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Expansions of Type |IB Superstring Theory

tree-level
one-loop
\/“r energy two-loop
conjectured via S-duality,
supersymmetry and M-theory

/ DR
DR

R’
9s i
e Superstring Perturbation Theory in powers of ¢,
holds for weak coupling «
but for all energies
e Classical supergravity I?
yding low energy expansion of string theory
holds for all couplings ¢
e String induced effective interactions X' D'R* DVR?
Evaluated in perturbation theory for « '
Conjectured for all couplings via S-duality, supersmmetry and M-theory
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D-instantons and Eisenstein series

e Full R* effective interaction conjectured from D-instanton

(T2)? E3(T) R T =T, +iTs T> =
’ Js
e The “non-holomorphic” Eisenstein series is defined by,
E(T) = —
' Z ws$|lmT + n|?s
(m,n)#(0,0)
Modular invariant under S-duality group SL(2. of Type |IB:
satisfies a Laplace-eigenvalue equation,
AE, = s(s — 1)E, A = 4T3 0roy
and admits the following asymptotics near the cusp 15 — o0,
V(9D )I‘ s — ! g | -
Y i R 20(2s),,., 2L )G (2 ) ., 2T
Eo(T,T) = —=—"T5 + —E Il=% + O(e™ 212
T I(H),—\ 2
Perturbative contributions to R* arise from genus 0 and 1 only
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D-instantons and Eisenstein series

o Full R! effective interaction conjectured from D-instanton

EAEMRE  T=N+ily D= 1
n {ls
o The “non-holomorphic” Eisenstein series is defined by,

' (Ta)*
E,(T) = Sl
i (u..-?ﬂun, ""'|"Li 1]

— Modular invariant under S.cluality group SL(2.&) of Type IIE
— satisfies Lnpl.‘lcwmcnv.’ﬂur gquation,

AE, = s(s = DE; A = 415 Ordp

~ and admits the following asymptotics near the cusp 2 ’

" { ~he@s=1) ~anT:
e 0((2a) g N TG
E(l.1) = L ['(s)7*

- « . “ ] "Iy
“l bm\'c co L b”“c Nns to j\ irse “U 1 ger s D | 0
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Supersymmetry and S-duality

e Laplace-eigenvalue eq from space-time supersymmetry
Eisenstein series = unique modular solution with polynomial growth at cusp

e Predicts vanishing contributions for high enough loop order,

R 1/2 BPS h>2 Eq
D'R’ 1/4 BPS h >3 Es
DR’ 1/8 BPS h >4 (A —12)Epegs = (Ey)°

e Predicts relations between non-vanishing contributions (e.g. with tree-level),

R h=1
DR h =2
D'R* h =2

h 3
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Supersymmetry and S-duality

o Laplace-eigenvalue eq from space-time supersymmetry
- Eisenstein series = unique modular solution with polynomial growth at cusp

o Predicts vanishing contributions for high enough loop order,
R 1/2 BPS h>2 Ey
D'RY 1/4 BPS h>1 Ey

D'R'  1/88BPS i34 (A 12Eum= (B

utions (e.g with tree-level).

ns between non-vanishing contrib

» Predicts relatio
RJ
D IoRl
PR’
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Focus of this talk
» Effective interaction "R at two-loops,

1nvo a new modular object, the “Zhang-Kawazumi-invariant
» Structure of )**R* effective interactions for >4,

at one I tructure of non-holomorphic m
- admits natural |

wralization to t oops (beyond

I ; T .
® I both cases, we will find that the integrands on moduli space

» of compact Riemann surfaces (without punctures),
* having integrated over all vertex operator

Positions,
- obey families of intere

i sting differential and
= speaily DR for un.ce

ompa

algebraic equations
actified or compac

tified SPace-
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The effective interaction D"R* at genus-two

e Start with Type Il four-graviton amplitude at genus 2,

G4 J Mo

B(2) / YAV "*1’\*‘ e

A (5 1S the moduli spact with Sie | volume form «

G Is the scalar Green function;
Yy s — t)A(1, 3 A(4, 2 2 permutations
A7, 7) is a holomorphic (1.0 [,0); form independent of :

e Contributions produced to local effective interactions

v 4 ‘

K zero, since Y vanishes for s = 1 0;

DAR* . non-zero, B'*) constant on M-

670 4 . » : : - !

DR non-zero, one power of ¢ brought down in integral over ¥%;
B¢ (g% + $4 4 1° 102 st o() + O s

(1) coincides with the Zhang -Kawazumi invariant
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The effective interaction D"R* at genus-two

e Start with Type Il four-graviton amplitude at genus 2,

O
J M

B(2) / VAY "'1’\ﬂ e

A 5 1S the moduli spac with Siegel volume form «

G Is the scalar Green function;
Yy s — H)A(1.3 A(4,2 2 permutations
A(z, 7) is a holomorphic (1,0 [,0); form independent of s

e Contributions produced to local effective interactions

v 4 ‘

R zero, since )V vanishes for s = 0

DAR* : non-zero, B'?) constant on M

DR non-zero, one power of ¢ brought down in integral over X
B9 = 32(s" + t° + u®) + 192 stu () + O«

(1) coincides with the Zhang -Kawazumi invariant
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The effective interaction D"R* at genus-two

e Start with Type Il four-graviton amplitude at genus 2,

i \1-__r; _il-__’ /\\ | / h"llj'-’ 5 !f'; (s.t.u ( ?I
64 J
}‘\‘1-:'| / j‘ J- 1)\ __‘..‘(".._ )
J 5 — '
M is the moduli space with Siegel volume form «
(+(7, ) is the scalar Green function;
Yy s — H)A(1.3 A(4, 2 2 permutations;
A(i, 7) is a holomorphic (1,0 [,0); form independent of s

e Contributions produced to local effective interactions

R” zero, since ) vanishes for s = 1 0;

4 4 i 5( 2

DR non-zero, B'<) constant on M

DYR* : non-zero, one power of (G brought down in integral over ¥
B9 = 32(s* + t° + u®) + 192 stu o(2) + O«

(1) coincides with the Zhang -Kawazumi invariant
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The Zhang-Kawazumi invariant for genus-two

e Definition of the ZK-invariant

Let A;. By be canonical homology basis for H (2.
; dual holomorphic (1,0) forms normalized via

</1 wJj =01y / wyg ==X+ 1Y
JAp J

invariant under the modular group Sp(4
equivalent to definition via Arakelov geometry

related to the genus-two Faltings invariant

e Direct evaluation of _I:H o 2(C)) appeared out of reach ... until ...
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Evidence

e Initial indications from D°R* interaction for compactification on T4,

, 1S the torus partition function
dependent on p G+ Be SO d.R)/SO(d,R) x SO(d

satisfies (2A — Asoaay +3d —d*) gq2 = 0;

(& s
o

Susy & duality conjectured relation v

Elimination of Ago(y 4y gives

integration by parts, and notice no d-dependence in eigenvalu

e Further evidence from asymptotics of »
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Proof via deformations of complex structures

e Laplacian A on genus-two moduli space M,
Laplace-Beltrami operator for the Siegel metric on upper half space

In terms of the period matrix €27 X1 Y77, with 1..] [, 2

) J
A YikYir
Z Z IKYJL 90,00
I1<J K<L '
e Variations in ();; result from variation by Beltrami differential /.

-~ I 2 w e ;
f\“r,‘: — 5 / dw o OwwP
2m Js

K L

Dww @ 1S Obtained by variation of ¢ or insertion of the stress tensor '/
Owwdry 2riwr(w)wy(w)
Opwwi(x) = wi(w)O:04In KE(x, w)
OwuwG(x,y) — Oy G(w, )0y Gw, y) + - -

e Careful calculation of mixed derivatives proves (A — 5)p = 0 inside Mo
contribution from separating node results from asymptotics of
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Proof via deformations of complex structures

e Laplacian A on genus-two moduli space M,
Laplace-Beltrami operator for the Siegel metric on upper half space

In terms of the period matrix €27 X717 Yrg, with /.. |, 2

) )

(
A YikYir
S S ViKY

<JK<L
e Variations in ();; result from variation by Beltrami differential /.

- I 2 w e ;
f\“r,‘n — ~ / d“w i Oww P
2m Js

K L

).....c» I1s obtained by variation of ¢ or insertion of the stress tensor '/
Owwdry 2riwr(w)wy(w)
Odpwwi(x) = wi(w)O:04In KE(x, w)
Oww&G (., y) — D Gw, 2)0,Glw, y) + -0

e Careful calculation of mixed derivatives proves (A — 5)p = 0 inside Mo
contribution from separating node results from asymptotics of
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ice-eigenvalue equation for /

tring theory at / )

» But the integrands on My for the coefficients of D¥R*. DIORS L,

= do naturally e

- are modular |

6/42
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Generalizations of KZ-invariant

e The KZ-invariant exists for all genera /i > 2

but does not satisfy a simple Laplace-eigenvalue equation for / ;

most likely is not the correct c-|J|- Ct Tor string theory at 3
e But the integrands on M for the coefficients of D®R*, DORA, ..

do naturally emerge from string theory
are modular invariants which generalize ZK;
satisfy more complicated Laplace-type equations

e The corresponding genus-one problem remains to be explored - -
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s-one effective interacfions

» The four-graviton amplitude is an integral over moduli space M),

':w‘!'R"f dpy B (s, 1, | r)
My

» ') reduces to an integral over four copies of the torus ¥,

d 2,
B8 o tyulr) = (H[I!,T') "Nl‘{ > G- :;l.-l}
jmidz ™

1<i<)<4

- “rea Mmon Y isca
alar Green fi N on X s a Fourler sum af torus momenta

Glzlr) = n

——__._._r'.‘m(mn-n.!]
(mn)#(0,0) mlnr 4+ n|?
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Worldsheet Feynman diagrams

e Expansion in powers of s;; organized in “worldsheet Feynman diagrams”

J
Each integration point on X is represented by a vertex

Each Green function G/ z; |7) by a line —— between and
Diagrams with a single GG ending in a point vanish by [« d“z G(z|7 ()

A diagram with w lines of ¢
has weight

)..1|

contributes to D*"“R
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DIRS
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Eisenstein
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Y
Kronecker-Eisenstein series
nman diagrams generate Eisenstein series.

e One-loop worldsheet Fey
y orde S [ -

for example t
-2

] “

- = [‘.3(7’_}

3
T2

T.} E "}m.i)’)u.l} I I Y
T|m,.m + n,|*
r=1
) ) o + na vanish:

(myp,np)#(0,0)

e Two-loop Feynman diagrams generate “Kronecker-Eisenstein series” .
ap

)
( aj .fl"__).(f:;(

[ he total worldsheet momenta
‘;:[ 1S (11 (1o (19
For our diagrams we have «a, | and the sums

iIs a modular function under S (2.

COnNve r-_l[ )

Page 22/42
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Examples at low weight w

e We find inhomogeneous Laplace-eigenvalue equations,

w =3 Ci11= & . AC) 1,1 = 6FE3
Use A/ 6/ , TO get A(C 1.1 / U
constant determined from asymptotics ('} Eq 3
' . , . v \ )
w =4 Ca1,1= & » (A—=2)C5,,,=9E; — E5
Y . e 0 . ‘ ' T ] 4
w=>5 C311= [ ) (A=6)C31,1 =3C221+ 16E5 — 4E2FE,
°
w =25 C22,1 = [~ AC3 91 = 8E5
Note eigenvalues of the form s(s 1) for 2.3
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Examples at low weight w

e We find inhomogeneous Laplace-eigenvalue equations,

w =3 Ci11 = ® . AC) 11 = 6FE;3
Use A/ 6/ , TO get A(C 1.1 [ ' U,
constant determined from asymptotics ('} Ea 3
‘ e , . v y .
w =4 Ca11= & » (A—=2)C5,,,=9E4 — E5
v . . W Y ‘ ' v T ] 4
w =25 ( 3.1.1 — . . (A - (}}( 3.1.1 3C 2921+ l(l[;,ﬁ o ”22['4:;
.
w=>5 (_3_31*‘.' A('_?Jl*:\‘[’,
Note nvalues of the form 1) for ). 3
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Structure Theorem for (', ;, . modular functions
e (', ,..(7) are linear combinations of modular functions ¢,,...,(7) which satisfy
(A — (s — 1 })L'lu';.v.p Su':s:p(l'-‘.-"- Q(HH])
an inhomogeneous eigenvalue equation of weight
5 is a polynomial of degree 2 in E ., with 2

]}

depends on — for s an odd integer 3 -

w — | s —1
s = w — 2m m=1,:--, p=0,---,
2 3

e Examples at low weight

w =3 s = 1 (l”‘

u | S 2 '._’{I‘

w=>5 s=1,3 o ¢ 'V

w = 6 s = 2,4 2 g 12

w="17 s=1,3.5 oM @ 6V g 20?
w ==~ S 2.4,6 '_’H) 'I_)‘jlr{ 30
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The generating function

e There is a natural generating function,

W(fl'f;z-f-_g‘;’}

‘I
~
—

—
~
| e
—_—

-
o
~
-
o~
r

u.’r.(' |
Summing gives the sunset diagram for three scalars with masses M-
3 N
1 p— , _ H T2
W{f|.f-_>.f»_)|7') — 2 '\’JH,H”H,II ( ) " , )
(e ey (0.0) el |lmeT + ng|* — tyTo

e Algebraic representation of Laplacian induces differential action on W,

AW — £2W = R

D = t101 4 t202 + t303
€ = D4 D4 (4Rt — 21ty — 2taty — 243t)) (0102 + DaOs + D)
R juadratic polynomial in the Eisenstein series |/
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Proof via generating function

e Permutations of (a. b, ¢) induces permutations of (#,.75.13)

S35 adapted coordinates,
(¥ = f] * f-_a T f:; I f._’,'rr ;
v/ V2 bty + ety + %ty (ty, ts, t2)(w, v, 0) = (u, v, v)
5/v2 b + €ty + €tg (to, ta, t1)(u, v, 0) = (u, v, ev)
£ b b 5 Casimir of SO ) nerated Lo. L. L

Simultaneously diagonalize the Ga-invariant operators ©, £4, and £~
| |

OWuisip = WWisip D = t10) + tady + tads

2 3 ] 2 2 ¢ 2 Y i \
L‘.-W,,-;,{;p - -"'(-"" S I )w”-:_‘:p q\.:, —_— _( ” - ._)f'f')(l‘)” S ,_)()"()")
12749 PEVE 1 o gy
LoWuwisp = —9p Wu':.-.‘:p Lo = wwd, — 1vd;

S3-invariance of eigenfunctions requires p to be integer

which explains multiplicities [(s — 1)/3

constructive proof of Structure Theorem
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» Tools: take an educated guess + check asymptotic behavior near cusp,
-R ; ol

involved linear combination

(A~ El{D; +- lif_-'-l"l + ”:3! 9 E‘}

* Inspection of asymptotics near the Cusp 3 =+ oc, leads us to conjecture,

D,

= D ( 11 iy iy = 1-‘]“_"
ten modular functions and Feynman

diagrams
* Additional support from direct numerical evaly

ation of the multiple sy,

Page 28/42
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Conjectured relation for modular functions in DR’

b
e D¥R? requires /0
q e » L » — [)1
I'he modular function Dy is not of the form C,
no useful algebraic representation of the Laplacian is available (yet 7)

e Tools: take an educated guess + check asymptotic behavior near cusp.
Relations for (', ; .. involved linear combinations for given weight:
Consider combinations of Dy, (5 4 Iy, and |

(.A “_))([)1 T ”(".l.l‘l T ;1.‘:: t nl_[‘.‘,|)
e Inspection of asymptotics near the cusp 7, — oc, leads us to conjecture,

D, =24Cy 11+ 3E3 — 18E,

an exact relation between modular functions and Feynman diagrams

e Additional support from direct numerical evaluation of the multiple sums.
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Structure of the asymptotics near the cusp

e The expansion near the cusp 7, — oo takes the following form,

O

Dy(7) = Z ‘DI(IL"A‘)(IT?_: r;}"r/;" q= e2miT
k., k=0

e We checked the following asymptotics (similarly for (5, |, E4. E3)

)

DOO () y' | 2By 10¢(5)  3¢(3)°  9¢(7)
+ Y 045 3 y y? 4y
4y° 2 4 12¢(3) 6C(3) 0 9
'DIIH']’{‘J;] i + .,I + 2 + in 2 L It e o 3
15 3 Y Y Y- 2y* dy
.Dtll.m(!” - ,D\IH.I:{H)
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How could the conjecture fail ?

e Consider the difference FF = Dy — 24C'5 11 — :”2"‘_7) - 18E,
the conjecture states |/ ()

e |f the conjecture were to fail, then F' # 0 and its properties are,

modular function under SL(2

Its pure power part in the expansion near the cusp vanishes

F'is a cuspidal function

Vanishing of leading exponential restricts it further
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Progress towards a full proof

e Inspired by a calculation of Zagier for (', we first perform -sums

TLy 0.0

partition sum according to the number of vanishing

olve for ny, decompose in partial fractions in n3; sum over
for maq # 0, sum using the formula (and its derivatives in =)
)
1 1 4 2T
E —iT e
‘ = 4+ njy | — e=m2
H:I'..,

e Explicit calculation (using MAPLE) shows the following structure

- k (k) 2
]r)‘ | \ “: L ‘ rl’"'; fr' {
L.
,-
where D, (¢, q) is an analytic function of ¢. ¢ near the cusp

similar expansions for ("5yy. E5, E'y with the same range for k

e Conjecture proven for i = —3,1,2.3.4;

... In progress for remaining values ...
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rogress towards a full préof

v . e
i i 111, we first perform n-sum
* Inspired by a calculation of Zagier for '}y,

l ™
DT il
Dilr) L im0 U0 il | - ”rr"
}

(me,ne )@ (0,0) v

shows the following structure

* Explicit calculation (using MAPLE)
1

”ﬂﬂ = \-‘ '-_.'il D'IHII{ F” = I...]”-
by

»an analytie funeti
or Clyyy (264,
* Conjecture proyen for k= -3

s+ I progross for remainin

on ol g, 4 near the usp
= similar exp

1 With the same range for k

) 4
g values .,
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D'RY requires D Dyii= =% Dagp= 2N

I addition to £y, Cy gy, Ey and E5C' oy functions of we

» Educated guesses and asymptotics near the cusp lead us to conjecture,

Do = 00C3,, 4 10EC) ) ) — 4SEy + 10¢(5)
'"'D.l.l.: = S0k 'Zl.l L1
s, =

= 276E, + 7¢(5)

ACy 4 - 1Es 4 30(5)

* Pattern expected to continue for higher D*RA interactions with w> G

Page 34/42
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alizations and Multi-zetd-values

» Generalized infinite families entering genus-one diagrams (but not all)

S0 ‘,I.IL;II (

J(0.0)

- for integers ¢

» Multi-zeta-functions

(4 CIPONT|
mp>

- reneral X 1 ]
generalize the standard Riemann zeta-fune tion for 1

ovide a modular generalization of ((y,. ...
yehavior of ¢ * o) I‘..")
y enter into open st "’

Pirsa: 15040168 Page 35/42




Generalizations and Multi-zeta-values

e Generalized infinite families entering genus-one diagrams (but not all)

1 0. ]
for integers «, | enter diagrams of weight a
e Multi-zeta-functions
\C |

ceneralize the standard Riemann zeta-function for n

e The (', .. ,, provide a modular generalization of ((s;, -, s,)

leading 7 behavior of (', .. may be expressed as MZV.
MZV naturally enter into open string amplitudes
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alizations and Multi-zetd-values

» Generalized infinite families entering genus-one diagrams (but not all)

i) L iy
)
Dm0 00 I-I ( rrre— .;)
L |y 4 ng?,

(mp el (0.0)

» Multi-zeta-functions

Clogeeee,my) =
lfll"

lize the standard R !
e standard Riemann ze ta-tunction for

, Provide a modul

ar generalization of ((x,. .
2 behavior of ¢ ) |

', May be expressed as M2

naturally enter inta nn
'NL0 open string amplitudes
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| trines |
th massle FIngs for

M, produces non-analytic behavior in 5,1, u;

part Is unique only after non-analytic part has been specified

» Partition fundamental domain My at fixed lorge L [;

contributions in s ¢

» For compactifications on T, for ex

ample,

7 | rn<kL
Eprpilpa L) = qf din(ACy,, - bE, + E3r
=J My &

Parts nan-analytic at « ¢

a1 (] )

) cancel in com

: paring maduli 4 an
" produce well-defined :

and unique effe tive interac
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Genus-one coefficients of D?*“R* for w > 4

e Integration over moduli M, produces non-analytic behavior in 5.1, u;
branch cuts due to loops with massless strings for s, 1. u. l:
non-analytic parts may be isolated systematically
Analytic part is unique only after non-analytic part has been specified

e Partition fundamental domain M, at fixed large L > 1;

[. gives non-analytic contributions In s
[, gives analytic contributions in
e For compactifications on T?, for example,
I To< L
- y g 12\ T
Epsralpds L)= 5 / ’//H(A( 2,1,1 — HEy + 1‘--_>) I d,d,1(Pd|T)
< J My
parts non-analytic at s, t.u = 0 cancel in comparing moduli p,; and p/

"Differences” produce well-defined and unique effective interactions
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Genus-one coefficients of D?“R* for w > 4

e Integration over moduli M, produces non-analytic behavior in 5.7, u;

branch cuts due to loops with massless strings for s, t. u. l:
non-analytic parts may be isolated systematically
Analytic part is unique only after non-analytic part has been specified

e Partition fundamental domain M, at fixed large L > 1;
[. gives non-analytic contributions in s. 1

}f gives .ilk:l'-,"'

¢ contributions in

e For compactifications on T?, for example,

<]

. L[ - 2\ 1
Epsralpa. L) = 5 dpy(AC21,1 = 5Ey + E3) Taaa(palT)
< J My
parts non-analytic at s, t.u = 0 cancel in comparing moduli p,; and p/

"Differences” produce well-defined and unique effective interactions
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Summary and outlook

e Low energy expansion of string theory has revealed a rich structure of

non-holomorphic Kronecker-Eisenstein series on genus-one Riemann surfaces
Zhang-Kawazumi modular invariant on genus-two Riemann surface:
differential and algebraic interrelations

concrete analytic evaluation of local effective interactions beyond BPS

e Extensions at genus-one

Understand general interrelations of Kronecker-Eisenstein series beyond (', .

Identify structure of the ring of all such non-holomorphic modular forms

Equations obeyed by entire string integrand 7

e Extensions at genus-two

Lifts to toroidal compactifications
Differential relations obeyed by higher order generalizations

of /h.ar‘.;-__; Kawazumi invariants

e Significance for number theory ?
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Summary and outlook

e Low energy expansion of string theory has revealed a rich structure of

non-holomorphic Kronecker-Eisenstein series on genus-one Riemann surfaces

Zhang-Kawazumi modular invariant on genus-two Riemann surfaces
differential and algebraic interrelations
concrete analytic evaluation of local effective interactions beyond BPS

e Extensions at genus-one

Understand general interrelations of Kronecker-Eisenstein series beyond ('
Identify structure of the ring of all such non-holomorphic modular forms

P

Equations obeyed by entire string integrand

e Extensions at genus-two

Lifts to toroidal compactifications
Differential relations obeyed by higher order generalizations

of Zhang-Kawazumi invariants

e Significance for number theory ?

|
.0,

Page 42/42



