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Abstract: We observe a relationship between the representation theory of the Thompson sporadic group and a weakly holomorphic modular form of
weight one-half that appears in Zagier's work on traces of singular moduli and Borcherds products. We conjecture the existence of an infinite
dimensional graded module for the Thompson group and use the observed relationship to propose a McKay-Thompson series for each conjugacy
class of the Thompson group and then construct weakly holomorphic weight one-half forms at higher level that coincide with the proposed
McKay-Thompson series. We also observe a discriminant property in this conjectured moonshine for the Thompson group that is closely related to
the discriminant property conjectured to exist in Umbral Moonshine.
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Traces of Singular Moduli

At a meeting on moonshine | do not have to explain

2mTLT

J(T)=q ' +196884g + --- ., q=e°"

But | should explain what a singular modulus is, and how
you take its trace.

Let d be a positive integer equal to O or 3 mod 4.

)

Let Q(X.Y) = [a.b, (] aX?®+bXY +cY* a,b,c € Z

denote a binary quadratic form with integer coefficients
and let < denote the space of such forms with

discriminant b* ac = —d. The modular group SL(2.7)
with elements ~ = i’ :’) acts on such forms as
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Ql-(X,Y) = Q(pX + qY,rX + sY)

and preserves the discriminant. This defines an
equivalence relation on binary quadratic forms. Since
d>0, each @ € Y4 gives rise to a quadratic equation
Q(X.,1) = 0with aroot @ inthe upper half plane. A
singular modulus is the value (o) andis an
algebraic number depending only on the equivalence
class of (). The number of inequivalent () € O, is
the class number h(—d). A trace of singular moduli is
the basically the sum of singular moduli over
iInequivalent quadratic forms of given discriminant

with one small correction: order of the stabilizer of Q.=1.2.3.
l
) = //( )
KeELda/ :
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Ql-(X,Y) = Q(pX + qY,rX + sY)

and preserves the discriminant. This defines an
equivalence relation on binary quadratic forms. Since
d>0, each @ € Y4 gives rise to a quadratic equation
Q(X.1) = 0with aroot @ inthe upper half plane. A
singular modulus is the value J(a) andis an
algebraic number depending only on the equivalence
class of (). The number of inequivalent () € O, is
the class number h(—d). A trace of singular moduli is
the basically the sum of singular moduli over
iInequivalent quadratic forms of given discriminant

with one small correction: order of the stabilizer of Q.=1.2 3.
l
t(d) = /(u ))
Qe .
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We will also require a “twisted” version of such
traces:

|
A(D.3) = y Z XD.-3(Q)J ()

Vv D O€Oap y

Genus character taking
values plus or minus 1

J((14iv3)/2)
Examples: t(3) S 248
)
D=5: Q;=[1,1,4], Q2 =1[2,1,2], ay = (14iV15)/2, ay = (1+iV15)/4

J(lovop, ) J(ao.,) i
vl _ 80Y9H

Vo
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We will also require a “twisted” version of such
traces:

|
AD.3)=—= Y  xp.-3(Q)J(agq)

/D
\. / (\') (_.).;]J.'y

Genus character taking
values plus or minus 1

J((1+iV3)/2)
Examples: t(3) S 248
)
D=5: Q;=[1,1,4], Q2 =1[2,1,2], ay = (1+iV15)/2, ay = (1+iV15)/4

J(ovp, ) J(ao.,) ——
v _ 80Y9H

Vo
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We will also require a “twisted” version of such
traces:

I
A(D,3) = - Z \D,-3(Q)J ()

v D 0CQan /

Genus character taking
values plus or minus 1

J((1+1iv3)/2
Examples: t(3) $ 'V3)/2) 248

- -
S

D=5: Q =[1,1,4], Q:=1[2,1,2], oy = (14+iV15)/2, as = (1+iV15)/4

,f[.r]{) ) ./[('[}‘} = -
21) ~ 85995

Vo
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Weakly holomorphic weight 1/2 forms

Zagier showed these are coefficients of weight 1/2
and weight 3/2 weakly holomorphic modular forms.
In particular, there is a weight 1/2 form /3 that
transforms under 1'y(4) like #(7) and such that
coefficients of ¢~ for n a square can be computed
in terms of 7(3) and for n not a square can be
computed in terms of the twisted” generalization.

|

13 ( 9 248q Z(iT-_)'_)r/l .\-'hﬂ)!)-h)f/‘-’ f IT(}T'_)UI(/'\ e \/l 9
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Weakly holomorphic weight 1/2 forms

Zagier showed these are coefficients of weight 1/2
and weight 3/2 weakly holomorphic modular forms.
In particular, there is a weight 1/2 form /3 that
transforms under 1'3(4) like 6(7) and such that
coefficients of ¢~ for n a square can be computed
in terms of ¢(3) and for n not a square can be

computed in terms of the twisted” generalization.

fa = q~2 — 248¢ + 26752¢" — 85995¢° + 1707264¢® + --- € M, ,,
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Weakly holomorphic weight 1/2 forms

Zagier showed these are coefficients of weight 1/2
and weight 3/2 weakly holomorphic modular forms.
In particular, there is a weight 1/2 form /3 that
transforms under 1'4(4) like #(7) and such that
coefficients of ¢~ for n a square can be computed
In terms of 7(3) and for n not a square can be

computed in terms of the twisted” generalization.

fa = q72 — 248¢ + 26752¢" — 85995¢° + 1707264¢® + --- € M, ,,

/
String theorist: 248 is Finite group theorist: 248,
the dimension of E8! 85995 and 1707264 are all
dimensions of irreps of the
Thompson sporadic group
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Weakly holomorphic weight 1/2 forms

Zagier showed these are coefficients of weight 1/2
and weight 3/2 weakly holomorphic modular forms.
In particular, there is a weight 1/2 form /3 that
transforms under 1'y(4) like #(7) and such that
coefficients of ¢~ for n a square can be computed
In terms of 7(3) and for n not a square can be
computed in terms of the twisted” generalization.

fa = q~ — 248¢ + 26752¢" — 85995¢° + 17072644 + --- € M ,,

/
String theorist: 248 is Finite group theorist: 248,
the dimension of E8! 85995 and 1707264 are all
dimensions of irreps of the
Thompson sporadic group

Th < Eg(3)
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The Thompson group is a huge group, with ~9 x 10'°

elements and 48 conjugacy classes. It occurs
naturally as a subgroup of the Monster in that the
stabilizer of the 3C class of the Monster is 7Z/37 x Th

N.B. for experts: The T3C MT series of Monstrous Moonshine exhibits
moonshine for the Thompson group since Z3xThompson centralizes the 3C
£

element, and T3C is the Borcherds lift of {3, but the lift only involves the
coefficients of square powers of g and so does not explain what is going on

Things work better for coefficients of square powers
if we consider
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The Main Claim: F; exhibits moonshine for the
Thompson group and shares many features with
Umbral Moonshine except that /5 is modular rather
than mock modular and 7/ is much larger than any
of the Umbral groups

The evidence:
1. Decompositions at low levels into irreps
2. Conjectural structure of Modules

3. Modularity of McKay-Thompson series

4. Rademacher series

5. A Discriminant property related to singular moduli.
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At low orders there are natural decompositions
Into either real representations or pairs V@V

c(k Decomposition
(.f(—3 2 1 V]
c(0 248/,

REN

o o

Ne

|
o

~
—t e~~~
Qo O

o

O
N N

ot c
N S S S S S S SN S

W Do

270001/, @y 27000Y/,
£ )
850051, 3y 859951/,
1707264 1707264
Vizr & Vis

4096000 4096000
Voo @ Va3
r ') ( "
9 . 44330496/

 O1ITIBI9Y,, oy TTO2TY/ | gy TTOATY/,
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The alternating signs suggest a (super)-module

X

W @ W,

m-=—3
m=0.1 mod 4

Wy =W & Wy, W =0 m=150971317,...

/ \ W —¢ m=304812,...

even odd /

As in Umbral Moonshine the
coefficient of the most singular

term has the “wrong” sign

(‘(H}) — .H’/I‘H'm l q ~F’,_[” (f_) — Z H/I'H',,, (.(f)(/li!

rn
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Experience with Monstrous and Umbral moonshine
suggests that each of these McKay-Thompson series
should be a weakly holomorphic weight 1/2 modular
formon I'y(4h,0(g)) for some h, dividing 2o(g).

We use two methods to construct such objects:

Amap Z, x4 MI(To(N)) = M;,,(To(4N)) for N
such that I'((/NV) is genus O (Miller-Pixton).

Coefficients (with multipliers) of weight 1/2
Rademacher series (Rademacher, Knopp, Niebur,
Duncan-Frenkel, Cheng-Duncan, Miller-Pixton,
Bringmann-Ono, ....)
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Experience with Monstrous and Umbral moonshine
suggests that each of these McKay-Thompson series
should be a weakly holomorphic weight 1/2 modular
formon I'y(4h,0(g)) for some h, dividing 2o(g).

We use two methods to construct such objects:

such that I'o((/N) is genus O (Miller-Pixton).

Coefficients (with multipliers) of weight 1/2
Rademacher series (Rademacher, Knopp, Niebur,
Duncan-Frenkel, Cheng-Duncan, Miller-Pixton,
Bringmann-Ono, ....)
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In the first method we have a formula for the

Fourier coefficients A,,, of the image of a

hauptmodul f = ¢ ' + O(q) for T'y(N)

:.{ij [ Tig
2B [o(2) n(7)% /n(27)* + 24
3B ['o(3) n(7)"?/n(37)" + 12
1| [o(4) n(7)°/n(4r)" + 8
5B [o(5) n(7)°/n(57)° + 6
6F ['o(6) n(7)°n(37)/n(27)n(67)° + 5
7 [o(7) n(r)*/n(Tr)* + 4
8F [o(8) n(r)n(47)*/n(27)*n(87)" + 4
9B ['0(9) n(7)*/n(97)* + 3
10E ['o(10) n(7)*n(57)/n(27)n(107)* + 3
121 I'.‘(12 (7)3n(471)n(67)%/n(27)*n(37)n(127)* + 3
13B ['4(13) n(7)?/n(131)% + 2
168 ['5(16) n(7)*n(87)/n(27)n(167)* + 2
18D [o(18) n(7)*n(67)n(97)/n(27)n(37)n(187)* + 2
(252) ['0(25 n(t)/n(257) + 1
l () f(ag)
‘Hi ( /; N ,( / ) ) Z \
VI 0eQs. ITo(N) s

a=0modN
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In the second method we compute (numerically)
the coefficients of a weight 1/2 Rademacher
series with multiplier

) — <() €7 2wicdv/ngh, B I d =1 mod 4
d " . d =3 mod 4

/S~ ’
Kronecker usual multiplier multiplier system familiar
symbol for weight 1/2 from Umbral Moonshine

with 74 the order of and choose (v. h,)with h,|2n,

to reproduce the MT series.

Cro(N)w,1/2(—3, 1) Z‘ Kyy(—=3,n)B, 1/2(—3,n)

Kloosterman sum
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In the second method we compute (numerically)
the coefficients of a weight 1/2 Rademacher
series with multiplier

) — <() €1 2wicdv/ngh, B I d =1 mod 4
d/ o ;. d =3 mod 4

/' ( 9 11N0(
Kronecker usual multiplier multiplier system familiar
symbol for weight 1/2 from Umbral Moonshine

with 14 the order of and choose (v, h,)with h,|2n,

to reproduce the MT series.

CI'o(N) .01 "( "';-“) Z‘ /\-‘.r'( '-,'-”)/)‘.I "( '..;'“)

Kloosterman sum
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In the second method we compute (numerically)
the coefficients of a weight 1/2 Rademacher
series with multiplier

(& Dardodn /
) — ( /) €7 2micdv/nghy 0 = | d=1 mod4
S/ i \ i d=3mod 4

Kronecker usual multiplier multiplier system familiar
symbol for weight 1/2 from Umbral Moonshine

with 74 the order of and choose (v, h,) with h,
to reproduce the MT series.

CTo(N) .01 '_’( “';-“) Z‘ /\-‘.r'( '-)'-”)/}“.I "( '..;'“)

2n,

Kloosterman sum
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In the second method we compute (numerically)
the coefficients of a weight 1/2 Rademacher
series with multiplier

 — (f) o omicdv/ngh, ~J1 d=1mod4
d T )i d=3mod 4

/' v '
Kronecker usual multiplier multiplier system familiar
symbol for weight 1/2 from Umbral Moonshine

with 74 the order of and choose (v. h,)with h,|2n,

to reproduce the MT series.

Cr (Yt 15—, 1) Z‘ K. »(=3.n)B, 1/5(—3.n)

Kloosterman sum
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In constructing this class of weight 1/2 forms we are also
allowed to add sums of the form

2: cr 0 /1'-_17_)
k. k=< ff,l‘n,l

which only affects the coefficients of square powers
of g but does not change the modular properties.

We win the moonshine game when we can exhibit
modular MT series (i.e. multipliers and constants ¢ )
such that the there exists decompositions of modules
into sums of irreducible representations with positive
integer coefficients. We have done this to order ¢ .
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In constructing this class of weight 1/2 forms we are also
allowed to add sums of the form

Z: Cl ”(/1':7)
k.k2|han,

which only affects the coefficients of square powers
of g but does not change the modular properties.

We win the moonshine game when we can exhibit
modular MT series (i.e. multipliers and constants ¢ )
such that the there exists decompositions of modules
into sums of irreducible representations with positive
integer coefficients. We have done this to order ¢ .
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In constructing this class of weight 1/2 forms we are also
allowed to add sums of the form

Z: 'l U(/m':r]
k.k=|h,n,

which only affects the coefficients of square powers
of g but does not change the modular properties.

We win the moonshine game when we can exhibit
modular MT series (i.e. multipliers and constants ¢ )
such that the there exists decompositions of modules
into sums of irreducible representations with positive
integer coefficients. We have done this to order ¢ .
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In constructing this class of weight 1/2 forms we are also
allowed to add sums of the form

X e O(k>*7)
k.k2|hon,

which only affects the coefficients of square powers
of g but does not change the modular properties.

We win the moonshine game when we can exhibit
modular MT series (i.e. multipliers and constants ¢ )
such that the there exists decompositions of modules
into sums of irreducible representations with positive
integer coefficients. We have done this to order ¢ .
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Discriminant Property

One surprising (to me) aspect of this new kind of
moonshine is the fact that it exhibits a discriminant
property similar to that of Umbral Moonshine and the
discriminant property is linked to the discriminants of
guadratic forms used in the computation of the
coefficients as traces of singular moduli.

Let me first explain the discriminant property of
Umbral Moonshine for the case X = A7, G = My,
at a glance.
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Table 8: Character table of G'%) ~ My,

q FS 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B TA 7B 8A 10A 11A 12A 12B 14A 14B 15A 15B 21A 21B 23A 23B

g 1A 1A 1A 3A3B2A2A2B5A3A3B7A 7TB4B 5A 11A 6A 6B T7A 7B 15A 15B 21A 21B 23A 23B
q 1A 2A 2B 1A1A4A4B4C5A 2A 2B 7B TASA 10A 11A 4A 4C 14B 14A 5A H5A 7B T7A 23A 23B
g° 1A 2A 2B 3A3B4A 4B4C 1A 6A 6B 7B TA 8A 2B 11A 12A 12B 14B 14A 3A 3A 21B 21A 23B 23A
g 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 1A 1A 8A 10A 11A 12A 12B 2A 2A 15B 15A 3B 3B 23B 23A
q' 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7TA 7B 8A 10A 1A 12A 12B 14A 14B 15B 15A 21A 21B 23B 23A
g° 1A 2A 2B 3A 3B 4A 4B 4C 5A 6A 6B 7TA 7B 8A 10A 11A 12A 12B 14A 14B 15A 15B 21A 21B 1A 1A
X1 b 1 1 1 1 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 + 2 7 1 5-1-1 3-1 3 1-1 2.2 1 1 1 1 1 00 0 0 1 -1 0 0
X3 45 -3 5 0 3-3 1 1 0 0-1/by by~1 0 1 0 1&by=b;y O O /by b -1 -1
X4 45 3 51 0 } -3 1 1 0 0-=1 by by —1 0 1 0 1 =by —b7 0 0 by b- 1 1
X 231 7 -9 -3 0-1-1 3 1 1 0 O 0-1 1 0 -1 0 0 0By by 0 0 1 1
X ¢ 231 7 9 3 0-1-1 3 1 1 0 0 0-1 1 0 1 0 0 0 by bys 0 0 1 1
X7 B 252 28 12 9 0 4 4 0 2 1 0 O 0 0 2 1 1 0 0 0 1 -1 0 0 1 1
X 8 + 253 13-11 10 1-3 1 1 3-2 1 1 1-1 1 0 0 1 1 1 0 0 1 1 0 0
X9 + 183 35 3 6 0 3 3 3-2 2 0 0 0-1 2 1 0 0 0 0 1 1 0 0 0 0
X1 7T70-14 10 5-7 2-2-2 0 1 1 0 O O O O 1 1 0 0 0 0 0 0 by bos
X11 TM0-14 10 5-7 2-2-2 0 1 1 O 0 0 O O 1 1 0 0 0 0 0 0 by bos
X12 990-18-10 0 3 6 2-2 0 0-1/by b 0O 0O O O 1 by b O O ‘b by T 1
X13 990 <18 <10 0 3 6 2-2 0 0-1 63 b O O O O 1 by by 0 0 by b 1 ]
X14 ¢ 1035 27 35 0 6 3=-1 3 0 0 2-=1=1 1 0 1 0 0 1 =1 0 0 1 =1 0 0
X15 1035 —21 5 0-3 3 3-1 0 0 126 267 —1 0 1 0 1 0 0 0 0<bsr=b; 0 0
X1t 1035 -21 -5 0-3 3 3-1 0 0 126:26:~1 O 1 O -1 0 O O O=by-=b; 0O O
X17 ‘ 1265 49 —15 5 8=7 1-3 0 1 0-2-=-2 1 0 0 ] 0 0 0 0 0 1 ] 0 0
X18 4 1771 -21 11 16 7 3-5-1 1 0-1 0O 0-1 1 0 0 -1 0 0 1 1 0O 0 0 0
X19 + 2024 8 24 1 8 8 0 0-1-1 0 1 1 0O ] 0 ] 0 ] 1 1 1 ] ] 0 0
X2 } 2277 21 -19 0 6-3 1-3-3 0 2 2 2-1 1 0 0 0 0O 0 0 0 1 1 0 0
X21 v 3312 48 16 0-6 0 0 0-3 0-2 1 1 0O 1 1 0 0 -1 1 0 0 ] 1 0 0
X 22 } 3520 64 0O 10-8 0 0 0 0-2 0-1-1 0 O O O O 1 1 0 0 1 1 1 1
X23 + 2313 49 915 0 1 i-3 3 1 0 0 0-=1 1 0 1 0 0 0 0 0 0 0 0 0
X 24 } 5544 =56 24 9 0-8 0 0-1 1 O O O O 1 0 1 0 0 0 1 1 0 0 1 ]
X 25 + o796 —28 36 9 0-4 4 0 1-1 0 O O O 1 1 1 0 0 0 1 1 0 0 0 0
X 2¢ + 110395 -21-45 0O 0 3-1 3 0 O 0O O O 1 o o 0 O O O O O 0 0 1 ]
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r . s

() \f'/ T‘ ::V‘:

/& () y =7 (D)
I v \/ “ v)

Table 48: Decomposition of [\';:

X1 X2 Xa X4 Xo Xo X7 X8 X X0 X111 X X1 X14 X X16 X1 X18 X190 X20 X X X X X2 X2

1 2000 O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 181 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 00 0 0 1 1 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 00 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 OO0 00 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
39 0O0O0O0O O O O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
47 00 O0O0O O O 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
55 0O00O0 O O O 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 2 2 2 2
63 0Oo0 00 0 0 0 0 0 0 0 1 I 0 | 1 2 0 0 2 2 2 ! 2 2 6
71 Oo00O0O O O O 0 2 2 2 0 0 2 2 2 0 2 2 2 4 4 4 8 8 10
79 oo0oo0oo0 2 2 0 2 2 0 0 2 2 2 2 2 1 ! | 6 6 X 12 10 10 24
RT 0 0 0 0 0 0 0 0 0 i | | i ] i ] 2 R 10 o) 14 12 22 24 26 10
95 0 2 0 0 2 2 2 ! 4 6 6 R 8 | o} ] 12 12 12 IR 26 J0 10 J8 10 K0
103, 0 0 2 2 2 2 4 2 6 10 10 14 14 18 14 14 16 26 30 28 14 44 70 80 84 136
111 00 0 0 8 4 6 14 16 16 24 24 22 24 24 34 I8 16 58 80 86 128 126 132 254
119/ 0 0 2 2 | 8 12 8 18 38 38 40 40 46 44 14 46 T8 86 B8R 138 144 218 238 246 124
1270 0 2 2 2 18 18 18 22 36 G50 S50 72 72 68 72 72 100 122 140 170 232 252 378 382 100 742
13| 0 2 8 8 26 256 30 26 54 94 94 116 116 130 124 124 140 246 262 392 410 630 670 704 1222

22

212
143 0 6 6 6 50 50 50 58100 148 148 194 194 192 202 202 256 342 388 454 654 704 1044 1074 1120 2058
151 0 41818 68 68 B0 72150 252 252 318 318 346 332 332 394 582 664 7221062 1116 1702 1800 1880 3320
159 0 14 20 20 126 126 128 138 254 390 390 516 516 520 536 536 676 904 1036 1196 1716 1836 2764 2846 2980 5408
167 2 20 40 40 182 182 214 200 396 652 652 814 Bl4 872 860 860 1020 1476 1684 1862 2742 2902 4384 4622 4828 8572
175 2 32 55755 314 314 328 346 640 988 988 1298 1298 1336 1348 1348 1686 2302 2630 3000 4324 4616 6950 7204 7532 13620
2 40 98 98 460 460 512 496 972 1590 1590 2020 2020 2144 2118 2118 2546 3638 4162 4624 6768 7166 10856 11376 11898 21204
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Table 48: Decomposition of [\';:.

X1 X2 X3 X4 Xo X6 X7 X8 X X0 X111 X X X114 X X116 X1 X18 X190 X20 X X X X X X2

1 2000 O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 181 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 00 0 0 1 1 0o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 00 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 OO0 00O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
39 0O0O0O0O O O O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
47 00 O0O0O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2
b 0O0O0O0O O O O 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 2 2 2 2
63 Oo0 00 0 0 0 0 0 0 0 | 1 0 | 1 2 0 0 2 2 2 1 2 2 6
71 o000 O 0O 0 0 2 2 2 0 0 2 2 2 0 2 2 2 4 4 4 8 8 10
79 oo0oo0oo0o 2 2 0 2 2 (0 0 2 2 2 2 2 4 ! | 6 6 b 12 10 10) 24
RT 00 0 0 0 0 0 0 0 i | | i §] i ] 2 R 10 o) 14 12 22 24 26 10
95 0 2 0 0 2 2 2 ! 4 6 6 o) 8 | o} ! 12 12 12 I8 26 J0 10 J8 10 K0
103, 0 0 2 2 2 2 4 2 6 10 10 14 14 18 14 14 16 26 30 28 14 44 70 80 84 136
111 00 0 0 8 1 6 14 16 16 24 24 22 24 24 34 38 16 5H8 RO R6 128 126 132 254
119/ 0 0 2 2 | 8 12 8 18 38 38 40 40 46 44 14 46 T8 86 BR 138 144 218 238 246 124
27 0 2 2 2 18 18 18 22 36 50 S50 T2 T2 68 72 72 100 122 140 170 232 252 378 382 100 742
13| 0 2 8 8 26 256 30 26 54 94 94 116 116 130 124 124 140 212 246 262 392 410 630 670 704 1222
143] 0 6 6 6 50 50 50 58 100 148 148 194 194 192 202 202 256 342 388 454 654 704 1044 1074 1120 2058
151 0 41818 68 68 80 72150 252 252 318 318 346 332 332 394 582 664 7221062 1116 1702 1800 1880 3320

159 0 14 20 20 126 126 128 138 254 390 390 516 516 520 536 536 676 904 1036 1196 1716 1836 2764 2846 2980 5408
167 2 20 40 40 182 182 214 200 396 652 652 814 Bl4 872 860 860 1020 1476 1684 1862 2742 2902 4384 4622 4828 8572
175 2 32 55755 314 314 328 346 640 988 988 1298 1298 1336 1348 1348 1686 2302 2630 3000 4324 4616 6950 7204 7532 13620
183 2 40 98 98 460 460 512 496 972 1590 1590 2020 2020 2144 2118 2118 2546 3638 4162 4624 6768 7166 10856 11376 11898 21204
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[ ]

Table 7: The irreducible representations of type n.

Armed with the preceding discussion we are now ready to st:

discriminant property of umbral moonshine. For the purpose of stating this we temporarily write

tion of G'*) with character g — ¢, (d) where the coefficients

K"} for the ordinary represent

cqy.r(d) are assumed to be those given in §C,

Proposition 5.10. Let n be one of the integers in Table 7 and let A,, |

be the smallest positive

integer such that D nA; is a discriminant of H''. Then K.’ ,, . 0,.Sp., where p,, and o,
are dual irreducible representations ;-7" type n. Conversely, ‘7'. 0 1s an irreducible representation
of type n and —D 1is the smallest positive integer such that K ., has o as an irreducible
constituent then there exists an nleger A such that D nA

tate our main observation for the
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Conjecture 5.11. If D is a discriminant of H'" which satisfies D -nA“ for some integer A
then the representation K’ p/as has at least one dual pair of irreducible representations of type

n arising as irreducible constituents.

Conjecture 5.12. For £ € A = {2,3,4,5,7,13} the representation K, ., 15 a doublet if and

only if D # —nA* for any integer A for any n satisfying the conditions of Proposition| 5.7,

To see some evidence for Conjecture 5.12/ one can inspect the proposed decompositions of

M ~lE) - . ~ . . . . .
the representations K ; in the tables in D) for the following discriminants:

e —D=17,15,23,63,135,175,207 for £ =2

“y

For ¢ =2.X = A{' the discriminant property was
proved by Creutzig, Hohn and Miezaki
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The Discriminant property for Thompson moonshine at
a glance.

First, keep in mind that the coefficient of ¢" In 7,
can be computed in terms of traces of singular
moduli involving quadratic forms of discriminant 3n
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\ 3 3 ' 15H \ 3 20) 2V 15 vV —3 x4 21v3 v—=3x9 31V 3

e 0y . »(0) e(l 14 o . . . s s
l'able 14: Decompositions of Wy, ', Wy, ', part one. The representations appearing in the discriminant

conjecture are in bold font. r a: /o 9 Y :
. " \ 3 x 8 21V 0 \ 3 x 32 Lav O

{q
l ‘trl 1’ 1.4 V-l V.') “!- ‘. V\ V'.i Vltl ‘lll 1'1‘.' \-i.'i vl-‘.l Vl.': y]'i vl? VIH l'rﬂl 1:_’|\ ‘.‘,". v22 VQ;; 17.".

-3 200 0 0O0O0O0 O 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0O 010 O O0OOOO O 0O 0 0 0 0 0 0 0 0 0 0 O 0 0 0
1 000 0 O00O0O0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0 0 0
4 000 1T 1 0O0O0 O 0O 0 0 0 0 0 0 0 0O 0 0 0 0 0 0
5 000 O O0O0©O0OO0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 000 0 O0O0O0O0 O 0O 0 0 0 0 0 0 1 1 0 0 0 0 0 0
9 O 00 O 0O0O0OUO0O O 0O 0 0 0 0 0 0 0 0 0 0 0 1 1 0
12 000 0 0O0O0O0 O 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0
13 000 0O O0O0O0OO0 O 0 0 0 0 1 1 0 0 0 0 0 O 0 0 0
16 000 0O O0O0OOO0O O 0O 0 0 0 0 0 0 0 (
(
(
(

— g
o O
= O
—
o O
—
o O

17 000 O OO0OO0OO0O O O O O O 0O 0 0 O
20 000 O OO0 OO0 1 1 0 0 0 0O 0 0 0

[
o
o
o
o

21 oOO O OOOOOO OOTUOU O O OO @O ) 0 0 2 2 2 2
24 000 O OOOO0O O O OO O 2 4 1 4 2 6 4 8 8 8
2 00O O OOOOO O 0 2 2 2 2 4 4 8 8 10 12 12 12

54 54 56

2

2 2
28 000 2 2022 0 0 214 14 8 8 10 18 18 38 28 48
29 00 2 0 00 2 2 2 218 18 18 18 20 40 40 54 58 T4 86 86 86
32 0 0 0 0 0 40 10 10 10 62 62 78 78 92 173 173 208 256 296 368 368 368

NN ]
b
b

plus one more page to give decompositions into all irreps
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The discriminant property for Thompson moonshine in
detall

For each m>0 equal to O or 1 mod 4 we have a unique
decomposition —3m = Dy(m)\* with Dy(m) a negative
fundamental discriminant.

Proposition 4.3. If Dy(m) is a negative fundamental discriminant satisfying

1. there ezists an element of Th of order |Dy(m)|, and

2. there erists a positive integer X such that —3m = Dy(m)A? is a discriminant of

Fyand (A, 3) =1,

then there exists at least one pair of irreducible representations V and V of Th and
at least one element g € Th such that try(g) is not rational but

try(g9),triz(g) ¢ -Q{\/f)‘.(m)} (4.4)

and |Dy(m)| divides o(g).
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Proposition 4.4. Let Dy(m) be one of the fundamental discriminants satisfying the
two conditions of Proposition 4.3 and let A, be the smallest positive integer such that

3m = D”(m),\f” 18 a discriminant of F5. Then W,, =V ®V where V and V are
dual irreducible representations of type Dy(m).

Remark 4.1. Since the Schur indez of all irreducible representations of Th is one
[20], it follows that Th representations of type Dy can be realized over Q|+/Dy|.

There are analogs of the two discriminant
conjectures | quoted for Umbral Moonshine, but they
appear to be slightly more subtle here and we are
still trying to formulate them carefully.
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Proposition 4.4. Let Dy(m) be one of the fundamental discriminants satisfying the
two conditions of Proposition 4.3 and let A\, be the smallest positive integer such that

3m = D”(m),\f” 18 a discriminant of F5. Then W,, =V ®V where V and V are
dual irreducible representations of type Dy(m).

Remark 4.1. Since the Schur indez of all irreducible representations of Th is one
[20], it follows that Th representations of type D, can be realized over Q_\/D‘, .

There are analogs of the two discriminant
conjectures | quoted for Umbral Moonshine, but they
appear to be slightly more subtle here and we are
still trying to formulate them carefully.
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Discussion

The evidence for moonshine for the Thompson group
Is at the same level as evidence for the various cases
of Umbral Moonshine. In particular we have
modularity of all MT series, and decompositions with
positive integer multiplicities.

This moonshine shares some of the properties of
Umbral Moonshine, including the module structure
and discriminant property, but the group is much
larger and not connected to the Niemeier lattices.

There is however a rank 248 even self-dual lattice
with Th (times Z_2) as automorphism group.
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Where does this fit into the known moonshine structures?

Monstrous Moonshine and offspring
(Baby Monster, modular moonshine
of Borcherds, Ryba, Griess, Lam ...)

Conway moonshine and c=12 relatives
preserving other superconformal algebras

Mathieu moonshine and its extension
to Umbral Moonshine?

| don’t know. It seems to be distinct from all of these. It
may indicate that the universe of moonshine is larger
than we currently think.
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