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Abstract: Recently, 23 cases of umbral moonshine, relating mock modular forms and finite groups, have been discovered in the context of the 23
even unimodular Niemeier lattices. One of the 23 cases in fact coincides with the so-called Mathieu moonshine, discovered in the context of K3
non-linear sigma models. Here we establish a uniform relation between all 23 cases of umbral moonshine and K3 sigma models, and thereby take a
first step in placing umbral moonshine into a geometric and physical context. This is achieved by relating the ADE root systems of the Niemeier
lattices to the ADE du Va singularities that a K3 surface can develop, and the configuration of smooth rational curves in their resolutions. A
geometric interpretation of our resultsis given in terms of the marking of K3 surfaces by Niemeier |attices.
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» We are all here for some reason or another because of the
observation of EOT relating the group M»4 and K3 elliptic
genus

This has led to a variety of fascinating progress in the area of
moonshine, physics, and mathematics, including the
still-mysterious umbral moonshine, of which M>4 moonshine is
only the first case

What about the other cases of umbral moonshine? Do they
have some relation to K37 Can this help us find a unifying
structure?

Sarah M. Harrison Umbral Moonshine and K3 surfaces
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Elliptic genus of singularities

Umbral moonshine and the Niemeier lattices

Umbral moonshine and the K3 elliptic genus

Comments and open questions
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Elliptic genus of singularities

Elliptic genus of singularities

» Consider singularities of the form C2/G with G a subgroup of
SU,(C)

» Local description of singularities of K3 surfaces

» ADE classification: Intersection matrix of curves in resolution
yields an ADE Dynkin diagram

» In terms of hypersurfaces, it is given by W3 = 0 with

0 2 2
Wi . =xi+x5+x3°

0 — 24 2 m/2
WD, pis =X T X3X3+ X3

Wgs :x12+x§+x§
W27 = x12 +x§°’ +x2x§‘
Wga =x12+x§’+x35.
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Elliptic genus of singularities

Elliptic genus of singularities

The 2d conformal field theory description of these (isolated)
singularities was proposed by Ooguri and Vafa to be:

Minkowski R>! @ (N = 2 minimal @ N =2 SL(Q’R)) /(Z/mZ).

u(1)
(1.1)

where m is the coxeter number of the corresponding simply laced
root system. For Ap,—1, this describes near-horizon geometry of m

NS5-branes. Interesting work by Harvey and Murthy where one
replaces R>! with K3 x R,
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Elliptic genus of singularities

Elliptic genus of singularities

One can resolve the singularity by considering WY = p.

It was proposed that the sigma model with the non-compact target
space Wg = u has an alternative description as the
Landau—Ginsburg model with superpotential

WG’ = _Nxo_m + cha

where xp is an additional chiral superfield and m is again given by
the Coxeter number of ®.

In order to compute the elliptic genus, we need to understand both
the contribution from the A" = 2 minimal model and the
noncompact coset model.
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Elliptic genus of singularities

The N = 2 minimal models

The N = 2 minimal models are known to have an ADE
classification based on an ADE classification of the modular
invariant combinations of chiral (holomorphic) and anti-chiral

(anti-holomorphic) characters of the A(ll) Kac—Moody algebra.
These correspond to a 2m x 2m matrix Q® for each ADE root
system &,

The central charge is given by the coxeter number of the root
system:

&:c/3:1—%. (1.2)
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Elliptic genus of singularities

Elliptic genus of singularities

Recall the definition of the elliptic genus:

Zr(r,z) = s re ((_I)FR+FLYJUqHLaHR) (1.3)

For an N/ = 2 minimal model, this is

Zr‘r?inimal(T: z) = Z cht:r’)?:’('r’z) = Tr(Q¢ + X)- (1.4)
r,r'€Z/2mZ

where the x are minimal model characters. This result can also be
obtained from a free field computation in the Landau-Ginzburg
description (Witten).
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Elliptic genus of singularities

Elliptic genus of singularities

SL(2,R)
u(1)
model describes the geometry of a semi-infinite cigar (2d Euclidean

black hole) and is mirror to the N' = 2 super Liouville theory.
The level m of the super-coset model is related to the mass of the
corresponding 2d black hole, and the central charge of the super

Liouville theory:

We also need the elliptic genus of the coset model. This

c=1+

2
=,
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Elliptic genus of singularities

Elliptic genus of singularities

This model is noncompact — spectrum contains both discrete and
continuous states. (DVV) Geometrically, the discrete states are
localized at the tip of the cigar, and the continuous ones are those
states whose wave-functions spread into the infinitely long
half-cylinder and are only present above a “mass gap” 4%" on the
conformal weight.

- i
N iy

The continuous states correspond to massive (or long) N = 2
highest weight representations while the discrete states correspond
to massless (or short) ones.
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Elliptic genus of singularities

Elliptic genus of singularities

The elliptic genus computed in the Hamiltonian formalism contains
only contributions from the discrete part of the spectrum.

The building block of the elliptic genus is the Ramond character
graded by (—1)F

s—1

- mk
(R) 191 'T Z 2k k2 yq )
Chmass]css(T Z, S Ey " 1 —
keZ yq
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Elliptic genus of singularities

Elliptic genus of singularities

Putting them together, from the spectrum of the super-coset
model it is straightforward to work out the elliptic genus of the

theory

Z, (7,2) Z Chmassless('r zZzm+2—5s)+ Chsnals'ess(f, z;s)

s=1

1 i01(, z)
2ﬂm0( m) T?(T)

where we have used the (specialised) Appell-Lerch sum

mk? 2km1 + yq*
pm,o(7, 2) q"
" é;z 1—ygk

[Troost, Ashok-Troost, Eguchi-Sugawara]
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Elliptic genus of singularities

Elliptic genus of singularities

One could also consider a path integral approach to the

computation of the elliptic genus, which should naturally yield a
modular object:

2%%(r,2) =

1 i0y(7, 2) ath _a2/2 a2 50 . ot arih
?ﬂ 773(1-) Z (_1) q Yy Zminima](T, Z+ ar + b) I-I'm.O(T, T)

a,beZ/miL
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Umbral moonshine and the Niemeier lattices

The Niemeier lattices

Here we review the main components of umbral moonshine.
Even, unimodular, positive-definite lattices of rank 24

More broadly relevant because their theta functions are
modular invariant

24 such lattices, classified by Niemeier: Leech lattice + 23
others which have ADE classification

Uniquely determined by their root systems A(L), that are all
unions of the simply-laced root systems
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Umbral moonshine and the Niemeier lattices

The Niemeier lattices

Two conditions: all of the irreducible components have the same Coxeter
numbers; total rank is 24:

X | AW AL? A8 AS A:D, Aé A2D?
GX‘ M4 2.Mp2  2.AGL3(2) GLp(5)/2  GL(3)  SL2(3)

X | Mo AGL3(2)  PGLy(5) PGLy(3) PSLy(3)
X | A A11D7Eg A?, A15Dg Az E;

c_;X 4 2 2
GX 2 1 1

X D1 E? D3, D16 Es

G* | 3. 2 2 1
GX 2 2 1

Umbral Moonshine and K3 surfaces
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Umbral moonshine and the Niemeier lattices

The Niemeier lattices

Umbral groups come from the automorphism group of the lattice
mod the Weyl group generated by reflections of the roots:

GX = Aut(LX)/Weyl(X).
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Umbral moonshine and the Niemeier lattices

The mock modular forms

We will use these to define special mock modular forms. Mock
modular property: require HX to be a weight 1/2 vector-valued
mock modular form whose shadow is given by SX:

BX(r) = W) +eld) o= [ 4 SRR 0,

then

> AX(T) (7, 2)

reZ/2mZ

transforms as a Jacobi form of weight 1 and index m under the
Jacobi group SLy(Z) x Z2.
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Umbral moonshine and the Niemeier lattices

The mock modular forms

Analyticity condition: require its growth near the cusp to be

g/4mHX (1) = O(1) asT — ico (2.1)

for every element r € Z/2mZ.

The above two conditions turn out to be sufficient to determine
HX uniquely (up to a rescaling), as shown. We also fix the scaling
by requiring q/4mMH{X (1) = -2 + O(q).
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Umbral moonshine and the Niemeier lattices

The mock modular forms

Modular properties?

> H Om,

reZ/2miZ

is @ mock Jacobi form which is the finite part of a meromorphic
Jacobi form with simple poles at m-torsion points.
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Umbral moonshine and the Niemeier lattices

The mock modular forms

To fix modular properties of the twining functions H;‘ we need

» The shadow S = QF S, = S,
» The multiplier system

Given this info, we can define:

R (‘T’ ot T)—lfzsé(,r(_%f) de,

$) om ).

which appears in the theta decomposition of a weight 1 index m Jacobi
form under a modular subgroup:

Z I':Ig)f,(f) Om. (T, 2).

r€Z/2mZ
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Umbral moonshine and the Niemeier lattices

The mock modular forms

> H Om, (2.2)

reZ/2mZ

is a mock Jacobi form of weight 1 and index m under a subgroup
The functions Hg’f also satisfy a similar growth condition as in the

case of the identity. These are defined for every [g] € GX and for
all 23 Niemeier lattices LX.
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

Now let's see how we can relate all of these mock modular forms
to the K3 elliptic genus.
Recall the A’ = 4 decomposition of the K3 elliptic genus

EG(7,z; K3) = 20chy,1 o — 2chy1 1 + (90 chy;s 1 +462chy s
+1540chy. 13 1 +...)
"4 2

. / 91 (T, 2)2
- n3(7)01(7, 22)

x (—2q1/8 +90q7/® + 462¢"5/8 + 1540¢%%/8 + . .. )}

{24 p2,0(7, 2) + (02,-1(7, 2) — 02,1(7, 2))
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

We can view the two contributions to EG(7, z; K3), given by

24 pp o(T, 2)

— 3 HEA (1)ba,0(, 2),

reZ/AZ

as contributions from the BPS and non-BPS N = 4 multiplets
— A24
respectively (up to the polar term in Hf_Al (7)).
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

There is an alternative interpretation due to the identity between
the short N' = 4 characters and the elliptic genus of an ® = A;
singularity:

Z43(r,2) = chy.1 (7 2),

In other words, we can re-express the elliptic genus of K3 as

EG(r, z; K3) = 242151, 7) — 1 0T 2) 2)° S H0,,(r,2).

n3(7)01(7, 22) ey

This provides a geometric interpretation of this decomposition.
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

We can rewrite the former expression as

EG(r,z; K3) = Z%°5(r,2) + Z q2y2a¢x Z+3T+b)
M o bez/mi

for X = A%* where

gbx _ 191(7' mZ)gl( E Hx

3(7)91 (7, 2)

) Om.r (7, 2)

reZ/2mZ

encodes the umbral moonshine mock modular form.
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

Where, for

X =A% D%

my2+1(E™)%,

we write
755 = daZPm1 4 dpZPmi2it 4 de ZE™

corresponding to a collection of no n-interacting ADE theories with
the total Hilbert space given by the direct sum of the Hilbert
spaces of the component theories.

So we can offer an alternate interpretation of this decomposition
as a contribution from 24 copies of A;-type surface singularities
and an “umbral moonshine” contribution given by the umbral
moonshine mock modular forms HX with X = A%*
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

In fact, this type of decomposition holds for all 23 cases of umbral
moonshine!

EG(T, z: K3) . ZX,S( Z q 2y2a ¢X ZTar-—r b)
abEZ/mZ

In other words: for the 23 Niemeier lattices LX we have 23
different ways of separating EG(K3) into two parts.

» Replace the Niemeier root system X with the corresponding
configuration of singularities to obtain a contribution to the
K3 elliptic genus by the singularities.

» Use the umbral moonshine construction for the mock Jacobi
form ¢*X associated to each LX to get the rest of EG(K?3)
after a summation procedure reminiscent of the
“orbifoldization” formula for the elliptic genus of orbifold
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

We can also define a twisted version of this relation:

g
a ,bEZ[mZ

Sarah M. Harrison Umbral Moonshine and K3 surfaces
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

Consequences of this relation:

Consider [g] which obey a geometric condition, g € G* has at least 5
orbits and one fixed point on the 24-dimensional representation. For
these elements,

» Whenever g; € GX and g» € G*2 both satisfy the geometric
condition and have the same 24-dimensional cycle shape
Flgfll = I'I;?, we obtain
Zg' = 2 (3.1)

» The result coincides with the geometrically twined elliptic genus for
a K3 admitting (g)-symmetry

Z} = EGg(K3) (3.2)

whose induced action on 24-dimensional representation is
isomorphic to that of g € GX
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Umbral moonshine and the K3 elliptic genus

Umbral moonshine and the K3 elliptic genus

= 3/\2 +2A3 — Ay — 3Ag + A12
3 = 2(—4A3 + Ao — (1)°/(3)%)

_ 1 3
ng = 2((2))(%3
Haa

Hag
Hsa
Hioa

1)(2)°(3
T1)§A_2((J4()J(6())

Hga
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Umbral moonshine and the K3 elliptic genus

Geometric interpretation

Main results of Nikulin;

» Every K3 surface admits a marking by (at least) one of the 23
Niemeier lattices

» For every LX with the exception of X = Ay and X = A2,,
there exists a K3 surface that can only be marked using LX
and not by any other Niemeier lattice (the exceptions are a
conjecture)

» For any L%, any primitive sublattice of LX which can be
primitively embedded into '3 19(—1) arises from the Picard
lattice Pic(M) of a certain K3 surface M
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Umbral moonshine and the K3 elliptic genus

Geometric interpretation

Applications:

» For the generic cases, a K3 surface M that can be marked by
LX has the configuration of all smooth rational curves given
by X N Spy. In particular, if one thinks of the rational curves
as arising from the minimal resolutions of the C?/G
singularities, then the singularities have to be given by a
sub-diagram of the Dynkin diagram corresponding to X.

If M is a generic K3 surface admits a marking by LX, then
the finite symplectic automorphism group Gy of M is a
subgroup of GX.
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Comments and open questions

Comments

We find some evidence for the relation between groups for index m
umbral moonshine and Z,, orbifold K3 sigma models. [WIP with

Francesca Ferrari and Natalie Paquette] In particular, we find in a
Z3 orbifold model an order 11 symmetry which comes from the
m = 3 decomposition of EG(7, z; K3), and is a different function
from the order 11 twining of EG(7, z; K3) coming from

M24(m — 2).
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from the order 11 twining of EG(7, z; K3) coming from

M24(m — 2).
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Comments and open questions

Comments

There is another rewriting of the formula

b
EG(7,z;, K3) = ZXS Z q° y2a¢x Zrart )
abEZ/mZ

which is mathematically equivalent:

EG(7,z; K3) = ZX°(r,2) + ¢—21(, 2) Z HX(7) Sm,r(T)
reZ/2mZ

Notably, the piece coming from the umbral mock modular forms,
appears in other contexts, e.g. the spacetime BPS index x>
computed by Harvey and Murthy coming from NS5-branes
wrapped on K3.
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Open questions
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