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Abstract: <p>It has become a platitute to say that black holes are fascinating objects&€” but they really are, in part because they chalenge our
understanding of the fundamental reversibility of physical processes.</p>

<p>In the first part of the talk, | will review some of the classica ways black holes behave as dissipative systems, such as the "hair 10Ss&€.
phenomenon and the monotonic growth of horizon area. In the second part, | will explain how quantum mechanics (more precisely, the coupling of
black holes to the quantum vacuum) affects the classical picture at late times, notably through particle creation and evaporation. | will argue that
techniques from two-dimensional field theory can help bring clarity to the associated &oanformation |0ss&€e</p>

<p>problem, and perhaps also point to new, unexpected predictions. My approach will be as model-independent as possible; that is, rather than

investigating a particular scenario for black hole evaporation, |1 will aim to derive generic consequences from basic assumptions regarding the
reversibility of black hole evaporation.</p>
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THIS IS A BLACK HOLE

THORNE ET AL. 15

“[Black holes] are the most perfect macroscopic objects in the universe: the
only elements in their construction are our concepts of space and time.”

Chandrasekhar
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A SPACE ODDITY
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can go in, cannot come out

RIAZUELO 14

hole is black, but see images of the entire sky near it

a trip near a black hole is a trip to the future
At, = (1 —ry/r)Y/2 At
black hole are small outside, large inside
V(t) ~ 3vV3M?t

CHRISTODOULOU, ROVELLI 15
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THE REVERSIBILITY PRINCIPLE

“Everything that can be done, can be undone*.”

*in principle, if not in practice
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1. CLASSICAL IRREVERSIBILITY

|
Ru.b — §R.(]u.b — HT‘(:.()
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"BLACK HOLES HAVE NO HAIR"

NO HAIR THEOREM:
STATIONARY BLACK HOLES HAVE ONLY 2 PARAMETERS: M AND J*

This means that all stationary black holes can be described
exactly, with no approximation: they are indeed “perfect”.

time runs slow |

Event horizon | must rotate

Ergosphere

must fall in

* outside, not inside

Pirsa: 15040140

Page 16/64




"BLACK HOLES HAVE NO HAIR"

NO HAIR THEOREM:
STATIONARY BLACK HOLES HAVE ONLY 2 PARAMETERS: M AND J*

This means that all stationary black holes can be described
exactly, with no approximation: they are indeed “perfect”.

time runs slow |

Event horizon _ must rotate

Ergosphere

must fall in

* outside, not inside

Pirsa: 15040140

Page 17/64




"BLACK HOLES HAVE NO HAIR"

NO HAIR THEOREM:
STATIONARY BLACK HOLES HAVE ONLY 2 PARAMETERS: M AND J*

This means that all stationary black holes can be described
exactly, with no approximation: they are indeed “perfect”.

time runs slow ‘

Event horizon | must rotate

Ergosphere

must fall in

* outside, not inside

Pirsa: 15040140

Page 18/64




"BLACK HOLES HAVE NO HAIR"

NO HAIR THEOREM:
STATIONARY BLACK HOLES HAVE ONLY 2 PARAMETERS: M AND J*

This means that all stationary black holes can be described
exactly, with no approximation: they are indeed “perfect”.

time runs slow ‘

Event horizon must rotate

Ergosphere

must fall in

* outside, not inside

Pirsa: 15040140

Page 19/64




BLACK HOLE BALDING - oLD INSIGHTS

PRICE'S LAW:
WHATEVER CAN BE RADIATED IS RADIATED*

©THORNE

“albeit slowly, i.e. with power law tails PRICE 72
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BLACK HOLE BALDING - NEW INSIGHTS

Turbulent balding

* parametric instability
i+t +w(t)z=0

* inverse energy cascade
small scales = large scales

Gravitational Reynolds number:

amplitude

ho
Re, =

mry

azimuthal frequency decay rate
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BLACK HOLE KICKS

Large recoil velocity (= 1% ¢) after merger:

e large spin orbit coupling

e focusing of gravitational waves

CID - 42

CAMPANELLI ET AL.
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BLACK HOLE TRANSFORMATIONS

AREA LAW:
THE AREA OF A BLACK HOLE NEVER DECREASES*

HAWKING 71

extremal limit
Two types of black hole

transformations:

e reversible if SA=0

Iso-area (= add/remove spin)

e irreversible if SA >0
M (= add mass)

A

when interacting with normal matter CHRISTODOULOU 70
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CLASSICAL IRREVERSIBILITY

massive star

Kerr family

Wi

.

neutron star binary

stellar cluster

<

black hole
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SINGULARITIES - OLD INSIGHTS

SINGULARITY THEOREM:
ALL BLACK HOLES CONTAIN SINGULARITIES*

PENROSE 65, HAWKING, PENROSE 70

An infalling observer will run into “trouble” in finite time.

The nature of this “trouble” is left unspecified.

*if the black hole contains normal matter
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SINGULARITIES - NEW INSIGHTS

Old idea: time and space end at the (spacelike)
singularity.

More careful computations suggest weak null

singularities:

* spacetime can be extended
continuously

* curvature blows up but not tidal

disruptions
* unpredictable other universe? ‘ ’

ISRAEL, POISSON 89;

2

DAFERMOS 13
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2. QUANTUM REVERSIBILITY?
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EXPONENTIAL REDSHIFT IN COLLAPSE

Red Supergiant
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EXPONENTIAL REDSHIFT IN COLLAPSE

irsa: 15040140 Page 35/64




EXPONENTIAL REDSHIFT IN COLLAPSE

Supernova
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THE HAWKING EFFECT - Palr crEATION

time dilation

>

classical

Hawking pair

quantum
particle number
particle number

0 2 4 6 8 ..
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TWO-MODE SQUEEZED VACUUM STATE

squeezing parameter

00
[V ap) o Z (tanh )" |n, n)

n=>_0

partial
trace

pPA X Z(ta,nh7')”|n><'n,|

n=_(

Higher squeezing, higher temperature.
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LETTER e e

dol 101008/ nature 10961
Observation of self-amplifying Hawking radiation

Observation of the dynamical Casimir effect in a in an analogue black-hole laser
superconducting circuit

|ed Selected for a Viewpoint in Physics e sadle
F oo . . ' . ' PR . (8 Chg g
PRL 105, 203901 (2010) PHYSICAL REVIEW LETTERS 12 NOVEMBER 2010

‘N
[ 4
Hawking Radiation from Ultrashort Laser Pulse Filaments

F. Belgiorno,' S. L. Cacciatori,”” M. Clerici,” V. Gorini,”” G. Ontenzi,* L. Rizzi,’
E. Rubino,’ V. G. Sala,’ and D. Faccio™

nonlinear optics

week ending

PRI l')"'(lll 302 (201 1) PHYSICAL REVIEW LETTERS 14 JANUARY 2011

‘(on
»
Measurement of Stimulated Hawking Emission in an Analogue System

Silke Weinfurtner,' Edmund W. Tedford,” Matthew C.J. Penrice," William G. Unruh,' and Gregory A. Lawrence’

hydrodynamics
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BLACK HOLE EVAPORATION

e Black hole excites radiation from the vacuum.

* The outgoing part of the flux is thermal:

he?

T =
= 8rGMkp

e Mass loss rate:

dﬁf'_ het

At 153607G2 M2

' ?
Final fate” HAWKING 74
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BLACK HOLE EVAPORATION
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EVAPORATION AND REVERSIBILITY

Quantum mechanics contradicts all classical lessons:
1. No hair: Hawking radiation is “hair”
2. Area law: area shrinks in time (“evaporation”)

3. Singularity. quantum repulsion may resolve it

Does quantum mechanics

restore reversibility?
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THE HAWKING EFFECT - ENTANGLEMENT

time dilation

classical

short-range N long-range
entanglement entanglement

=
)
4+
-
(©
-
O

(="quantum quench”)
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ENTANGLEMENT ENTROPY

In quantum mechanics, entanglement entropy is

Slpal = —tralpalnpa] with ps =trglpas]

with triangle inequality

1S[pal = Slpsl| < Slpan] < Slpa) + S|ps]

)

Ent. entropy

Subsystem size
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THE PAGE CURVE

Outstanding open conjecture in semiclassical gravity:

Page time?

thermal purification?

PAGE 93,13
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RADIATION ENTROPY . rhe 20 arproximation

Approximations of the field dynamics
1. neglect multipole moments [ > 0

2. neglect "backscattering”

yields the geometric formula:

gravitational redshift

renormalized entropy

_ 1 . w(t)
S(t) = —1
( ) 12 H W

HOLZHEY ET AL. 94, BIANCHI, MS 14
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FROM GEOMETRY TO ENTROPY

Direct probe of geometric vacuum deformations:

monotonic evaporation nonsingular hole

First computations of the Page curve.

BIANCHI, DE LORENZO, MS 14
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REVERSIBILITY: THREE QUESTIONS

ls the evaporation process:

, i.e. is purity of the vacuum preserved?

“information loss problem”

, i.e. is entanglement restored to its original value?

S(+o0) = 5(—00)?

(and conservative, i.e. do input and output energy match?)
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ls the evaporation process:

1. , i.e. is purity of the vacuum preserved?
“information loss problem”
, i.e. is entanglement restored to its original value?
S(+o0) = 5(—00)?

(and conservative, i.e. do input and output energy match?)

More importantly: what

difference would it make?
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RADIATION ENTROPY

vacuum thermal

subsystem A = asymptotic
radiation until time t
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FROM GEOMETRY TO ENTROPY

Direct probe of geometric vacuum deformations:

monotonic evaporation nonsingular hole

First computations of the Page curve.
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IT FROM BlT - AND THE GENERALIZED SECOND LAW

spacetime quantum field

Entropy-flux identity:

onEF =652+ S

BIANCHI, MS 14
Generalizes the "generalized second law":

* includes a non-adiabatic term (hence identity)
» does not require special causal structure (event horizon)

e implies the GSL in spherical symmetry

BEKENSTEIN 74
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|T FROM BIT - CONSEQUENCES OF CYCLICITY

onF = 6S%+ S

If evaporation is cyclic, then
1. the black hole must "gasp”:  F(tpage) < 0

3. purification must be slow:
initial mass  mass at the end

of thermal phase
(Mg — M7)?
A['I ’H),“IZ)

Tp > &

BIANCHI, MS 14
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CONCLUSION: A TALE OF TWO THEORIES

Classical relativity suggests black holes break reversibility.

Quantum effects may resolve this, by enforcing

unitarity? cyclicity?

2d field theory helps us imagine what this might mean physically:

* black hole gasping

&,
* slow purification
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FOR MORE DETAILS

International Loop Quantum Gravity Seminar (Mar. 15)
References:
Bianchi, MS, PRD 90 (4), 041904(R) (2014)
Bianchi, de Lorenzo, MS, arXiv: 1409.0144

Bianchi, MS, GRG 46, 1809 (2014)

777621% youl !
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