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Motivation

Understand the structure of string interactions
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Strongly constrained by symmetries!

- supersymmetry amplitudes have intricate
- U-duality - arithmetic structure (7(7)
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Motivation

Understand the structure of string interactions

AN :
O \_\‘- - 4 :7} (Q\\\\\\ /// T \\ = {i‘ Cz\ . //, \\\\- /”._\ \‘—-'//D
d ~ N —\ A
(j/ \L’/ K) - \H——J—“\\\G‘; (}/1’_\‘ Nl 9
Strongly constrained by symmetries!
- supersymmetry amplitudes have intricate
- U-duality —P arithmetic structure (7(7)

Symmetry constrains interactions, leads to insights about:

- ultraviolet properties of gravity

- non-perturbative effects (black holes, instantons)

- novel mathematical predictions from physics
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Toroidal compactifications yield the famous chain of U-duality groups

[Cremmer, Julia][Hull, Townsend]

. . ;
D G K G(Z)
10 SL(2,R) | SO(2) | SL(2,Z)
9 SL(2,R) x R* SO(2) SL(2,Z)
° 8 | SL(3,R) x SL(2,R) SO(3) x SO(2) SL(3,Z) x SL(2,2)
7 SL(5,R) SO(5) SL(5,2)
e o 6 Spin(5, 5, R) (Spin(5) x Spin(5))/Z; Spin(5, 5, Z)
o 5 E¢(R) USp(8)/Z, E¢(Z)
4 E7(R) SU(8)/Z, E+(Z)
o 3 Eg(R) Spin(16)/Z, Es(Z)

Physical couplings are given by automorphic forms on

G(Z)\G[R)/K

Green, Gutperle, Sethi,Vanhove, Kiritsis, Pioline, Obers, Kazhdan,Waldron, Basu, Russo,
Cederwall, Bao, Nilsson, D.P, Lambert,West, Gubay, Miller, Fleig, Kleinschmidt,...
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Below D=3 U-duality conjecturally becomes infinite-dimensional
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Cﬂn we understand _Dh‘f'SlC.'l] :OUD“F‘-::S In terms of
~-_Mmodyv or ‘.,L‘*-‘

- SLOLE E

automorphic forms on Ka

Yes., but many issues to be overcome
- mathematical theory much less developed

- new exotic instanton effects

- unclear how to define U-duality invariant effective actions
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Below D=3 U-duality conjecturally becomes infinite-dimensional

¢ D G(R) G(Z)

2 Eo(R) Ey(Z)

1 E1o(R) E10(Z)

? 0 F11(R) Ei1(Z)
e @

Can we understand physical couplings in terms of
e automorphic forms on Kac-Moody groups!’

e Yes,but many issues to be overcome:

- mathematical theory much less developed
- new exotic instanton effects

- unclear how to define U-duality invariant effective actions
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Below D=3 U-duality conjecturally becomes infinite-dimensional
Y |

()

Can we understand physical couplings in terms of
--Moaody oro ne?

automorphic forms on Kac-

>

In this talk | will present recent progress in this endeavour!
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Qutline

|. Eisenstein series and U-duality

2. Automorphic forms on Kac-Moody groups

3. Conclusions and future directions

Pirsa: 15040125
Page 10/33



Higher-derivative action in type Il string theory on tori

/l ([ 10—n (} [( ):;f[)(f})R.] + ((1',)5](4(.(/)(‘)‘17?/1 e o }
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Higher-derivative action in type Il string theory on tori

/l d 10— n, e [( ):;f{)(,(})R'l + ((1")5]('4(.(j)(‘).17?/1 e o }

—> f0(9), f1(g) are functions of g € E,,+1(R)/K

—» must be invariant under U-duality F,+1(Z)

—p Ssupersymmetry requires that they are
Laplacian eigenfunctions

defining properties
—p well-defined weak-coupling of an

expansions as gs — 0 automorphic form!
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Example: type IIB in D=10
/ (Zl[).IT\/af()(’7‘)7?,'1

—> fo(7) functionof 7=x+ic ®eH=SL(2,R)/SO2) =%,
. (far +Db , (u h) c SL(2.2)
— () (('T—{—(/) fo(T) o d) €
) . .; X 9 0~ | ()._’ - )
—> Ay fo(r) = _I'/”(T) D=y 55+ e T =2+ iy

3/2 ) |

— _/.()(T) ~ 2((3)”;” - as gs =¢€e" =1y > () weak string coupling limit

: 3/2 . .
unique fol(r) = (7 / [Gre?n.Gutpel_le]
lution! JOUT | n ‘.‘ [Green, Sethi]

solution! m + ntl o
(m,n)#(0,0) [Pioline]
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Non-holomorphic Eisenstein series

Consider the sum:
non-holomorphic

E (1) = Z y Eisenstein series
. (‘l)ll(.T_ngH "GC

—> a function on H = {T =x+iy €C \ y > ()}

at + b
ct + d

a b o
Y = ( . ) € SL(2,7Z)

—>» invariant under TH YT =
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Invariance under 7+ 7 + 1 yields the Fourier expansion

E.w(f—) = (} s + Z F” U 5 2mine
n#0
. - p - -~ v

constant term non-zero mode
zero mode

5(23 = 'l) |« completed zeta-function:

(2s) 7 £(s) = /2T (s/2)((s)

—> Clys) =y +
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Physical interpretation: fo(T) = ‘2((3)E;;/2(7‘)

Perturbative quantum effects (weak-coupling limit ¥ — 0C )

e E(2) )
constant (1 3/9) = - 3/2 %(“ —1/2

Non-perturbative quantum effects (D(-1) instantons)

l (1)
Fu(y:3/2) = o v/ Inl-a(m)e™ 5 (14 0(1/y))

>

)
instanton measure f—2(n) = Z d
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Physical interpretation:

quantum effects |

constant
term

Non-perturbative quantum efrects {

F.(y:9/2)

turbatively exact!

This result is perturbatively and non-pe
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Eisenstein series on semi-simple Lie groups

The Langlands Eisenstein series on a semi-simple Lie group is defined by:

E(\ g) = Z e A+pH(vg))

| vEB(Z)\G(Z)
I
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Eisenstein series on semi-simple Lie groups

The Langlands Eisenstein series on a semi-simple Lie group is defined by:

E(\ g) = Z oA t+plH(vg))

| vEB(Z)\G(Z)
I

lwasawa decomposition: (G = BK = NAK

Logarithm map: H : G —bh=LieA H(nak) = loga
Weight: Aeh ®C

l
Weyl vector: P = 9 Z o
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Fourier coefficients

The periodicity /(7 = | (7 generalises to

IS non-abelian

Much more complicated since -* s

General structure

E(\.g) = E€“" (A

'\_‘i“ 1:\\-“.::1 _\\‘- ‘_“\
(non zero-modes)

non-perturbative effects
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Perturbative terms - Langlands constant term formula

—

—

subDgroups

This can be generalised to smaller unipotent

Eisenstein series

for a subgroup:

Lr
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Perturbative limit - choices of unipotent subgroups

- Decompactification limit

- perturbative parameter: radius of decompactified circle

- non-perturbative effects: KK-instantons, BPS-instantons

=P String perturbation limit

- perturbative parameter: string coupling

- non-perturbative effects: D-instantons, NS5-instantons

== M-theory limit
- perturbative parameter: volume of M-theory torus

- non-perturbative effects: M2- & M5-instantons
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Example: G = LS‘()(F) r.)) type Il string theory on 711 [Green, Russo,Vanhove]

Higher-derivative coupling: / (]'l.-r\/af()(g)’Rl

Eisenstein series: fo(g) = E(2sA1 — p.g) s=3/2

Choose minimal unipotent for string theory limit: {/
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- = . oL .
type |l string theory on

Example: (G = SO(9. 0

Higher-derivative coupling

Eisenstein series 29\

Choose minimal unipotent for stri
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Much more is known!
[ "VGh@R o) = E@shi=pg)  s=3)2
[ @GR i) = E@shi=pg) s =5)2
Successfully checked against perturbative string calculations for all

G =F,(R) n <8

[Green, Russo,Vanhove][Green, Miller,Vanhove][Pioline]

J"R* also works but more complicated story...
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Eisenstein series can formally be defined for any Kac-Moody group

E(\N g) = Z o (A+pH(vg))
~EB(Z)\G(Z)

—» ((Z) C G(R) defined as a Chevalley group

-——p convergence established by Garland in the affine case
and by Carbone, Lee, Liu for rank 2 hyperbolic

=P generalization of Langlands constant term formula established by
Garland in the affine case
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Example: G = F1((R) s=3/2

Bs,m,(a/) s

( Z (i”) Ki(ma)

d|m

H)\:3A1—/)

Y

Wy (x3/2,a)

m,0,0,0,0,0,0,0,0,0

0,m,0,0,0,0,0,0,0,0

0,0,m,0,0,0,0,0,0,0

0,0,0,m,0,0,0,0,0,0

.2 ] “2 \ ]
v3v; Bsjom (L114; )

v3 Bo,m (viu, h
£(3)
5{2)1};“1,,,,('r'_:",:'r'] -'r-‘.. J)
§(3)
V4 I}] /2.m (r_fr,'h, :'f':, ]"‘_'. : )

§(3)

0,0,0,0,m,0,0,0,0,0

2 K (2220 —1,,—1
*';,”H.rr-\”j,".; Vg )

£(3)ve

E(VEB_1/2,m(vivs 'vr )
£(3)v2

0,0,0,0,0,0,m,0,0,0

0,0,0,0,0,0,0,m,0,0

0,0,0,0,0,0,0,0,m,0

0,0,0,0,0,0,0,0,0,m

( )
( )
( )
( )
( ) |
(0,0,0,0,0,m,0,0,0,0) |
( )
( )
( )
( )

4, —3 2,,—1, —1
v7vg ' B |_”l(UT?%i Vg )
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String theory interpretation
Expansion of Bessel functions reveal D-instanton effects
W —1/9s
p(a) ~e

but we can also obtain arbitrary powers of the coupling!

e 1/9% ?

These might correspond to . . SHGS
exotic instantons r -

[Obers, Pioline][Shigemori, de Boer]

‘‘‘‘‘‘
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Conclusions and speculations

What does our results mean mathematically?

Conjecture: For G = Eqg, E10, E11 the Eisenstein series

E(3A1 — p,g) is attached to the minimal representation
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Conclusions and speculations

What does our results mean mathematically?

Conjecture: For G = Eqg, E10, E11 the Eisenstein series

E(3A1 — p,g) is attached to the minimal representation
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Conclusions and future directions

el OQur formula for degenerate Whittaker vectors can also
be used to obtain instanton effects in higher dimensions

[in progress w/ Fleig, Gustafsson, Kleinschmidt]

- Higher-derivative corrections with less susy require
“generalized automorphic forms” satisfying Poisson-
type equations. [Green,Vanhove][Green, Miller,Vanhove][Pioline]

Q: Can one define these also for Kac-Moody groups?

== Can one obtain explicit formulas for the non-abelian
Fourier coefficients?

=g |_anglands program for Kac-Moody groups?

[Braverman, Kazhdan]
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Conclusions and future directions

Our formula for degenerate Whittaker vectors can also

be used to obtain instanton effects in higher dimensions

Higher-derivative corrections with less susy require
“generalized automorphic forms’ sausfying Poisson-
type equations

y

Q: Can one define these also for Kac-Moody groups:
Can one obtain explicit formulas for the non-abelar
7

)\

Fourier coefficients

-~

Langlands program for Kac-Moody groups?
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