Title: Symplectic automorphisms of some hyperk\"ahler manifolds

Date: Apr 13, 2015 02:00 PM

URL: http://pirsa.org/15040121

Abstract:

Pirsa: 15040121

Symplectic automorphisms of some hyperkähler manifolds

Geoffrey Mason

Perimeter Institute April 2015

Page 2/28

Pirsa: 15040121

Mukai's Theorem

 $\Omega = 24$ letters permuted by $M_{24} \supseteq M_{23}$.

 $\mathfrak{X} = \{G \subseteq M_{23} \mid G \text{ has } \geq 5 \text{ orbits on } \Omega\}.$

Theorem. (Mukai)

- A finite group of symplectic automorphisms of a K3 surface is isomorphic to a group in \mathfrak{X} .
- If $G \in \mathfrak{X}$, there is a K3 surface X such that G is isomorphic to a group of symplectic automorphisms of X.

$K3^{[n]}$

In this talk, we discuss an extension of Mukai's Theorem to certain *higher dimensional* CY manifolds.

Let X be a K3 surface. We can construct (Grothendieck) a complex manifold, informally defined as follows:

$$K3^{[n]} := \left\{ \underbrace{X \times ... \times X}_{n}, \text{blow-up diagonal} \right\} / S_{n}$$

This is the Hilbert scheme of n points of X. It is a CY, hyperkähler (holonomy in Sp_n) complex manifold of complex dimension 2n.

Page 3 of 26

Pirsa: 15040121

 $K3^{[2]}$

There is a good chance that an analog of Mukai's Theorem can be proved for all $K3^{[n]}$.

Here we deal with the case n = 2.

The geometry of $K3^{[2]}$ is tied to that of K3, but is more complicated.....

Pirsa: 15040121

Pirsa: 15040121 Page 6/28

K3^[2] Hodge diamond 1 21 1 1 21 232 21 1 1 21 1 0 0

Pirsa: 15040121 Page 7/28

Mukai-type Theorem for $K3^{[2]}$

 $\mathfrak{X}' = \{G \subseteq M_{23} \mid G \text{ has exactly 4 orbits on } \Omega\}.$

 $\Lambda = \text{Leech lattice}. \quad Aut(\Lambda) = Co_0.$

Main Theorem. (Höhn-GM)

- A finite group of symplectic automorphisms of a $K3^{[2]}$ is isomorphic to a subgroup of one of 15 iso classes:
 - (a) a group in \mathfrak{X}'
 - (b) one of two S-lattice groups in Co_0 isomorphic to $3^{1+4}.2.2^2$ and $3^4.A_6$.
- If G is as in (a) or (b), there is a $K3^{[2]}$ X' such that G is

isomorphic to a group of symplectic automorphisms of X'.

In addition to Mukai's Theorem, another related result due to Gaberdiel-Hohenegger-Volpato:

Theorem (G-H-V) The group G of symmetries of a non-linear σ -model on K3 preserving the N=(4,4) superconformal algebra and the spectral flow operators satisfies

(i)
$$G = G'.G''$$
; $G' \subseteq 2^{11}, M_{24} \supseteq G'' \ge 4$ orbits on Ω

(ii)
$$G = 5^{1+2}.4$$

(iii)
$$G = 3^4.A_6$$

(iv)
$$G = 3^{1+4}.Z_2.G''$$
, $G'' = 1, 2, 2^2, 4$

The idea in both the Main Theorem and G-H-V is to establish that $G \subseteq Co_0$ with $rk(\Lambda^G) \ge 4$, then classify such G.

Coordinate frames in Λ

A coordinate frame in Λ is a set of 24 pairs of mutually orthogonal vectors $\{\pm v_i\}$ of squared-length 8:

$$(\mathbf{v}_i,\mathbf{v}_j)=\pm 8\delta_{ij}.$$

Co₀ acts transitively on such sets, with stabilizer

$$2^{12}.M_{24}.$$

Proposition. (Conway) *Exactly one* of the following holds for each coset $v + 2\Lambda \in \Lambda/2\Lambda$.

$$v+2\Lambda=2\Lambda,$$
 $v+2\Lambda=w+2\Lambda, \ (w,w)=4,\pm w$ unique, $v+2\Lambda=w+2\Lambda, \ (w,w)=6,\pm w$ unique, $v+2\Lambda$ contains a *unique* coordinate frame.

S-lattices

An S-lattice is a sublattice $S \subseteq \Lambda$ satisfying

if
$$v \in S, v = 2u + w, u, w \in \Lambda, (w, w) \le 8$$

then $(w, w) \le 6, u, w \in S$.

Example. Suppose $G \subseteq Co_0$ has no subgroups of index 2. One of the following holds:

- $G \subseteq 2^{12}.M_{24}$
- Λ^G is an S-lattice

This is an easy consequence of Conway's Proposition.

Pirsa: 15040121 Page 12/28

Mukai-type Theorem for $K3^{[2]}$

 $\mathfrak{X}' = \{G \subseteq M_{23} \mid G \text{ has exactly 4 orbits on } \Omega\}.$

 $\Lambda = \text{Leech lattice}. \quad Aut(\Lambda) = Co_0.$

Main Theorem. (Höhn-GM)

- A finite group of symplectic automorphisms of a $K3^{[2]}$ is isomorphic to a subgroup of one of 15 iso classes:
 - (a) a group in \mathfrak{X}'
 - (b) one of two S-lattice groups in Co_0 isomorphic to $3^{1+4}.2.2^2$ and $3^4.A_6$.
- If G is as in (a) or (b), there is a $K3^{[2]}$ X' such that G is

isomorphic to a group of symplectic automorphisms of X'.

Curtis's Theorem

Curtis has ${\it classified}$ the maximal ${\cal S}$ -lattices. They are as follows.

rank	stabilize
4	$3^4.A_6$
4	$5^{1+2}.4$
6	$3^{1+4}.2$

$K3^{[2]}$ and Λ

X is a $K3^{[2]}$ with symplectic automorphism group Aut(X).

$$L:=H^2(X,\mathbb{Z})\cong 2E_8(-1)\oplus 3U\oplus \langle -2\rangle$$

with respect to the Bogomolov-Beauville integral bilinear form.

Theorem. (Mongardi-Beauville-Hassett-Tschinkel) There is an embedding

$$Aut(X) \rightarrow O(L)$$
.

$K3^{[2]}$ and Λ

Theorem (Mongardi, G-H-V, Huybrechts-Höhn-GM) There is a commuting diagram

$$G \hookrightarrow L_G(-1)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Co_0 \hookrightarrow \Lambda$$

In other words, there is an identification $G\subseteq \mathit{Co}_0$ such that

$$(L_G(-1),G) \stackrel{\cong}{\longrightarrow} (\Lambda_G,G)$$

In particular $rk(\Lambda^G) \geq 4$.

Summary so far

For finite group of symplectic automorphisms $G \subseteq Aut(X)$ of a $K3^{[2]}$ X, we have

- $G \subseteq Co_0$
- $rk(\Lambda^G) \geq 4$
- $G \subseteq 2^{12}.M_{24}$ or $\Lambda^G \subseteq \mathcal{S}$ lattice

Conjugacy classes and some equivariant topology

The next step is to consider the possible conjugacy classes of Co_0 that could possibly meet G.

Co₀ has 167 conjugacy classes.

Only 42 of them satisfy $rk(\Lambda^g) \geq 4$.

Assume that $g \in Aut(X)$ 'corresponds' to $g \in Co_0$.

Pirsa: 15040121 Page 18/28

The equivariant Hirzebruch χ_y -genus of X is:

$$\chi_y(g|X) := \sum_{p,q=0}^4 (-1)^q Tr(g|H^{p,q}(X)) y^p$$

(This is Dolbeault cohomology, the analog of de Rham cohomology for cmpx mnflds.)

 $\chi_y(g|X)$ is determined by the eigenvalues of g on $H^{1,1}(X)$:

$$\chi_y(g|X) := 3 - 2ty + \frac{6 + t^2 + s}{2}y^2 - 2ty^3 + 3y^4$$

$$t:=\mathit{Tr}(g|H^{1,1}(X))$$

$$s:=Tr(g^2|H^{1,1}(X))$$

These we know explicitly for each g (they are in \mathbb{Z}).

Equivariant topology

On the other hand, the Atiyah-Singer-Segal fixed-point Theorem determines $\chi_y(g|X)$ locally in terms of data associated with the connected components of

$$X^g := \{x \in X | g.x = x\}.$$

At an *isolated fixed-point*, g acts on the tangent space $T_x = \mathbb{C}^4$ with eigenvalues $\lambda_x, \lambda_x^{-1}, \mu_x, \mu_x^{-1}$.

Otherwise, we consider the eigenvalues occurring in the *normal* bundle.

Usually X^g is *finite*. The only possible connected components are K3 or T^2 (complex 2-torus).

Equivariant topology

ASS gives a formula of the type

$$\chi_y(g|X) = \sum_{\{conn\ cmpnts\}} (local\ data\ determined\ by\ evs)$$

There are also *consistency checks* e.g., the identities have to holds for all powers g^n :

$$\chi_y(g^n|X) = \sum_{\{conn\ cmpnts\}} (local\ data\ determined\ by\ evs)$$

The bottom line is that for each of the 42 classes we get some equations, sometimes a large number (several hundred) that have to be satisfied.

Theorem (Höhn-GM) Of the 42 classes with $rk(\Lambda^g) \ge 4$, only 15 'admissible' classes can possibly act symplectically on $K3^{[2]}$.

Camere and Mongardi had done some of these cases before.

This Theorem is *sharp*, because all of the remaining 15 classes really do occur as symplectic automorphisms of $K3^{[2]}$.

11 of the classes meet 2^{12} : M_{24} ; 4 of them do not, but fix an S-lattice pointwise.

Pirsa: 15040121

Some group theory

Now use group theory to classify the possible subgroups $G \subseteq Co_0$ maximal subject to $rk(\Lambda^G) \ge 4$ and G meets only the 15 'admissible' classes.

For the possibilities $|G| = 2^k, 3.2^k$ the computer is essential. (There are literally millions of conjugacy classes of such subgroups in Co_0 .) We obtain

Theorem(Höhn-GM) There are exactly 22 classes of such G.

- ullet thirteen subgroups $G\subseteq M_{23}$ with 4 orbits,
- \bullet two groups $3^4.A_6$ and $3^{1+4}:2.2^2$ related to S-lattices,
- two groups of order 48 and five 2-groups.

Pirsa: 15040121 Page 23/28

Existence

There are necessary and sufficient conditions, in terms of the structure of the lattice L_G , for G to act symplectically on a $K3^{[2]}$. Recall that

$$L=H^2(X,\mathbb{Z})\cong 2E_8(-1)\oplus 3U\oplus \langle -2\rangle$$

Theorem (Mongardi-Höhn-GM) Let $G \subseteq Co_0$ be admissible. Then G is a group of symplectic automorphisms of a $K3^{[2]}$ with $(\Lambda_G(-1), G)) \cong (L_G, G)$ if, and only if,

$$\alpha(L_G) := 24 - rk(L_G) - rk(L_G^*/L_G) \ge 1$$

This criterion can be applied to the 22 choices of G. It reduces us to the final list.

Page 22 of 26

We need existence of X for the remaining 15 classes of G.

Several were already known to act on $K3^{[2]}$. Some of our examples are new. E.g., with $\zeta = e^{2\pi i/24}$,

$$f := (x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^3)$$

$$+ \frac{1}{5}(-3\zeta^7 - 3\zeta^5 + 3\zeta^4 - 3\zeta^3 + 6\zeta - 3) \times$$

$$\{x_1x_2x_3 + x_1x_2x_4 + (\zeta^4 - 1)x_1x_2x_5 + x_1x_2x_6 + (\zeta^4 - 1)x_1x_3x_4 + x_1x_3x_5 + x_1x_3x_6 + (\zeta^4 - 1)x_1x_4x_5 - \zeta^4x_1x_4x_6 - \zeta^4x_1x_5x_6 + (\zeta^4 - 1)x_2x_3x_4 + (\zeta^4 - 1)x_2x_3x_5 - \zeta^4x_2x_3x_6 + x_2x_4x_5 + x_2x_4x_6 - \zeta^4x_2x_5x_6 + x_3x_4x_5 - \zeta^4x_3x_4x_6 + x_3x_5x_6 + x_4x_5x_6\}$$

defines a smooth cubic in \mathbb{CP}^5 that is a $K3^{[2]}$ admitting M_{10} .

We need existence of X for the remaining 15 classes of G.

Several were already known to act on $K3^{[2]}$. Some of our examples are new. E.g., with $\zeta = e^{2\pi i/24}$,

$$f := (x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^3)$$

$$+ \frac{1}{5}(-3\zeta^7 - 3\zeta^5 + 3\zeta^4 - 3\zeta^3 + 6\zeta - 3) \times$$

$$\{x_1x_2x_3 + x_1x_2x_4 + (\zeta^4 - 1)x_1x_2x_5 + x_1x_2x_6 + (\zeta^4 - 1)x_1x_3x_4 + x_1x_3x_5 + x_1x_3x_6 + (\zeta^4 - 1)x_1x_4x_5 - \zeta^4x_1x_4x_6 - \zeta^4x_1x_5x_6 + (\zeta^4 - 1)x_2x_3x_4 + (\zeta^4 - 1)x_2x_3x_5 - \zeta^4x_2x_3x_6 + x_2x_4x_5 + x_2x_4x_6 - \zeta^4x_2x_5x_6 + x_3x_4x_5 - \zeta^4x_3x_4x_6 + x_3x_5x_6 + x_4x_5x_6\}$$

defines a smooth cubic in \mathbb{CP}^5 that is a $K3^{[2]}$ admitting M_{10} .

Summary and prospects

From the perspective of symplectic automorphisms, there is a clear causal connection between $K3^{[2]}$ (and even $K3^{[n]}$), and Co_0 . The connection with M_{24} is incidental.

It seems likely that all finite symplectic automorphism groups of $K3^{[n]}$ can be determined for all n.

The list of groups that will appear will almost certainly be very similar to the case n=2 together with a couple more S-lattice groups corresponding to the cases when $\alpha(L_G) \geq 1$.

The elliptic genus (in the sense of chiral de Rham complex) of a hyperkähler manifold of cmpx dim d is a vertex algebra with a pair of commuting N=4, c=3d structures that depend on the hyperkähler metric.

Pirsa: 15040121 Page 27/28

Pirsa: 15040121 Page 28/28