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Abstract: In this talk | will review a recent reformulation of string theory which does not rely on an a priori space-time interpretation or a
pre-assumption of locality and include form the onset stringy symmetries such as T-duality.

I will explain how this resulting theory, called metastring, leads to formulation where the string is chiral and the target is phase space instead of
space-time. | will discuss metastring theory on a flat background and summarize a variety of technical and interpretational ideas. These include a
discussion of moduli space of Lorentzian worldsheets, a generalization of the world sheet renormalisation group, a description of the geometry of
phase space, a study of the symplectic structure and of closed and open boundary conditions, and the string spectrum and operator algebra.

What emerges from these studies is a new quantum notion of space-time that we call modular space-time. This new geometrical concept is
fundamental quantum and modular. It is closely linked with T-duality and implements in a precise way anotion of relative locality
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String theory magic

The usual interpretation of String theory is that it can be
understood as describing an infinite number of particle
states following Regge trajectories M* x S

string modes =~ «——  particle states
correlation function <«—— S-matrix

higher genus «<——> Feynman loops

String magic

CFT consistency = Spacetime consistency =
Conformal symmetry <«— Locality, Unitarity
Mutual locality, Modularity causality.
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Locality }
evidence though that this picture of

string as described Is incomplete, The string is a non-
local probe, and it is quantum. This implies that:

*T-duality is a fundamental symmetry of string probes, it
means ac the quantum level that compactification along
Rand |/R are equivalent.

*There s in ST a fundamental [R-UV duality, Such a duality
violates the separation of scales inherent to effective field
theory and therefore cannot be described in the usual
spacetime language,

That's not all
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*The string needs to be regularised to be quantized,
In'LCG this naturally leads to a string bits picture:

INLCG the density of LC momenta is constant
APt = Phdg

*To quantize we discretise the normal directions into N bits

X)) = X(ie, 3¢)
HR2RO0CQ3QQ0QQ0

Each bit carry a unit P*/N unit of LC momenta N = 2r/e

What is the limit lim(AX?) () !
AX() = Xiuy, -,
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Locality
*The puzzle
*The string needs to be regularised to be quantized.
In LCG this naturally leads to a string bits picture:
IN LCG the density of LC momenta is constant
dPt = Ptdo
*To quantize we discretise the normal directions into N bit
X(o,7) — X (i€, je)

i

Each bit carry a unit P"/N unit of LC momenta N =2r/e

What is the limit }1_1}(1)<AX2>(G)
AX(e) = X1 — Xi
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Locality

*There is some evidence though that this picture of
string as described is incomplete. The string is a non-
local probe, and it is quantum. This implies that:

*T-duality is a fundamental symmetry of string probes, it
means at the quantum level that compactification along
R and I/R are equivalent.

*There is in ST a fundamental IR-UV duality. Such a duality
violates the separation of scales inherent to effective field
theory and therefore cannot be described in the usual
spacetime language.

That’s not all
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Locality

ll_l’l.lif.l.\"j)(r] =)
The target viewed by the string is fundamentally discrete !
and the string appears to have infinite length !
It simply follows from cgnformﬂ invariance
s
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Locality
*The puzzle
m(AX?)(e) = \?

e— ()

The target viewed by the string is fundamentally discrete !

and the string appears to have infinite length !

It simply follows from conformal invariance
2T

E{.........
® 6 6 o o ¢ o o o

N

2Xl{o‘oooooooo
® © 6 0 06 ¢ 0 0 o
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What is String theory!?

*A collection of massive particles propagating in spacetime

ST= non local object in spacetime

*A fundamentally discrete theory made out of string bits

ST= non local in a discrete spacetime

*A theory which exhibit at the fundamental level a
UV-IR duality.

ST doesn't live in spacetime

In order to make progress we have to let go of
the concept of spacetime as we know it.

What spacetime does ST theory live in?

Our strategy: reanalyse ST without assuming locality
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T-duality

String solutions are chiral combination

X(1,0) =X (1t —0)+ Xg(7+ 0) @

~

T-Duality X (7,0) = [X.(7 — 0) — Xgr(7 + 0)]/d

T-duality exchanges cm Momenta with Monodromy

29T O

0

P, = ”i, / 0. X(1,0)do = X(T,ﬂ) = A
J0O

T-duality exchanges Momentum density with Position density

P:=0.X/a Q:=0,X (P, Q) — (Q, P)

*A central theme of our analysis is that the dual coordinate
is a momentum coordinate and o'is a conversion factor.
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T-duality= Fourier Transform
Consider a string state |Vy)represented by the Path integral
i

W (2 DX D~ exp ( ~Sp(X )
5 ( Xt Jrrenss Y A \2 p(X)

Take its Stringy Fourier transform

1
U (Z4(0)) := / Dx exp (me ‘/(.)E :1:”’(1:}?”,) U(x (o))

It is given by the dual Polyakov integral in momentum space

/ DX D~y (?X[)( |
. ‘\.'|(-)'\;:,;: . ﬁ/(:l.(l]) €
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T-dualty= Fourier Trar{sform
It works also for gorrelators. The stringy Fourier transform
like T-duality @xchanges momenta and dual momenta

AVertex operator (VO) carrying momenta s exchanged
with its dual VO carrying dual momenta (winding)

Vi =f|""‘" =V :[r"“
X L

The formulation we are looking for should allow for
dyonic operators

-/f;‘-'kxfil“t
B

Can we allow coherent superposition of dyanic operators?
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T-duality= Born Duality

Dimensionless Momentum and Position density
P:=0,X/N Q:=0,X/\

The dynamics of free string is characterized by the
Hamiltonian and diffeomorphism constraints

H=P'+Q*=0
D=P-Q=0

This is symmetric under the exchange P < ()

Born duality principle:

Physics should be formulated in a way that incorporate in a
democratic form position and momenta
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Classical Metastring

We are looking for a formulation of string that
generalises the Polyakov spacetime formulation

S[) = / (G,u,!/ _|_ B!;,;/)(X)((lXH) A\ (*(IXV)
JY

and can include deformations by general dyonic operators

A formulation that liberates the right movers from the left

This formulation is a relativistic phase space formulation
whose target fields are coordinates on P given by

XA<XG’/)\) =2

~ €
X, /€ h= e

P=Phase space!
Classically It carries a symplectic and a bilagrangian structure.
QM: X and X do not commute.
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Geometry of Phase space
Usual string background geometry (M, G, Byy)

What is the meaning of the metastring background as a
geometry on relativistic phase space!

(P,wap,Nap, Hap)
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Geometry of Quantization

Remarkably, in the non relativistic case the same structure
appears in the geometry of quantization!
Phase space geometry= geometry of quantisation

(P,waB,naB, Hap)

<

Phase space

complex

symplectic Symplectic structure
structure connection

Fedosole GeometriciQ

Star product. Hilbert space.
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Geometry of Phase space
In Darboux coordinates w = dp Adg

Geometrical Quantisation:
Given a compatible complex structure (w, /)

We can construct a complex line bundle L
with curvature and define 7 = L*(I'y,,w)

The metric is given by  H = wI

In Darboux coordinate (18%1 = dp® + dg¢”

In pedestrian terms H is the metric induced by the Born
metric on coherent states.
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Bilagrangian and Fedosov

In 1992 Fedosov proved an absolutely beautiful and
foundational result about quantization. He showed that
given a torsionless symplectic connection Vw = ()
there exists a non-commutative star product.

V= fxg

A choice of torsionless symplectic connection

is uniquely characterized by a Polarisation metric

In Darboux coordinate dsf) = dpdg

— —

V =0 * = Moyal
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In 1992 Fedosov proved an absolutely beautiful and
foundational result about quantization. He showed that
given a torsionless symplectic connection Vw = ()
there exists a non-commutative star product.

V= fxg f*!}—.f}*f‘:i-.;{f.y}-l----

A choice of torsionless symplectic connection

is uniquely characterized by a Polarisation metric

In Darboux coordinate

V=0 x=DMoyl
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Solving the dynamics

Eom: 0. X4 — (J9,X)* =0
J(A)

relation momenta-monodromy P = >
-

Soldering between world sheet null coordinate

and chiral structure on target. o= =0+ 7

0. X4 = P,o,X

Chiral projectors

Allow to liberate the left gecometry from the right.
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Commutation

A careful analysis of the metastring actions shows that
its symplectic form is

1
QO =— ¢ 0XMupV,0XP
41 X
 \
Generalized Fedosov connection V) =0, T =Vw

The polarisation metric controls the phase space commutation

When constant: {XA(O_)jXB(OJ)} — 2B0(0 — o).
L

Staircase distribution
At the quantum and interacting level the metastring target

appears non-commutative ! X' X are conjugate variables
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Spectrum

Vertex operators Vi = exe'™® VA = epe™(9,X)4
OPE K. K'el' — K+ K'eT

The spectrum is a lattice.

. . 1
Hamiltonian 5]\'4[{{1,,]\'” =(2—- N, —N_) Ni €N
1

Diffeo 5[\"4’!]/1]3[{]3 = (N_ —_ N+)

New fields: Nap Ay
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Spectrum

Vertex operators Vi = exe'™® V3 = epe™(9,X)4
OPE K, K'eTl K+ K el

The spectrum is a lattice.

Constraints Ki=2(1-Ny)

R — e ————

The spectra is a double lorentzian integral lattice

Modular invariance —— The lattice is self dual

There exist such lattices only in D= 2 mod(8) and they
are unique

Criticality I'= 11 o5 X 11 o5

———
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Mutual locality

The vertex operators then commute provided one chooses

the phase factors to be ¢ = 2K (1+w)Fem

AN

Cocycle symplectic form
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The lattice

How does one recover the usual string?

The monodromy for the usual string are A* =(0,0,)

The momenta for the usual string are
Ky = J(A)/27

Ky = (5,‘,/27& 0)

~

For the metastring we have that K4 = (k,, k")

The usual string spectrum is recover if we truncate the
metastring spectra to operators such that

k| >> |k]

The usual locality limit is a large quantum number limit
= a classical limit
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Barcherds symmetry
The metastring pgssesses a huge symmatry group

generated b all dim (1,0) +(0.1) operators
Borcherds (84)

The simple roots in L are either tachyonic or in L

The Tachyonic root generates compact subgroup
T-duality= rotation by angle 7

L={K el K* =2, K.p=—1}

is isomorphic to the Leech lattice

pP= (0 132a i -2‘”?0)

Null roots generates Heisenberg group (q

-translations)

This symmetry is effectively broken |

in the usual strin
by choosing subsectors :
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Modular spacetime

Classically we have seen that the metastring forces us to
think about spacetime M as a Lagrangian sub-manifold of P

wlL =mnlL =0

Absolute Locality = Flatness of the Polarization metric R(n) =0

What is spacetime for the quantum string?
What are the effective fields?
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Modular spacetime
At the quantum level we have seen that the zero-mode algebra
IS non-commutative

We have to take the Non-Commutative point of view: To talk
about a space we have to look at the dual space.The space of
functions on it. In the non commutative case it is an algebra.

Here the algebra Apis the algebra of bounded function of( X, X)

(X, X,] = 2imhé]!

——

The space of function on modular spacetime is defined as a
commutative subalgebra of Ap

modular spacetime = quantum Lagrangian
expression of string mutual locality
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given by the set of doubly periodic fields
d = O([z], [2])
with modular observables
[2] = 2 mod(R)
2] = Zmod(R 1)

They do not commute classically

but they do commute quantum mechanically

modular spacetime: RP D
pacetime: R™ — 7! ="y
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Modular spacetime

modular spacetime:is a cell in phase space

| quantum Lagrangian

™

The usual spacetimes are obtained as a semi-classical limit
squashing the phase space cell. A coarse graining
procedure which concatenates the cells.

classical Lagrangian

Usual moduli reappear as a parametrisation of this limit.
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Modular time
ided ¢ ([t],[E]

What does that mean? Doesn't it violates causality?

It would if time was periodic and we were talking about
fields and particle but we are not.

There is a natural isomorphism
akin to a change of polarisation

O(2) — O([a], [2])

\ 1 L

This structure comes from a consistent ST

We expect the string magic to work and be interpretable
Ina sensible manner,

We need an construction of the effective modular field theory

It challenges oy conception of causality; Thar's 4 good thing
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akamura graphs )
b along the real trajecyory of € we obtain

The Nakamura graphs encode this decomposition and give
a very effective cell decomposition of moduli space.

Fewer cell than Penner and efficient calculation of Orbifold Euler characteristic
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Nakamura graphs
Cutting the Surface along the real trajectory of € we obtain

a strip decomposition of the surface

The Nakamura graphs encode this decomposition and give
a very effective cell decomposition of moduli space.

Fewer cell than Penner and efficient calculation of Orbifold Euler characteristic

i | Feynman graphs
Figure 3: The Nakamura graph for the pants diagram is drawn on the surface for' Closed String

in (a), and displayed in (b). The corresponding domain X\ N, consisting of
two strips, is shown in (¢). The interaction point is marked by a cross in (a)
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Double RG flow

Our chiral theory cannot be Wick rotated

In a theory where time and space appear non symetrically
we need two cut-offs

E<A |p| <A

In 2d conformal and Lorentz transformations are on the
same footing

Px0

ds* = e e_ €y —> €

C+
At the fixed point we restore both conformal and Lorentz

symmetry 0sZ =0 — (9* + 0%)on = 0

o~

007 =0 — (- 9)on + 2(Jén) = 0
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Conclusion

»We have given a yeformulation of ST tha¥ generalises tl.1e
concept of causality and locality and incorporates T-d.uallty.
Italso provides a specific quantum version of spacetime.

*This formulation possess deep link with the geometry of
quantization (Fedosov, geometric Q) and exhibits a large
symmetry algebra (Borcherds).

* Itintegrates lots of either new or recently
Generalized geom, NCFT; Relative locality,
modularity of spacetime and double RG f|

developed ideas:
Nakamura strips,
OW.

* We have a generalization of Einste
spacetime,We also need

the action principle for

in equation for modular

0 incorporate the dilaton and find
the effective modular field th
* Max Born Tribute Gl
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