Title: Modular structure of Type IIB superstrings in the low energy expansion

Date: Apr 22, 2015 11:00 AM

URL: http://pirsa.org/15040168

Abstract:

Pirsa: 15040168

Expansions of Type IIB Superstring Theory

- Superstring Perturbation Theory in powers of g_s
 - holds for weak coupling g_s
 - but for all energies
- Classical supergravity R
 - leading low energy expansion of string theory
 - holds for all couplings g_s
- String induced effective interactions \mathcal{R}^4 , $D^4\mathcal{R}^4$, $D^6\mathcal{R}^4$
 - Evaluated in perturbation theory for $g_s \ll 1$
 - Conjectured for all couplings via S-duality, supersmmetry and M-theory

Pirsa: 15040168 Page 2/42

Modular structure of the Type IIB superstring in the low energy expansion

D-instantons and Eisenstein series

• Full \mathbb{R}^4 effective interaction conjectured from D-instanton [Green Gutperle 1997]

$$(T_2)^{\frac{1}{2}} E_{\frac{3}{2}}(T) \mathcal{R}^4$$
 $T = T_1 + iT_2$ $T_2 = \frac{1}{g_s}$

• The "non-holomorphic" Eisenstein series is defined by,

$$E_s(T) = \sum_{(m,n)\neq(0,0)} \frac{(T_2)^s}{\pi^s |mT + n|^{2s}}$$

- Modular invariant under S-duality group $SL(2,\mathbb{Z})$ of Type IIB;
- satisfies a Laplace-eigenvalue equation,

Eric D'Hoker

$$\Delta E_s = s(s-1)E_s$$
 $\Delta = 4T_2^2 \partial_T \partial_{\bar{T}}$

– and admits the following asymptotics near the cusp $T_2 \to \infty$,

$$E_s(T,\bar{T}) = \frac{2\zeta(2s)}{\pi^s} T_2^s + \frac{2\Gamma(s-\frac{1}{2})\zeta(2s-1)}{\Gamma(s)\pi^{s-\frac{1}{2}}} T_2^{1-s} + \mathcal{O}(e^{-2\pi T_2})$$

- Perturbative contributions to \mathcal{R}^4 arise from genus 0 and 1 **only**.

Pirsa: 15040168

Supersymmetry and S-duality

- Laplace-eigenvalue eq from space-time supersymmetry [Green, Sethi, 1998]
 - Eisenstein series = unique modular solution with polynomial growth at cusp
- Predicts vanishing contributions for high enough loop order,

$$\begin{array}{lll} {\cal R}^4 & & 1/2 \; {\rm BPS} & & h \geq 2 & & E_{\frac{3}{2}} \\ & & & \\ D^4 {\cal R}^4 & & 1/4 \; {\rm BPS} & & h \geq 3 & & E_{\frac{5}{2}} \\ & & & \\ D^6 {\cal R}^4 & & 1/8 \; {\rm BPS} & & h \geq 4 & & (\Delta - 12) {\cal E}_{D^6 {\cal R}^4} = (E_{\frac{3}{2}})^2 \end{array}$$

[Green, Gutperle, Vanhove 1997; Green, Vanhove 2005]

• Predicts relations between non-vanishing contributions (e.g. with tree-level),

$$\mathcal{R}^4$$
 $h=1$ [Green, Gutperle 1997]

 $D^4\mathcal{R}^4$ $h=2$ [ED, Gutperle, Phong 2005]

 $D^6\mathcal{R}^4$ $h=2$ [ED, Green, Pioline, Russo 2014]

 $h=3$ [Gomez, Mafra 2013]

Pirsa: 15040168 Page 6/42

Pirsa: 15040168

Pirsa: 15040168 Page 8/42

The effective interaction $D^6\mathcal{R}^4$ at genus-two

• Start with Type II four-graviton amplitude at genus 2, [ED, Phong 2005]

$$\mathcal{A}^{(2)} = \frac{\pi}{64} \kappa^2 \mathcal{R}^4 \int_{\mathcal{M}_2} d\mu_2 \, \mathcal{B}^{(2)}(s, t, u | \Omega)$$

$$\mathcal{B}^{(2)} = \int_{\Sigma^4} \mathcal{Y} \wedge \bar{\mathcal{Y}} \exp \sum_{i < j} s_{ij} G(i, j)$$

- \mathcal{M}_2 is the moduli space with Siegel volume form $d\mu_2$;
- -G(i,j) is the scalar Green function;
- $-\mathcal{Y}=(s-t)\Delta(1,3)\wedge\Delta(4,2)+2$ permutations;
- $-\Delta(i,j)$ is a holomorphic $(1,0)_i \otimes (1,0)_j$ form independent of s,t,u.
- Contributions produced to local effective interactions
 - $-\mathcal{R}^4$: zero, since \mathcal{Y} vanishes for s=t=u=0;
 - $-D^4\mathcal{R}^4$: non-zero, $\mathcal{B}^{(2)}$ constant on \mathcal{M}_2 ;
 - $-D^6\mathcal{R}^4$: non-zero, one power of G brought down in integral over Σ^4 ;

$$\mathcal{B}^{(2)} = 32(s^2 + t^2 + u^2) + 192 \, stu \, \varphi(\Omega) + \mathcal{O}(s^4, \dots, u^4)$$

 $-\varphi(\Omega)$ coincides with the Zhang -Kawazumi invariant [ED, Green 2013].

Pirsa: 15040168 Page 9/42

The effective interaction $D^6\mathcal{R}^4$ at genus-two

• Start with Type II four-graviton amplitude at genus 2, [ED, Phong 2005]

$$\mathcal{A}^{(2)} = \frac{\pi}{64} \kappa^2 \mathcal{R}^4 \int_{\mathcal{M}_2} d\mu_2 \, \mathcal{B}^{(2)}(s, t, u | \Omega)$$

$$\mathcal{B}^{(2)} = \int_{\Sigma^4} \mathcal{Y} \wedge \bar{\mathcal{Y}} \exp \sum_{i < j} s_{ij} G(i, j)$$

- \mathcal{M}_2 is the moduli space with Siegel volume form $d\mu_2$;
- -G(i,j) is the scalar Green function;
- $-\mathcal{Y}=(s-t)\Delta(1,3)\wedge\Delta(4,2)+2$ permutations;
- $-\Delta(i,j)$ is a holomorphic $(1,0)_i \otimes (1,0)_j$ form independent of s,t,u.
- Contributions produced to local effective interactions
 - $-\mathcal{R}^4$: zero, since \mathcal{Y} vanishes for s=t=u=0;
 - $-D^4\mathcal{R}^4$: non-zero, $\mathcal{B}^{(2)}$ constant on \mathcal{M}_2 ;
 - $-D^6\mathcal{R}^4$: non-zero, one power of G brought down in integral over Σ^4 ;

$$\mathcal{B}^{(2)} = 32(s^2 + t^2 + u^2) + 192 \, stu \, \varphi(\Omega) + \mathcal{O}(s^4, \dots, u^4)$$

 $-\varphi(\Omega)$ coincides with the Zhang -Kawazumi invariant [ED, Green 2013].

Pirsa: 15040168 Page 10/42

The effective interaction $D^6\mathcal{R}^4$ at genus-two

• Start with Type II four-graviton amplitude at genus 2, [ED, Phong 2005]

$$\mathcal{A}^{(2)} = \frac{\pi}{64} \kappa^2 \mathcal{R}^4 \int_{\mathcal{M}_2} d\mu_2 \, \mathcal{B}^{(2)}(s, t, u | \Omega)$$

$$\mathcal{B}^{(2)} = \int_{\Sigma^4} \mathcal{Y} \wedge \bar{\mathcal{Y}} \exp \sum_{i < j} s_{ij} G(i, j)$$

- \mathcal{M}_2 is the moduli space with Siegel volume form $d\mu_2$;
- -G(i,j) is the scalar Green function;
- $-\mathcal{Y} = (s-t)\Delta(1,3) \wedge \Delta(4,2) + 2$ permutations;
- $-\Delta(i,j)$ is a holomorphic $(1,0)_i\otimes(1,0)_j$ form independent of s,t,u.
- Contributions produced to local effective interactions
 - $-\mathcal{R}^4$: zero, since \mathcal{Y} vanishes for s=t=u=0;
 - $-D^4\mathcal{R}^4$: non-zero, $\mathcal{B}^{(2)}$ constant on \mathcal{M}_2 ;
 - $-D^6\mathcal{R}^4$: non-zero, one power of G brought down in integral over Σ^4 ;

$$\mathcal{B}^{(2)} = 32(s^2 + t^2 + u^2) + 192 \, stu \, \varphi(\Omega) + \mathcal{O}(s^4, \dots, u^4)$$

 $-\varphi(\Omega)$ coincides with the Zhang -Kawazumi invariant [ED, Green 2013].

Pirsa: 15040168 Page 11/42

Modular structure of the Type IIB superstring in the low energy expansion

Eric D'Hoker

The Zhang-Kawazumi invariant for genus-two

- Definition of the ZK-invariant
 - Let A_I, B_I be canonical homology basis for $H_1(\Sigma, \mathbb{Z})$,
 - $-\omega_I$ dual holomorphic (1,0) forms normalized via,

$$\oint_{A_I} \omega_J = \delta_{IJ} \qquad \oint_{B_I} \omega_J = \Omega_{IJ} = X_{IJ} + iY_{IJ}$$

then the ZK-invariant takes the following form,

$$8\varphi(\Omega) = \sum_{I,J,K,L} \left(Y_{IJ}^{-1} Y_{KL}^{-1} - 2 Y_{IL}^{-1} Y_{JK}^{-1} \right) \int_{\Sigma^2} G(x,y) \omega_I(x) \overline{\omega_J(x)} \omega_K(y) \overline{\omega_L(y)}$$

- invariant under the modular group $Sp(4,\mathbb{Z})$
- equivalent to definition via Arakelov geometry [Zhang 2007, Kawazumi 2008]
- related to the genus-two Faltings invariant [De Jong 2010]
- Direct evaluation of $\int_{\mathcal{M}_2} d\mu_2 \, \varphi(\Omega)$ appeared out of reach ... until ...

Pirsa: 15040168 Page 12/42

Evidence

• Initial indications from $D^6\mathcal{R}^4$ interaction for compactification on \mathbb{T}^d ,

$$\mathcal{E}_{D^6\mathcal{R}^4}^{(2)} = \pi \int_{\mathcal{M}_2} d\mu_2 \, \varphi(\Omega) \, \Gamma_{d,d,2}(\rho_d | \Omega)$$

- $\Gamma_{d,d,2}$ is the torus partition function
 - \star dependent on $\rho_d = G + B \in SO(d, d, \mathbb{R})/SO(d, \mathbb{R}) \times SO(d, \mathbb{R})$
 - * satisfies $(2\Delta \Delta_{SO(d,d)} + 3d d^2) \Gamma_{d,d,2} = 0$;
- Susy & duality conjectured relation with genus-one $\mathcal{E}_{\mathcal{R}^4}^{(1)}$ (for $d \neq 2$)

$$\left(\Delta_{SO(d,d)} - (d+2)(5-d)\right)\mathcal{E}_{D^6\mathcal{R}^4}^{(2)} = -\left(\mathcal{E}_{\mathcal{R}^4}^{(1)}\right)^2$$

- Elimination of $\Delta_{SO(d,d)}$ gives,

$$\int_{\mathcal{M}_2} d\mu_2 \, \varphi(\Omega)(\Delta - 5) \Gamma_{d,d,2}(\rho_d, \Omega) = -\frac{\pi}{2} \bigg(\int_{\mathcal{M}_1} d\mu_1 \Gamma_{d,d,1}(\rho, \tau) \bigg)^2$$

integration by parts, and notice no d-dependence in eigenvalue!

• Further evidence from asymptotics of φ [via De Jong 2012, Wentworth 1991]

Pirsa: 15040168

Proof via deformations of complex structures

- Laplacian Δ on genus-two moduli space \mathcal{M}_2
 - = Laplace-Beltrami operator for the Siegel metric on upper half space
 - In terms of the period matrix $\Omega_{IJ} = X_{IJ} + iY_{IJ}$, with I, J = 1, 2

$$\Delta = \sum_{I < J} \sum_{K < L} Y_{IK} Y_{JL} \frac{\partial}{\partial \bar{\Omega}_{IJ}} \frac{\partial}{\partial \Omega_{KL}}$$

ullet Variations in Ω_{IJ} result from variation by Beltrami differential μ

$$\delta_{\mu}\phi = \frac{1}{2\pi} \int_{\Sigma} d^2w \, \mu_{\bar{w}}^{\ w} \, \delta_{ww}\phi$$

- $\delta_{ww}\phi$ is obtained by variation of $\bar{\partial}$ or insertion of the stress tensor T_{ww}

$$\delta_{ww}\Omega_{IJ} = 2\pi i \,\omega_I(w)\omega_J(w)
\delta_{ww}\omega_I(x) = \omega_I(w)\partial_x\partial_w \ln E(x,w)
\delta_{ww}G(x,y) = -\partial_w G(w,x)\partial_w G(w,y) + \cdots$$

- Careful calculation of mixed derivatives proves $(\Delta 5)\varphi = 0$ inside \mathcal{M}_2
 - contribution from separating node results from asymptotics of φ

[ED, Green, Pioline, R. Russo 2014]

Proof via deformations of complex structures

- Laplacian Δ on genus-two moduli space \mathcal{M}_2
 - = Laplace-Beltrami operator for the Siegel metric on upper half space
 - In terms of the period matrix $\Omega_{IJ} = X_{IJ} + iY_{IJ}$, with I, J = 1, 2

$$\Delta = \sum_{I \le J} \sum_{K \le L} Y_{IK} Y_{JL} \frac{\partial}{\partial \bar{\Omega}_{IJ}} \frac{\partial}{\partial \Omega_{KL}}$$

ullet Variations in Ω_{IJ} result from variation by Beltrami differential μ

$$\delta_{\mu}\phi = \frac{1}{2\pi} \int_{\Sigma} d^2w \, \mu_{\bar{w}}^{\ w} \, \delta_{ww}\phi$$

- $\delta_{ww}\phi$ is obtained by variation of $\bar{\partial}$ or insertion of the stress tensor T_{ww}

$$\delta_{ww}\Omega_{IJ} = 2\pi i \,\omega_I(w)\omega_J(w)
\delta_{ww}\omega_I(x) = \omega_I(w)\partial_x\partial_w \ln E(x,w)
\delta_{ww}G(x,y) = -\partial_w G(w,x)\partial_w G(w,y) + \cdots$$

- Careful calculation of mixed derivatives proves $(\Delta 5)\varphi = 0$ inside \mathcal{M}_2
 - contribution from separating node results from asymptotics of φ

[ED, Green, Pioline, R. Russo 2014]

Pirsa: 15040168 Page 16/42

Generalizations of KZ-invariant

- The KZ-invariant exists for all genera $h \ge 2$ [Zhang 2007, Kawazumi 2008]
 - but does not satisfy a simple Laplace-eigenvalue equation for $h \geq 3$;
 - most likely is not the correct object for string theory at $h \geq 3$.
- But the *integrands* on \mathcal{M}_2 for the coefficients of $D^8\mathcal{R}^4$, $D^{10}\mathcal{R}^4$, \cdots
 - do naturally emerge from string theory;
 - are modular invariants which generalize ZK;
 - satisfy more complicated Laplace-type equations
 [ED, Green, Vanhove] ... in progress ...
- The corresponding genus-one problem remains to be explored · · ·

Pirsa: 15040168 Page 17/42

Pirsa: 15040168 Page 18/42

Worldsheet Feynman diagrams

- ullet Expansion in powers of s_{ij} organized in "worldsheet Feynman diagrams"
 - Each integration point z_i on Σ is represented by a vertex;
 - Each Green function $G(z_i z_j | \tau)$ by a line —— between z_i and z_j ;
 - Diagrams with a single G ending in a point vanish by $\int_{\Sigma} d^2z \, G(z| au) = 0$
 - A diagram with w lines of G, \star has weight w; \star contributes to $D^{2w}\mathcal{R}^4$.

Pirsa: 15040168 Page 19/42

Pirsa: 15040168 Page 20/42

Pirsa: 15040168 Page 21/42

Kronecker-Eisenstein series

- One-loop worldsheet Feynman diagrams generate Eisenstein series.
 - for example to order $s^2 + t^2 + u^2$

$$\int_{\Sigma} \frac{d^2 z}{\tau_2} G(z|\tau)^2 = \sum_{(m,n)\neq(0,0)} \frac{\tau_2^2}{\pi^2 |m\tau + n|^4} = E_2(\tau)$$

• Two-loop Feynman diagrams generate "Kronecker-Eisenstein series".

$$C_{a_1,a_2,a_3}(\tau) = \sum_{(m_r,n_r) \neq (0,0)} \delta_{m,0} \, \delta_{n,0} \prod_{r=1}^3 \left(\frac{\tau_2}{\pi |m_r \tau + n_r|^2} \right)^{a_r}$$

- The total worldsheet momenta $m=m_1+m_2+m_3$, $n=n_1+n_2+n_3$ vanish;
- the weight is $w = a_1 + a_2 + a_3$;
- For our diagrams we have $a_r \geq 1$ and the sums converge;
- $-C_{a_1,a_2,a_3}(\tau)$ is a modular function under $SL(2,\mathbb{Z})$.

Modular structure of the Type IIB superstring in the low energy expansion

Examples at low weight w

We find inhomogeneous Laplace-eigenvalue equations,

$$w = 3$$

$$w=3$$
 $C_{1,1,1}=$

$$\Delta C_{1,1,1} = 6E_3$$

- Use
$$\Delta E_3 = 6E_3$$
 to get $\Delta (C_{1,1,1} - E_3) = 0$;

- constant determined from asymptotics $C_{1,1,1} = E_3 + \zeta(3)$

(obtained earlier by Zagier using direct calculation of sums)

$$w = 4$$

$$w = 4 C_{2,1,1} =$$

$$(\Delta - 2)C_{2,1,1} = 9E_4 - E_2^2$$

$$w = 5$$

$$w = 5 C_{3,1,1} =$$

$$(\Delta - 6)C_{3,1,1} = 3C_{2,2,1} + 16E_5 - 4E_2E_3$$

$$w = 5$$

$$w = 5 C_{2,2,1} =$$

$$\Delta C_{2,2,1} = 8E_5$$

- Note eigenvalues of the form s(s-1) for s=1,2,3;

Modular structure of the Type IIB superstring in the low energy expansion

Examples at low weight w

We find inhomogeneous Laplace-eigenvalue equations,

$$w = 3$$
 $C_{1,1,1} = \bullet \bullet \bullet$

- Use
$$\Delta E_3 = 6E_3$$
 to get $\Delta (C_{1,1,1} - E_3) = 0$;

- constant determined from asymptotics $C_{1,1,1} = E_3 + \zeta(3)$

(obtained earlier by Zagier using direct calculation of sums)

$$w = 4$$

$$w = 4 C_{2,1,1} =$$

$$(\Delta - 2)C_{2,1,1} = 9E_4 - E_2^2$$

 $\Delta C_{1,1,1} = 6E_3$

$$w = 5$$

$$w = 5 C_{3,1,1} =$$

$$(\Delta - 6)C_{3,1,1} = 3C_{2,2,1} + 16E_5 - 4E_2E_3$$

$$w = 5$$

$$w = 5 C_{2,2,1} =$$

$$\Delta C_{2,2,1} = 8E_5$$

- Note eigenvalues of the form s(s-1) for s=1,2,3;

Modular structure of the Type IIB superstring in the low energy expansion

Structure Theorem for $C_{a,b,c}$ modular functions

ullet $C_{a,b,c}(au)$ are linear combinations of modular functions $\mathfrak{C}_{w;s;\mathfrak{p}}(au)$ which satisfy

$$(\Delta - s(s-1))\mathfrak{C}_{w;s;\mathfrak{p}} = \mathfrak{F}_{w;s;\mathfrak{p}}(E_{s'},\zeta(s''))$$

- an inhomogeneous eigenvalue equation of weight w = a + b + c;
- $-\mathfrak{F}$ is a polynomial of degree 2 in $E_{s'}$ with $2 \leq s' \leq w$;
- depends on $\zeta(s'')$ for s'' an odd integer $3 \le s'' \le w$;

$$s = w - 2\mathfrak{m}$$
 $\mathfrak{m} = 1, \dots, \left[\frac{w-1}{2}\right]$ $\mathfrak{p} = 0, \dots, \left[\frac{s-1}{3}\right]$

Examples at low weight

$$w = 3$$
 $s = 1$ $0^{(1)}$
 $w = 4$ $s = 2$ $2^{(1)}$
 $w = 5$ $s = 1, 3$ $0^{(1)} \oplus 6^{(1)}$
 $w = 6$ $s = 2, 4$ $2^{(1)} \oplus 12^{(2)}$
 $w = 7$ $s = 1, 3, 5$ $0^{(1)} \oplus 6^{(1)} \oplus 20^{(2)}$
 $w = 8$ $s = 2, 4, 6$ $2^{(1)} \oplus 12^{(2)} \oplus 30^{(2)}$

Modular structure of the Type IIB superstring in the low energy expansion

Eric D'Hoker

The generating function

There is a natural generating function,

$$\mathcal{W}(t_1, t_2, t_2 | \tau) = \sum_{a, b, c=1}^{\infty} t_1^{a-1} t_2^{b-1} t_3^{c-1} C_{a, b, c}(\tau)$$

Summing gives the sunset diagram for three scalars with masses $M_r^2=-t_r\tau_2$,

$$\mathcal{W}(t_1, t_2, t_2 | \tau) = \sum_{(m_r, n_r) \neq (0, 0)} \delta_{m, 0} \, \delta_{n, 0} \prod_{r=1}^{3} \left(\frac{\tau_2}{\pi |m_r \tau + n_r|^2 - t_r \tau_2} \right)$$

ullet Algebraic representation of Laplacian induces differential action on ${\mathcal W}$,

$$\Delta W - \mathfrak{L}^2 W = \mathfrak{R}$$

$$\mathfrak{D} = t_1 \partial_1 + t_2 \partial_2 + t_3 \partial_3$$

$$\mathfrak{L}^{2} = \mathfrak{D}^{2} + \mathfrak{D} + (t_{1}^{2} + t_{2}^{2} + t_{3}^{2} - 2t_{1}t_{2} - 2t_{2}t_{3} - 2t_{3}t_{1})(\partial_{1}\partial_{2} + \partial_{2}\partial_{3} + \partial_{3}\partial_{1})$$

 \mathfrak{R} = quadratic polynomial in the Eisenstein series E_s

Proof via generating function

- Permutations of (a, b, c) induces permutations of (t_1, t_2, t_3)
 - $-\mathfrak{S}_3$ adapted coordinates,

$$u = t_1 + t_2 + t_3 \qquad \varepsilon = e^{2\pi i/3}$$

$$v/\sqrt{2} = t_1 + \varepsilon t_2 + \varepsilon^2 t_3 \qquad (t_1, t_3, t_2)(u, v, \bar{v}) = (u, \bar{v}, v)$$

$$\bar{v}/\sqrt{2} = t_1 + \varepsilon^2 t_2 + \varepsilon t_3 \qquad (t_2, t_3, t_1)(u, v, \bar{v}) = (u, \varepsilon^2 v, \varepsilon \bar{v})$$

- $-\mathfrak{L}^2 = \mathfrak{L}_0^2 \mathfrak{L}_1^2 \mathfrak{L}_2^2$ Casimir of SO(1,2) generated by $\mathfrak{L}_0,\mathfrak{L}_1,\mathfrak{L}_2$;
- Simultaneously diagonalize the \mathfrak{S}_3 -invariant operators \mathfrak{D} , \mathfrak{L}_0^2 , and \mathfrak{L}^2

$$\mathfrak{D}\mathcal{W}_{w;s;\mathfrak{p}} = w\mathcal{W}_{w;s;\mathfrak{p}}$$

$$\mathfrak{D} = t_1\partial_1 + t_2\partial_2 + t_3\partial_3$$

$$\mathfrak{L}^2\mathcal{W}_{w;s;\mathfrak{p}} = s(s-1)\mathcal{W}_{w;s;\mathfrak{p}}$$

$$\mathfrak{L}^2 = -(u^2 - 2v\bar{v})(\partial_u^2 - 2\partial_v\partial_{\bar{v}})$$

$$\mathfrak{L}_0^2\mathcal{W}_{w;s;\mathfrak{p}} = -9\mathfrak{p}^2\mathcal{W}_{w;s;\mathfrak{p}}$$

$$\mathfrak{L}_0 = iv\partial_v - i\bar{v}\partial_{\bar{v}}$$

- $-\mathfrak{S}_3$ -invariance of eigenfunctions requires $\mathfrak p$ to be integer;
- which explains multiplicities [(s-1)/3].

⇒ constructive proof of Structure Theorem.

Pirsa: 15040168 Page 28/42

Conjectured relation for modular functions in $D^8\mathcal{R}^4$

• $D^8\mathcal{R}^4$ requires

- The modular function D_4 is <u>not</u> of the form $C_{a,b,c}$
- no useful algebraic representation of the Laplacian is available (yet ?)
- Tools: take an educated guess + check asymptotic behavior near cusp.
 - Relations for $C_{a,b,c}$ involved linear combinations for given weight;
 - Consider combinations of D_4 , $C_{2,1,1}$, E_4 , and E_2^2

$$(\Delta - 2)(D_4 + \alpha C_{2,1,1} + \beta E_2^2 + \gamma E_4)$$

• Inspection of asymptotics near the cusp $\tau_2 \to \infty$, leads us to conjecture,

$$D_4 = 24C_{2,1,1} + 3E_2^2 - 18E_4$$

- as an exact relation between modular functions and Feynman diagrams
- Additional support from direct numerical evaluation of the multiple sums.

Modular structure of the Type IIB superstring in the low energy expansion

Eric D'Hoker

Structure of the asymptotics near the cusp

• The expansion near the cusp $\tau_2 \to \infty$ takes the following form,

$$D_4(\tau) = \sum_{k,\bar{k}=0}^{\infty} \mathcal{D}_4^{(k,\bar{k})}(\pi \tau_2) \, q^k \bar{q}^{\bar{k}} \qquad q = e^{2\pi i \tau}$$

ullet We checked the following asymptotics (similarly for $C_{2,1,1}$, E_4,E_2^2)

$$\mathcal{D}_{4}^{(0,0)}(y) = \frac{y^4}{945} + \frac{2\zeta(3)y}{3} + \frac{10\zeta(5)}{y} - \frac{3\zeta(3)^2}{y^2} + \frac{9\zeta(7)}{4y^3}$$

$$\mathcal{D}_{4}^{(0,1)}(y) = \frac{4y^2}{15} + \frac{2y}{3} + 2 + \frac{4}{y} + \frac{12\zeta(3)}{y} - \frac{6\zeta(3)}{y^2} + \frac{9}{2y^2} + \frac{9}{4y^3}$$

$$\mathcal{D}_{4}^{(1,0)}(y) = \mathcal{D}_{4}^{(0,1)}(y)$$

Pirsa: 15040168

Modular structure of the Type IIB superstring in the low energy expansion

Eric D'Hoker

How could the conjecture fail?

- Consider the difference $F = D_4 24C_{2,1,1} 3E_2^2 + 18E_4$
 - the conjecture states ${\cal F}=0$
- If the conjecture were to fail, then $F \neq 0$ and its properties are,
 - modular function under $SL(2,\mathbb{Z})$;
 - its pure power part in the expansion near the cusp vanishes; $\implies F$ is a *cuspidal function*
 - Vanishing of leading exponential restricts it further.

Pirsa: 15040168 Page 31/42

Progress towards a full proof

ullet Inspired by a calculation of Zagier for C_{111} , we first perform n-sums

$$D_4(\tau) = \sum_{(m_r, n_r) \neq (0, 0)} \delta_{m, 0} \, \delta_{n, 0} \prod_{r=1}^4 \frac{\tau_2}{\pi |m_r \tau + n_r|^2}$$

- partition sum according to the number of vanishing m_r ;
- solve for n_4 ; decompose in partial fractions in n_3 ; sum over n_3 ,
- for $m_3 \neq 0$, sum using the formula (and its derivatives in z)

$$\sum_{n_3 \in \mathbb{Z}} \frac{1}{z + n_3} = -i\pi \, \frac{1 + e^{2\pi i z}}{1 - e^{2\pi i z}}$$

• Explicit calculation (using MAPLE) shows the following structure

$$D_4(\tau) = \sum_{k=-3}^{4} (\tau_2)^k \, \mathfrak{D}_4^{(k)}(q, \bar{q}) \qquad q = e^{2\pi i \tau}$$

- where $\mathfrak{D}_4^{(k)}(q,\bar{q})$ is an analytic function of q,\bar{q} near the cusp
- similar expansions for C_{211}, E_2^2, E_4 with the same range for k.
- Conjecture proven for k = -3, 1, 2, 3, 4;
 - ... in progress for remaining values ...

Pirsa: 15040168 Page 33/42

Pirsa: 15040168 Page 34/42

Pirsa: 15040168 Page 35/42

Generalizations and Multi-zeta-values

• Generalized infinite families entering genus-one diagrams (but not all)

$$C_{a_1,\dots,a_{\rho}}(\tau) = \sum_{(m_r,n_r)\neq(0,0)} \delta_{m,0} \, \delta_{n,0} \prod_{r=1}^{\rho} \left(\frac{\tau_2}{|m_r\tau + n_r|^2} \right)^{a_r}$$

- for integers $a_r \geq 1$ enter diagrams of weight $w = a_1 + \cdots + a_{\rho}$
- Multi-zeta-functions

$$\zeta(s_1, \dots, s_n) = \sum_{m_1 > \dots > m_n \ge 1} \frac{1}{m_1^{s_1} \cdots m_n^{s_n}}$$

- generalize the standard Riemann zeta-function for n=1
- ullet The $C_{a_1,\cdots,a_{
 ho}}$ provide a modular generalization of $\zeta(s_1,\cdots,s_n)$
 - leading τ_2 behavior of $C_{a_1,\dots,a_{\rho}}$ may be expressed as MZV.
 - MZV naturally enter into open string amplitudes (see Schlotterer's talk)

Pirsa: 15040168

Pirsa: 15040168 Page 37/42

Pirsa: 15040168 Page 38/42

Genus-one coefficients of $D^{2w}\mathcal{R}^4$ for $w \geq 4$

- Integration over moduli \mathcal{M}_1 produces non-analytic behavior in s, t, u;
 - branch cuts due to loops with massless strings for $s, t, u, \ll 1$;
 - non-analytic parts may be isolated systematically,
 [ED, Phong 1993; Green, Russo, Vanhove 2008]
 - Analytic part is unique only after non-analytic part has been specified.
- Partition fundamental domain \mathcal{M}_1 at fixed large $L \gg 1$; [Maass; Selberg]
 - $-\tau_2 > L$ gives non-analytic contributions in s, t, u;
 - $-\tau_2 < L$ gives analytic contributions in s, t, u;
- For compactifications on \mathbb{T}^d , for example,

$$\mathcal{E}_{D^8\mathcal{R}^4}(\rho_d, L) = \frac{1}{2} \int_{\mathcal{M}_1}^{\tau_2 < L} d\mu_1 \left(\Delta C_{2,1,1} - 5E_4 + E_2^2 \right) \Gamma_{d,d,1}(\rho_d | \tau)$$

- parts non-analytic at s, t, u = 0 cancel in comparing moduli ρ_d and ρ'_d ;
- "Differences" produce well-defined and unique effective interactions.

Pirsa: 15040168 Page 39/42

Genus-one coefficients of $D^{2w}\mathcal{R}^4$ for $w \geq 4$

- Integration over moduli \mathcal{M}_1 produces non-analytic behavior in s, t, u;
 - branch cuts due to loops with massless strings for $s, t, u, \ll 1$;
 - non-analytic parts may be isolated systematically,
 [ED, Phong 1993; Green, Russo, Vanhove 2008]
 - Analytic part is unique only after non-analytic part has been specified.
- Partition fundamental domain \mathcal{M}_1 at fixed large $L \gg 1$; [Maass; Selberg]
 - $-\tau_2 > L$ gives non-analytic contributions in s, t, u;
 - $-\tau_2 < L$ gives analytic contributions in s, t, u;
- For compactifications on \mathbb{T}^d , for example,

$$\mathcal{E}_{D^8\mathcal{R}^4}(\rho_d, L) = \frac{1}{2} \int_{\mathcal{M}_1}^{\tau_2 < L} d\mu_1 \left(\Delta C_{2,1,1} - 5E_4 + E_2^2 \right) \Gamma_{d,d,1}(\rho_d | \tau)$$

- parts non-analytic at s, t, u = 0 cancel in comparing moduli ρ_d and ρ'_d ;
- "Differences" produce well-defined and unique effective interactions.

Pirsa: 15040168 Page 40/42

Summary and outlook

- Low energy expansion of string theory has revealed a rich structure of
 - non-holomorphic Kronecker-Eisenstein series on genus-one Riemann surfaces;
 - Zhang-Kawazumi modular invariant on genus-two Riemann surfaces;
 - differential and algebraic interrelations;
 - concrete analytic evaluation of local effective interactions beyond BPS.
- Extensions at genus-one
 - Understand general interrelations of Kronecker-Eisenstein series beyond $C_{a,b,c}$
 - Identify structure of the ring of all such non-holomorphic modular forms.
 - Equations obeyed by entire string integrand ? [ED, Green] ... in progress ...
- Extensions at genus-two
 - Lifts to toroidal compactifications [Pioline 2015]
 - Differential relations obeyed by higher order generalizations
 of Zhang-Kawazumi invariants [ED, Green, Vanhove] ... in progress ...
- Significance for number theory ?

Pirsa: 15040168 Page 41/42

Summary and outlook

- Low energy expansion of string theory has revealed a rich structure of
 - non-holomorphic Kronecker-Eisenstein series on genus-one Riemann surfaces;
 - Zhang-Kawazumi modular invariant on genus-two Riemann surfaces;
 - differential and algebraic interrelations;
 - concrete analytic evaluation of local effective interactions beyond BPS.
- Extensions at genus-one
 - Understand general interrelations of Kronecker-Eisenstein series beyond $C_{a,b,c}$
 - Identify structure of the ring of all such non-holomorphic modular forms.
 - Equations obeyed by entire string integrand ? [ED, Green] ... in progress ...
- Extensions at genus-two
 - Lifts to toroidal compactifications [Pioline 2015]
 - Differential relations obeyed by higher order generalizations
 of Zhang-Kawazumi invariants [ED, Green, Vanhove] ... in progress ...
- Significance for number theory ?

Pirsa: 15040168 Page 42/42