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Abstract: <p>The gauge/gravity enables us to learn about quantum gravity by solving gauge theory. This is not an easy task, of course, and hence
numerical techniques should play important roles. So far, properties of super Yang-Mills theories with Euclidean signature, such as the
thermodynamic properties, have been studied by using Monte Carlo methods, and good agreement with the dual gravity prediction has been
observed, including stringy corrections, both alpha prime and and g_s. Still, the real-time properties are not well understood.<br>

<br>

As amodest first step for the real-time study, we consider classical dynamics of the Banks-Fischler-Shenker-Susskind (BFSS) matrix model, which
is expected to describe a highly stringy black hole in type IIA superstring theory. It turns out that this classical model has rather rich structure --
qualitative features of the thermalization of a black hole, the fast scrambling proposed by Sekino and Susskind, and a symptom of the evaporation.
By taking into account a part of the quantum effect, we give a classical matrix model which can mimic the formation and evaporation of a black
hole. We also argue that a ssmilar calculation could be done for classical Yang-Mills theories with nonzero spatial dimension, without suffering
from the UV catastrophe.<br>

<br>

Thistalk is based on collaborations with S. Aoki, N. lizuka (hep-th) and with E. Berkowitz, G. Gur-Ari, J. Maltz, S. Shenker (in progress).</p>
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Gauge/Gravity Duality
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[DO-brane quantum mechanics

N 1 IO
§=3 /dt TT{Q(DtXZ) - 71X, X

1 - I
+50D — 71X, vl |

It should reproduce thermodynamics of black O-brane.

(effective dimensionless temperature Tes = 7\'”3T]

high-T = weak coupling = stringy (large a’ correction)
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DO0-brane quantum mechanics
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Thermodynamics
(imaginary time)

® |arge-N, strong coupling vs SUGRA

Anagnostopoulos-M.H.-Nishimura-Takeuchi, 2007
Catterall-Wiseman, 2008, Kadoh-Kamata, 2015

® |arge-N, finite coupling vs SUGRA+X’

M.H.-Hyakutake-Nishimura-Takeuchi, 2008
Kadoh-Kamada, 2015

® finite-N vs SUGRA+X’+gs

M.H.-Hyakutake-Ishiki-Nishimura, 2013

Seems to be correct.
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FREE simulation code for BFSS/BMN model

RHMC algorithm + Fourier acceleration (with FFTW3)
Fortran 90/ Fortran 2003; MPI| parallelized

Should be useful for learning about BH, M2 and M5.

Runs on supercomputer, cluster,
and machbook

hanada@yukawa.kyoto-u.ac.jp
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‘eigenvalues’ = DO-branes

A

)
9 .
0
flat direction
= gas of DO-branes

bound state of eigenvalues
= black hole

This phase reproduced the dual BH thermodynamics.
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Real time study

® Full quantum study is impossible with

current technology.
stochastic quantization (complex Langevin)?
brute-force diagonalization?
guantum simulator? — experimental quantum gravity?

® Strong coupling lattice gauge theory (+improvement)
M.H.-Maltz-Susskind 2014

stringy d.o.f. is manifest; still numerically demanding, but should be possible in a few years.

® (lassical real time evolution

high temperature = weak coupling
but highly nonlinear & nonperturbative

“BH" = soliton (or resonance) of matrix model

We will see the formation & evaporation of “BH" in this limit.
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Real time study
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‘eigenvalues’ = DO-branes

a_ﬁ'/\

;- \

bound state of eigenvalues flat direction emission of eigenvalue

= black hole = gas of DO-branes = evaporation of BH
(emission of DO0)

This model can describe BH evaporation!

This evaporation is suppressed at N=co,

(The instability has been observed in imaginary time simulation.)
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Remark
There is no phase transition between low- and high-T.
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1 1 ‘
5— 1T Z(DI.X')Z t5 Z[Xi_-X_j]z

2¢
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dt?
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discretize & solve it numerically.
(straightforward.)
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d* X" P i
o~ I XX =

J

Invariant under the scaling ¢ — t/a, Xy — aXu

All values of the energy (or ‘temperature’) are equivalent.

E, T =o'k, atT
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When is classical approximation valid?

off diagonal element open string mass |
= open string = distance between DO’s

/\- ~ T4 at high-T, for ‘BH’

diagonal element It must be smaller than T.
= DO-brane # classical approximation
Is valid at high-T BH.

1 Z N 1
29y M p 24 vy
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Formation & thermalization of BH

* This system is chaotic. (sawidy, 1984; Berenstein et al, 2012)

- Almost all initial conditions end up with

typical’ matrix configurations — BH.

gas °
BH ,
0

open strings
(off-diagonal elements)

. open strings are suppressed
are excited

entropy ~ N2 entropy ~ N
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Collision of 2 BHs
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(TrX%/N)
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Rotational symmetric at late time, already at finite-N
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Virial theorem: (K) = 2(V') = %E

(For bound state. Time average, any N.)
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Fluctuation disappears ‘ o
at large-N. # Thermalization’ at large-N.
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Fast scrambling

® Add a small perturbation:
X = X+0X, V = V+dV.

® The information should be scrambled in
‘scrambling time’ ts ~ log N. (Sekino-

Susskind, 2008.)

® |et’s test this conjecture.
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