: quantum numbers, K. ...K,: momenta
m; ,: physical mass of the i-th external state

— given by the locations of the poles of two point
function in the —k? plane.

Z;: wave-function renormalization factors, given by
the residues at the poles.
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In contrast, string amplitudes compute ‘truncated
Greens function on classical mass-shell’

n

im  Gg...a (Ki, - kn) [[(kF+m).
k? — —m? 1 " i—1

m;: tree level mass of the i-th external state.

k? — —m? condition is needed to make the vertex
operators BRST invariant.
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String amplitudes:

lim Ga, a, (K1, "kn)ﬁ( i +my).

k? > —m?

The S-matrix elements:

lim G21I1 -

ki2>m

The effect of Z; can be taken care of. Witten
The effect of mass renormalization is more subtle.

> String amplitudes compute S-matrix elements
directly if m ) = m? but not otherwise.

- Includes BPS states, massless gauge particles and
all amplitudes at tree level.
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Problem with vacuum shift

Example: In many compactifications of SO(32)
heterotic string theory on Calabi-Yau 3-folds, one
loop correction generates a Fayet-llioupoulos term.

Effect: Generate a potential of a charged scalar ¢ of
the form

C((;-‘)*:(,a") — K 952)2

c, K: positive constants, ¢s: string coupling

Dine, Seiberg, Witten; Atick, Dixon, A.S.; Dine, Ichinose, Seiberg
Atick, A.S.; Witten; D'Hoker, Phong; Berkovits, Witten

Correct vacuum: |¢| = gsvVK
— not described by a world-sheet CFT

— conventional perturbation theory fails.
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Even in absence of mass renormalization and
vacuum shift we have to deal with infrared
divergences in the integration over moduli space at
intermediate stages. Witten

Consider a tadpole diagram in a QFT:

This diverges if a massless state propagates along
the vertical propagator.

Often the result vanishes after loop integration due to
SUSY.
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In string theory, this translates to a specific
regularization procedure for integration over moduli
spaces of Riemann surfaces.

1. Put an upper cut-off L on certain modulus
corresponding to the Schwinger parameter of the
vertical propagator.

2. Do integration over the other moduli first.

3. Then let L go to infinity.
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This works but requires an IR cut-off at the
intermediate stages of calculation.

How do we circumvent these difficulties / need for IR
cut-off?

Go off-shell.
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Off'ShE" amplitUdes -+ -y Nelson; Zwiebach; Pius, Rudra, A.S.

1. Relax the constraint of conformal and BRST
invariance on the vertex operators

— result will depend on the world-sheet metric around
the punctures where the vertex operators are
inserted.

2. Choose a local coordinate system w; around the
i-th puncture for each i and take the metric around the
puncture w; = 0 to be |dw; 2.

A different choice of the local coordinate system e.g.
yi = f(w;) = different metric |dy;|? = |f'(w;)|? |dw;|?

= different off-shell amplitudes for the same external
states.
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For superstring theories we need insertion of picture
changing operators (PCO) on the Riemann surface.

Off-shell amplitudes depend not only on the choice of
local coordinates at the punctures but also on the
locations of the PCO’s.

Are the physical quantities computed from off-shell
amplitudes independent of the choice of local
coordinates and PCO locations?

For simplicity we shall discuss heterotic string theory
but the analysis for type Il is similar.
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Some notations (ignoring subtleties):
Qg: BRST charge

X(z): PCO

My mn: (69-6+2m+2n) dimensional moduli space of

genus g Riemann surfaces with (m,n) punctures of
(NS,R) type in (-1, —1/2) picture number.

Pymn: A fiber bundle with My ., , as the base and
possible choices of local coordinates at punctures
and PCO locations as fibers.

Number of PCO’s: 2g -2+ m -+ n/2
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IVlg.m.n

A choice of local coordinate system and PCO

locations corresponds to a section Sy m » of this fiber
bundle.

Dimension of Sgmn = 69 — 6 + 2m + 2n.

Note: We could also choose formal weighted average
of multiple sections.
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Procedure for constructing an off-shell amplitude

1. For a given set of external off-shell states
collectively called ¢, construct p-forms w(¢) on Py mn
satisfying

op(Y2 OP0) = (~1)Pdp (1)

Qg): BRST charge acting on i-th state

wp is constructed from appropriate correlation
functions of off-shell vertex operators and ghost and
PCO insertions on the Riemann surface (details later).

2. Genus g, (m+n)-point amplitude

/ egisareant|d))
J Sg,m,n
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Goal: Prove that all physical quantities computed
from the off-shell amplitudes are independent of the
choice of the section Sy n even though the
amplitudes themselves are not.

For this we work within a specific class of local
coordinates

— gluing compatible local coordinate system.
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Consider a genus g4, (my + ny)-punctured Riemann
surface and a genus ¢z, (m2 + nz)-punctured Riemann
surface.

Take one puncture from each of them, and let w;, w,
be the local coordinates around the punctures at
w; = 0and w, = 0.

Glue them via the identification (plumbing fixture)
wiw, =e St 0<s<oo, 0<0<2n

— gives a family of new Riemann surfaces of genus
g1 + g2 with 2 fewer punctures.

J1 O)
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Gluing compatibility: Choice of local coordinates at
the punctures and the PCO locations on the genus
d1 + g2 Riemann surface must agree with the one
induced from the local coordinates at the punctures
and PCO locations on the original Riemann surfaces.

Q) C0D 9, x

For gluing at NS puncture the no of PCO’s on the final
surface is the sum of the number of PCO’s on the
individual surfaces.

(201 —2+ My +Nny/2) + (292 — 2 + My + Ny /2)

2(01+92) — 2+ (Mg +m2 —2) + (N +Ny)/2
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For gluing at R-puncture the sum of the number of
PCO’s on the individual surfaces is one less than the
required number.

(201 — 2+ My +Nn1/2) + (292 — 2 + M2 + N2 /2)
= 2(g1 +gg) — 2+ (m1 + mz) +(n1 + Nop —2)/2 1

A consistent prescription: Insert

.dW1 'dW2
("t) — /‘V w = (1) W
§ Sattwn) = § X ()

around either puncture.

X, has been used earlier for other purposes.

Berkovits, Zwiebach; Erler, Konopka, Sachs
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Gluing compatibility allows us to divide the
contributions to off-shell Green’s functions into
1-particle reducible (1PR) and 1-particle irreducible
(1PI1) contributions.

Two Riemann surfaces joined by plumbing fixture

)

Two amplitudes joined by a propagator

Riemann surfaces which cannot be obtained by
plumbing fixture of two or more Riemann surfaces
contribute to 1Pl amplitudes.
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Put another way, for a gluing compatible choice of
sections, we can identify a subspace Ry, » of the full
section Sy » Which we can call the 1Pl subspace.

Fiber

Pg,m.n

/\R

g.m,n

IVIg.m.n

All the Riemann surfaces corresponding to the full
section Sy m n are given by the Riemann surfaces in
Ry.mn and their plumbing fixture in all possible ways.
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Systematic construction of 1Pl regions

1. Begin with 3-punctured sphere and one punctured
torus.

The first one has 0-dimensional moduli space and the
second one has two dimensional moduli space.

Declare them to be 1PI.

2. Choose local coordiates at the punctures and PCO
locations arbitrarily consistent with symmetries

— exchange of punctures on the 3-punctured sphere

— modular transformation for the 1-punctured torus.

Page 30/77



Pirsa: 15040171

Systematic construction of 1Pl regions

1. Begin with 3-punctured sphere and one punctured
torus.

The first one has 0-dimensional moduli space and the
second one has two dimensional moduli space.

Declare them to be 1PI.

2. Choose local coordiates at the punctures and PCO
locations arbitrarily consistent with symmetries

— exchange of punctures on the 3-punctured sphere

— modular transformation for the 1-punctured torus.

Page 31/77



Pirsa: 15040171

3. Now take two 3-punctured spheres and glue them
using plumbing fixture.

wiwa=¢, q=e %" 0<s<oo, 0<0.

Declare these to be 1PR 4-punctured spheres and
choose the local coordinates and PCO locations to be
those induced from 3-punctured spheres.

Repeat this for inequivalent permutations of the four
punctures i.e. ‘sum over s, t and u-channel diagrams’.
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The 1PR 4-punctured spheres will typically cover part
of the moduli space of 4-punctured spheres.

Declare the rest of the 4-punctured spheres to be 1PI
4-punctured spheres.

On them choose local coordinates and PCO locations
arbitrarily consistent with symmetries and continuity.
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5. Similarly gluing 3-puntured spheres with
1-punctured tori we get a set of 2-punctured tori.

Declare them to be 1PR and choose local coordinates
on them to be those induced from the constituents

— covers part of the moduli space of 2-punctured tori.

6. Declare the rest of the 2-punctured tori to be 1PI
and choose local coordinates and PCO locations on
them arbitrarily maintaining symmetries and
continuity.
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Proceeding this way, for all Py, , we can choose

1. Gluing compatible sections Sy m n

2. ldentify part of the section Sy i, , as 1Pl subspace

I:ig.m.n of Pg.m‘n
Fib

er

Pg.m.n

——— N\

Rg.m,n

IVlg.m.n
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Once this division has been made, we can define the
1Pl amplitudes as

/ Weg-—-6-+2m-+2n
¢ F"g.m.n

Generating function of these amplitudes is 1PI
effective action (almost).

Tree amplitudes computed from 1Pl action

= full off-shell string amplitude including loop
corrections, given by integrals over the whole section

Sg.m.n

We can now apply standard field theory methods to
compute renormalized masses and S-matrix from the
1PI action, as well as to compute amplitudes in a
shifted vacuum.

Page 36/77



Pirsa: 15040171

Once this division has been made, we can define the
1Pl amplitudes as

/ Weg-—-6-+2m-+2n
¢ F"g.m.n

Generating function of these amplitudes is 1PI
effective action (almost).

Tree amplitudes computed from 1Pl action

= full off-shell string amplitude including loop
corrections, given by integrals over the whole section

Sg.m.n

We can now apply standard field theory methods to
compute renormalized masses and S-matrix from the
1PI action, as well as to compute amplitudes in a
shifted vacuum.

Page 37/77



Pirsa: 15040171

Once this division has been made, we can define the
1Pl amplitudes as

/ Weg-—-6-+2m-+2n
¢ F"g.m.n

Generating function of these amplitudes is 1PI
effective action (almost).

Tree amplitudes computed from 1Pl action

= full off-shell string amplitude including loop
corrections, given by integrals over the whole section

Sg.m.n

We can now apply standard field theory methods to
compute renormalized masses and S-matrix from the
1PI action, as well as to compute amplitudes in a
shifted vacuum.

Page 38/77



All separating type degenerations come from 1PR
amplitudes

= the 1PI effective action is free from all IR

divergences associated with tadpoles, and mass or
wave-function renormalization.
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Definitions and identities

H: Hilbert space of GSO even states of the
matter-ghost CFT annihilated by

bo—by. Lo—Lo

(A|B): BPZ inner product between CFT states

NS-sector vertex operators are grassman even for
even ghost number and grassmann odd for odd ghost
number

For R-sector it is opposite.
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More definitions (following Zwiebach)

Given N states |A,),--- |An) € H, of which m are NS
states and n = N — m are R-states we define a
multi-linear function

{A1"'AN} ngzg/ Weg 6|2(m+n)(|A1>-""AN>)
g 0 L Rg.m,n

We also define [A; - - Ay] € H via

(AolCq |[A1 - - An]) = {AoA1--- AN}, €y = (Co—Cp)/2

b& = bo:*:l_)o, L(]} = Lo + |_.0. C& = (Co:l:éo)/2
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1. Under exchange of A; and A, {A;---An} pick up a
sign
(_1 )":I":]

vi- grassmannality of A; i.e. 0 if A; is grassmann even
and 1 if A; is grassmann odd.

N
2 Z(_ﬂm--m {Ay---Ai_1(QgAj)Ai1- - Ay}

i=1

= oYY ol i)

(k>0 {ig;a=1, .0} {jpb=1, k}
t+k=N" {ia}U{ip}={1,--'N}

A (GlA;, A

{A

o({ia}, {ib}): the sign that one picks up while
rearranging b, ,A¢,---ANtO A;, - - A, by A - - A

G|S> — {‘S> if ‘S) S HNS

i

Xo|s) if|s) € Hg
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NS sector string field: An arbitrary state |/ ns) € H
carrying ghost number 2 and picture number —1.

R sector string field: An arbitrary state |¢g) € H
carrying ghost number 2 and picture number —1/2.

V) = |Yns) + |YR)

If |¢r) is a basis in H_4 + H_4 /2, then we can expand

[4) Z ar|¢r)

The coefficients a, are the dynamical variables
labelling the string field (in momentum space).

Coefficients of NS sector basis states are grassmann
even and the coefficients of R-sector basis states are
grassmann odd.
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We shall first describe the 1Pl effective action for NS
sector fields.

‘ 1 | =1
S(lyns)) = gs 5 (Uns|Co QBlUns) + > SilUns”)
n-=1

{(,"Nsn }Z {"-‘.'NS(-‘"'NS SN} 'NS} with n COpies of 'NS inside { }.

Invariant under infinitesimal gauge transformation

X

_ 1
f"|’«"NS> QB|/\NS> + Z y [‘- 'NSn/\NS]

n=0

|Ans): is an element of H with ghost number 1, picture
number —1.

Gauge invariance of S(|/ns)) can be proved using the
identities involving {--- } and [ - - |.
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Off-shell tree amplitudes computed from this action
in the Siegel gauge

by |¢Yns) = 0

reproduces correctly the off-shell amplitudes defined
earlier.
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Equations of motion:

Note: {¢ns} and [ | are non-zero from genus 1
onwards

1/)ns) = 0 is not a solution to equations of motions.

We have to first solve the equations of motion and
then expand the 1Pl action around the solution.

Special importance: Vacuum solution carrying zero
momentum
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Ilterative construction of the vacuum solution:

Suppose |¢/x) is the solution to order gs*.  (|¢0) = 0)

P: projection operator to L, = Lo+L, = O states.

Then

“-"'k|1>

|ok+1) is an L, = O state satisfying

X

1 " ) ._
QB|f,-')kH> Z(n 1)!p[1;'k 1] | (7(gsk'2).

n=1
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bl =
= 1 P)[vi "]+ [dwi1).

1
(n 1)!(

VK1)
0 n=1

Qsl6ri1) = = > oy PLU 1]+ 0(@°?),
n-—1 '

Possible obstruction / ambiguity to solving these
arise from the last equation.

rhs could contain a component along a non-trivial
element of BRST cohomology.

— reflects the existence of zero momentum massless
tadpoles in perturbation theory.

Unless this equation can be solved we have to
declare the vacuum inconsistent.
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This also allows us to deal with the cases involving
vacuum shift, e.g. when a scalar field y in low energy
theory has potential

c(\2 - Kgsz)z-

At order gs we have three solutions y = 0, +gsVK.

In 1PI effective feld theory this will be reflected in the
existence of multiple solutions for |¢1).

The solution corresponding to y = 0 will have
non-zero dilaton one point function at higher order

= an obstruction to extending the corresponding 1PI
effective field theory solution to higher order.

The solutions corresponding to y = +gsvK will not
encounter such obstructions.
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For Ramond sector states it is not possible to write
down an action with local kinetic term.

We can only write down the equation of motion.

— related to the fact that Ramond sector states carry
picture number —1/2 and the inner product between
two such states vanish by picture number
conservation.

For a string field theory this would be problematic
since we would not know how to quantize the theory.

However for 1Pl theory this is not a problem since we
only need to work at the tree level.
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General structure (including NS and R-sector):

A general string field configuration corresponds to a
state |/) € H of ghost number 2 and picture number
(—1,-1/2) in (NS,R) sector.

1Pl equation of motion:

| 0 1 o
Qslv) + ) e 1)|G[¢,~ =0
n=1 '

Qg: BRST operator

G: identity in NS sector
Xo = §2 'dz X(z) in R sector
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Gauge transformations

The infinitesimal gauge transformation parameters
correspond to states |\) of ghost number 1 and
picture number (-1, -1/2) in (NS,R) sector.

Gauge transformation law

S1) = Qg|A) —FZ G[l
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Once we have a vacuum solution |¢;,) we can expand
the equations of motion around |¢).

Define:

x = 1
Qg|A) = Qg|A) A ZEG[('V"A].
k=0

Q2 =0 asa consequence of |,) satisfying equations
of motion.

New ‘shifted’ linearized equations of motion
Qslx) =0
New shifted linearized gauge transformations

J|x) = Qg| )
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Linearized equations of motion around |v):

Qsly) =0

— has two kinds of solution:

1. Solutions which exist for all momentum k of |y)

— have the form dg\,\> for some |\) and are pure
gauge.

2. Solutions which exist for special values of k?

— represent physical states with the correspon
values of —k? giving renormalized mass®.
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This abstract definition can be developed into a fully
systematic perturbative scheme.

A similar procedure can be given for the S-matrix

elements starting from the LSZ formalism.

Pius, Rudra, A.S.
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) = -2 Y (=P[R "]+ dne)

1
Qsldki1) = — > W-P[yv;‘ "+ O(gs*1?) .
n=1 )

Once these equations have been solved, we do not
encounter any further tadpole divergence in
perturbation theory.

Note: The full solution [¢) is |/..), but in practj
shall stop at some fixed order in ¢s.
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Linearized equations of motion around |v):

Qg|x) =0

— has two kinds of solution:

1. Solutions which exist for all momentum k of |y)

— have the form (:JB\/\> for some |\) and are pure
gauge.

2. Solutions which exist for special values of k?

— represent physical states with the corresponding
values of —k? giving renormalized mass®.
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This abstract definition can be developed into a fully
systematic perturbative scheme.

A similar procedure can be given for the S-matrix

elements starting from the LSZ formalism.

Pius, Rudra, A.S.
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Gauge transformation laws around the shifted
vacuum ~
olx) = QslA) + O(x)

Global symmetries are generated by those |\) for
which

Qg|)\) =0

For such global symmetries we can derive Ward
identities.

e.g. unbroken global SUSY = equality of the
renormalized masses of bosons and fermions at all
mass levels.

also = absence of obstruction to finding vacuum
solution.
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) = -2 Y (=P[R "]+ dne)

1 .
QB|oki1) = — Z = 1')'!'P[¢.."'|? " 4+ O(gs*?).

n=1
Once these equations have been solved, we do not

encounter any further tadpole divergence in
perturbation theory.

Note: The full solution |¢) is |/..), but in practice we
shall stop at some fixed order in ¢s.
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Section dependence

The definition of {A; --- Ay} and all subsequent

analysis depends on the choice of 1Pl subspace
Ry mn-

A different choice of gluing compatible ‘sections’
= a different choice of Rgmn
= a different set of equations of motion.

Do the renormalized masses and S-matrix elements
depend on this choice?

Page 71/77



We shall consider the case of infinitesimal deformations from
Rgmn to Ré‘m_n labelled by some tangent vector U of Py 1, , at
every point of Ry m n.

Ra"

I:‘g.m.n
Result: The change in the equation of motion can be
compensated by a field redefinition |)) — [¢) + d|1)) where

~
! 1
/ aly o § 2 §
g=0

m.n=0

{/H weg-5+2m+2n+2[U)(Glons)). [Uns) “™, [1R)“")
L g.mit.n

+ / Weg—5-+2m-2n+ 2[0](‘(,"“5)':':"“_ G‘(l’?)R>. U,R>u-:n)

. |:"g.m.n +1

Thus renormalized masses and S-matrix elements remain
unchanged.
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Construction of wo(|¢))

29—-2+m+n/2
wol|#)) = (2ni) 39*3"< [T xw >
S

j=1
( )s: correlation function on the Riemann surface
corresponding to a given point in Pgmn

¢: product of all external vertex operators inserted
using the local coordinates appropriate for the given
pointin Py m .
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Construction of wy(|¢))

— specify contractions of wp with tangent vectors of
I:,g.m.n

We have two kinds of tangent vectors

1. Tangent vectors associated with deformations of
the moduli of the punctured Riemann surface or local
coordinates at the punctures.

2. 0/0y; describing deformation of PCO locations vy;.
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1. Contraction of wy(|¢)) with the tangent vectors of
the first kind is given by

wp(|0)) [V, -~ V]
2g—-2+m-+n/2

= (27i) 293 "(B[V4] - B[V, H X(yj) 0)s

j=1

B[V] '/‘dzz (1v(z,2)b(2) + 7y(2. 2)b(Z))

nyv: Beltrami differential

2. Contraction of wy(|¢)) with 0/0yk has the effect of
replacing the X' (yk) factor by —0&(y). Verlinde, Verlinde

The p-form wy(|¢)) on Py m » defined this way satisfies
all the required identities.
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A technical issue: Spurious poles

The correlation function used for defining w, diverges
when PCO locatins collide and also at points where
no vertex operators or PCO’s coincide. Verlinde, Verlinde

f(lyi}, iwit, {mi}) = 0
yi: location of PCO’s {my}: moduli

w;: locations of vertex operators

— a real codimension two subspace on the section
— appears even for on-shell amplitudes

— related to the fact that the gauge choice for the
world-sheet gravitino breaks down at these points.
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