Title: Multi-Field Born-Infeld Lagrangians, Nilpotent Fields, N=2 Supersymmetry and Cubic Polynomials

Date: Apr 10, 2015 11:45 AM

URL: http://pirsa.org/15040107

Abstract: We show how nonlinearly realized N=2 supersymmetry gives rise, in the low-energy limit, to an N=1 Born-Infeld U(1) Lagrangian. We then extend the construction to many N=2 vector multiplets. We show how the classification of inequivalent nilpotency constraints arising in the low-energy limit is connected to the theory of cubic polynomials and curves. We comment on causality of signal propagation in these systems.

Pirsa: 15040107 Page 1/44

MULTI-FIELD BORN-INFELD LAGRANGIANS, NILPOTENT N=2 FIELDS AND CUBIC POLYNOMIALS

(FERRARA, SAGNOTTI, M.P., YERANIAN)

- CONCRETE REALIZATION OF N=2 BROKEN
 TO N=1
- LOW ENERGY LIMIT: NILPOTENT FIELDS AND N=2 ==> N=1 VOLKOV-AKULOV ACTION (BORN-INFELD)
- MANY VECTOR MULTIPLETS
- FIELD REDEFINITIONS AND INEQUIVALENT ACTIONS. ROLE OF CUBIC PREPOTENTIALS

Pirsa: 15040107 Page 2/44

Pirsa: 15040107 Page 3/44

MULTI-FIELD BORN-INFELD LAGRANGIANS, NILPOTENT N=2 FIELDS AND CUBIC POLYNOMIALS

(FERRARA, SAGNOTTI, M.P., YERANIAN)

- CONCRETE REALIZATION OF N=2 BROKEN
 TO N=1
- LOW ENERGY LIMIT: NILPOTENT FIELDS AND N=2 ==> N=1 VOLKOV-AKULOV ACTION (BORN-INFELD)
- MANY VECTOR MULTIPLETS
- FIELD REDEFINITIONS AND INEQUIVALENT ACTIONS. ROLE OF CUBIC PREPOTENTIALS

Pirsa: 15040107 Page 5/44

A CONCRETE EXAMPLE OF N=2 BROKEN TO N=1

ANTONIADIS, PARTOUCHE & TAYLOR '95

ONE N=2 VECTOR MULTIPLET

=

ONE N=I VECTOR MULTIPLET V + ONE N=I CHIRAL MULTIPLET X

$$L = i[X\bar{U}' - \bar{X}U']_D + i[U''W^2 + U'm + eX]_F + c.c.$$
$$W_{\alpha} = \bar{D}^2 D_{\alpha} V \qquad U = \tau X^3$$

Pirsa: 15040107 Page 6/44

THE APT ACTION CONTAINS BOTH MASSLESS AND MASSIVE DEGREES OF FREEDOM

IN THE IR IT REDUCES TO THE ACTION OF THE GOLDSTINO MULTIPLET FOR THE PARTIAL BREAKING N=2 N=1

EQUATIONS OF MOTION:

$$\bar{D}^2(\bar{U}' - \bar{X}U'') + U'''W^2 + U''m + e = 0$$

SETTING TO ZERO THE FERMIONS,
THE LAST COMPONENT OF THESE EQUATIONS IS

$$-U'''\bar{F}F + U'''G_+^2 + U'''Fm + \text{ derivative terms } = 0$$

Pirsa: 15040107 Page 7/44

Pirsa: 15040107 Page 8/44

$$X = Y + x, \qquad U''(x)m + e = 0$$

THE IR LIMIT IS EQUIVALENT TO SENDING ALL MASS SCALES TO INFINITY, I.E.

$$|U'''| \gg |U''(x)|$$

IN THE LIMIT, A SELF-CONSISTENT SOLUTION FOR THE CHIRAL FIELD IS

$$-Y\bar{D}^2\bar{Y} + W^2 + Ym = 0$$

$$X = Y + x, \qquad U''(x)m + e = 0$$

THE IR LIMIT IS EQUIVALENT TO SENDING ALL MASS SCALES TO INFINITY, I.E.

$$|U'''| \gg |U''(x)|$$

IN THE LIMIT, A SELF-CONSISTENT SOLUTION FOR THE CHIRAL FIELD IS

$$-Y\bar{D}^2\bar{Y} + W^2 + Ym = 0$$

THE LOWEST COMPONENT IS

$$(m - \bar{F})y + \lambda\lambda = 0$$

SO THAT Y OBEYS THE NILPOTENCY CONSTRAINTS

$$Y^2 = 0, YW_\alpha = 0$$

THE FULL ACTION

$$L = \operatorname{Im} eF$$

IS THE SAME AS THE NONLINEAR ACTION DESCRIBING A GOLDSTINO N=1 SUPERMULTIPLET (N=1 VOLKOV-AKULOV ACTION)

BUT IT IS ALSO AN N=1 BORN-INFELD ACTION, WHOSE BOSONIC PART IS

$$L = \frac{m}{2} (\operatorname{Re} e) \left[1 - \sqrt{1 + \frac{4}{m^2} G^2 - \frac{4}{m^4} (G\tilde{G})^2} \right] - \frac{\operatorname{Im} e}{m} G\tilde{G}$$

$$-\bar{F}F + G_{+}^{2} + Fm = 0$$

SOLVING FOR FAND PLUGGING BACK IN THE ACTION WE FIND A NONLINEAR (BORN-INFELD) ACTION FOR G

$$L = \operatorname{Im} eF$$

WE CAN DO BETTER AND SOLVE THE EQUATIONS OF MOTION SUPERSYMMETRICALLY TO EXPRESS X IN TERMS OF W

SHIFT THE CHIRAL SUPERFIELD X AS

$$X = Y + x, \qquad U''(x)m + e = 0$$

Pirsa: 15040107 Page 12/44

OTHER GENERALIZATIONS ARE POSSIBLE (ASCHIERI, BRACE, MORIARU, ZUMINO)

OTHER GENERALIZATIONS ARE POSSIBLE (ASCHIERI, BRACE, MORIARU, ZUMINO)

OURS POSSESSES AN N=2 SUSY LINEARLY REALIZED IN THE UV

WE START FROM AN N=2 THEORY WRITTEN IN N=1
SUPERFIELD LANGUAGE:
n ABELIAN VECTOR MULTIPLETS AND n CHIRAL MULTIPLETS

N=2 MEANS THAT THE THEORY IS DEFINED BY A HOLOMORPHIC PREPOTENTIAL

$$U(X) = \frac{i}{2} \underbrace{C_{AB}} X^A X^B + \frac{1}{3!} d_{ABC} X^A X^B X^C$$

NEEDED TO ENSURE POSITIVITY OF KINETIC TERMS

Pirsa: 15040107 Page 14/44

LAGRANGIAN

$$L = \text{Im} \left\{ [U_{AB}W^{A}W^{B} + U_{A}m^{A} - X^{A}e_{A}]_{F} + [X^{A}\bar{U}_{A}]_{D} \right\}$$

AS IN THE n=1 CASE IT IS CONVENIENT TO SHIFT THE SUPERFIELD X BY ITS VEV.

$$X^A = Y^A + x^A, \qquad U_{AB}(x)m^B = e_A$$

LAGRANGIAN

$$L = \text{Im} \left\{ [U_{AB}W^{A}W^{B} + U_{A}m^{A} - X^{A}e_{A}]_{F} + [X^{A}\bar{U}_{A}]_{D} \right\}$$

AS IN THE n=1 CASE IT IS CONVENIENT TO SHIFT THE SUPERFIELD X BY ITS VEV.

$$X^A = Y^A + x^A, \qquad U_{AB}(x)m^B = e_A$$

LAGRANGIAN

$$L = \text{Im} \left\{ [U_{AB}W^{A}W^{B} + U_{A}m^{A} - X^{A}e_{A}]_{F} + [X^{A}\bar{U}_{A}]_{D} \right\}$$

AS IN THE n=1 CASE IT IS CONVENIENT TO SHIFT THE SUPERFIELD X BY ITS VEV.

$$X^A = Y^A + x^A, \qquad U_{AB}(x)m^B = e_A$$

E.O.M. FOR X IN LIMIT $|U_{AB}(x)| \ll |d_{ABC}|$

$$d_{ABC} \left[W^A W^B + Y^B (m^C - \bar{D}^2 \bar{Y}^C) + \frac{1}{2} \bar{D}^2 (\bar{Y}^B \bar{Y}^C) \right] = 0$$

SELF-CONSISTENT ANSATZ IN IR LIMIT

$$d_{ABC}Y^BY^C = 0, d_{ABC}Y^BW^C = 0$$

GENERATES BI CONSTRAINTS

$$d_{ABC}[W^A W^B + Y^B (m^C - \bar{D}^2 \bar{Y}^C)] = 0$$

SELF-CONSISTENT ANSATZ IN IR LIMIT

$$d_{ABC}Y^BY^C = 0, d_{ABC}Y^BW^C = 0$$

GENERATES BI CONSTRAINTS

$$d_{ABC}[W^A W^B + Y^B (m^C - \bar{D}^2 \bar{Y}^C)] = 0$$

SELF-CONSISTENT? BECAUSE OF FIERZ IDENTITY

$$W_{\alpha}^{(A}W_{\beta}^{B}W_{\gamma}^{C)} = 0$$

SELF-CONSISTENT ANSATZ IN IR LIMIT

$$d_{ABC}Y^BY^C = 0, d_{ABC}Y^BW^C = 0$$

GENERATES BI CONSTRAINTS

$$d_{ABC}[W^A W^B + Y^B (m^C - \bar{D}^2 \bar{Y}^C)] = 0$$

SELF-CONSISTENT? BECAUSE OF FIERZ IDENTITY

$$W_{\alpha}^{(A}W_{\beta}^{B}W_{\gamma}^{C)} = 0$$

AFTER SOLVING THE CONSTRAINTS, IN THE IR LIMIT, THE BI LAGRANGIAN IS

$$L = \text{Im} \{ [U_{AB}(x)Y^A \bar{Y}^B]_D - [U_{AB}(x)W^A W^B]_F \}$$

Pirsa: 15040107 Page 21/44

AFTER SOLVING THE CONSTRAINTS, IN THE IR LIMIT, THE BI LAGRANGIAN IS

$$L = \text{Im} \{ [U_{AB}(x)Y^A \bar{Y}^B]_D - [U_{AB}(x)W^A W^B]_F \}$$

SECOND SUSY

 $\delta W_{\alpha}^{A} = m^{A} \eta_{\alpha} + \text{ terms vanishing on the vacuum}$

OUR THEORIES ARE EQUIVALENT UNDER LINEAR FIELD REDEFINITIONS

ON CUBIC TERM ONLY

HOW MANY INEQUIVALENT INTERACTIONS ARE THERE, UP TO LINEAR FIELD REDEFINITIONS?

SOLUTION KNOWN FOR n=2,3 AND, PARTIALLY FOR n=4; UNKNOWN FOR GENERAL n

Pirsa: 15040107 Page 23/44

OUR THEORIES ARE EQUIVALENT UNDER LINEAR FIELD REDEFINITIONS

ON CUBIC TERM ONLY

HOW MANY INEQUIVALENT INTERACTIONS ARE THERE, UP TO LINEAR FIELD REDEFINITIONS?

SOLUTION KNOWN FOR n=2,3 AND, PARTIALLY FOR n=4; UNKNOWN FOR GENERAL n

Pirsa: 15040107 Page 24/44

TWO RELATED PROBLEMS

I) FIND CANONICAL FORMS FOR THE (CUBIC) PREPOTENTIAL

2) FIND INVARIANTS CHARACTERIZATIONS OF INEQUIVALENT THEORIES

Pirsa: 15040107 Page 25/44

TWO RELATED PROBLEMS

- I) FIND CANONICAL FORMS FOR THE (CUBIC) PREPOTENTIAL
 - 2) FIND INVARIANTS CHARACTERIZATIONS OF INEQUIVALENT THEORIES

WE WILL START WITH THE SIMPLEST NONTRIVIAL CASE: n=2

CUBIC PART OF PREPOTENTIAL

=
REAL HOMOGENEOUS CUBIC IN X,Y

$$U = (X - aY)(X - bY)(X - cY)$$

 $a, b, c = \text{real or } a = \text{real }, b = c*$

Pirsa: 15040107 Page 26/44

Pirsa: 15040107 Page 27/44

LINEAR, HOMOGENEOUS COORDINATE CHANGES = GL(2,R)

A) THREE REAL, DISTINCT a,b,c

WITH GL(2,R) SET a=1,b=0,c=-1

$$U = X(X^2 - Y^2)$$

Pirsa: 15040107 Page 28/44

INVARIANT POLYNOMIALS: THEY CLASSIFY THE ORBITS OF GL(2,R) [SAME AS SL(2,R)]

$$I_4 = -27d_{222}^2d_{111}^2 + d_{221}^2d_{112}^2 + 18d_{222}d_{111}d_{112}d_{221} - 4d_{111}d_{122}^3 - 4d_{222}d_{211}^3$$

CASE A): $I_4 > 0$

CASE B): $I_4 < 0$

CASE C): $I_4 = 0$

CASE D): $I_4 = 0, \, \partial I_4 = 0$

INVARIANT POLYNOMIALS: THEY CLASSIFY THE ORBITS OF GL(2,R) [SAME AS SL(2,R)]

$$I_4 = -27d_{222}^2d_{111}^2 + d_{221}^2d_{112}^2 + 18d_{222}d_{111}d_{112}d_{221} - 4d_{111}d_{122}^3 - 4d_{222}d_{211}^3$$

CASE A): $I_4 > 0$

CASE B): $I_4 < 0$

CASE C): $I_4 = 0$

CASE D): $I_4 = 0$, $\partial I_4 = 0$

$$\partial I_4 = 0$$

INEQUIVALENT QUADRATIC TERMS (UP TO SHIFTS IN X,Y)

$$A) \ a(X^2 + Y^2)$$

$$C) cY^2$$

A)
$$a(X^2 + Y^2)$$
 B) bXY C) cY^2 D) $aY^2 + bXY$

CASE n=3: CUBIC POLYNOMIALS UP TO GL(3,R): REPRESENTATIVE POLYNOMIALS

A BIT OF (PROJECTIVE) GEOMETRY:
A CUBIC HOMOGENEOUS POLYNOMIAL
IN 3 REAL VARIABLES DEFINES A
CUBIC CURVE ON THE PLANE

(ON THE COMPLEX, IT DEFINES A GENUS ONE CURVE)

Pirsa: 15040107 Page 31/44

CASE n=3: CUBIC POLYNOMIALS UP TO GL(3,R): REPRESENTATIVE POLYNOMIALS

A BIT OF (PROJECTIVE) GEOMETRY:
A CUBIC HOMOGENEOUS POLYNOMIAL
IN 3 REAL VARIABLES DEFINES A
CUBIC CURVE ON THE PLANE

(ON THE COMPLEX, IT DEFINES A GENUS ONE CURVE)

THE EASIEST CASE IS THE NON-DEGENERATE ONE:

 $d_{ABC}X^BX^C$ not all = 0 on curve $d_{ABC}X^AX^BX^C = 0$

Pirsa: 15040107 Page 32/44

$$U = Y^2 Z - X^3 + \epsilon X^2 Z, \qquad \epsilon = 0, \pm 1$$

$$U = Y^2 Z - X^3 + \epsilon X^2 Z, \qquad \epsilon = 0, \pm 1$$

REDUCIBLE: QUADRIC TIMES LINE: QL

$$Q=X^2+Y^2+Z^2, \qquad L=X+Y+Z$$

$$Q=X^2+Y^2-Z^2, \qquad L=X \text{ or } L=Z \text{ or } L=X+Z$$

$$U = Y^2 Z - X^3 + \epsilon X^2 Z, \qquad \epsilon = 0, \pm 1$$

REDUCIBLE: QUADRIC TIMES LINE: QL

$$Q=X^2+Y^2+Z^2, \qquad L=X+Y+Z$$

$$Q=X^2+Y^2-Z^2, \qquad L=X \text{ or } L=Z \text{ or } L=X+Z$$

REDUCIBLE: THREE LINES

$$U=XYZ, \qquad U=X(Y^2+Z^2)$$
 non concurrent $U=XY(X+Y), \qquad U=X(X^2+Y^2)$ concurrent $XY^2, \qquad X^3 \qquad 2 \text{ or } 3 \text{ coincident}$

$$U = Y^2 Z - X^3 + \epsilon X^2 Z, \qquad \epsilon = 0, \pm 1$$

REDUCIBLE: QUADRIC TIMES LINE: QL

$$Q=X^2+Y^2+Z^2, \qquad L=X+Y+Z$$

$$Q=X^2+Y^2-Z^2, \qquad L=X \text{ or } L=Z \text{ or } L=X+Z$$

REDUCIBLE: THREE LINES

$$U=XYZ, \qquad U=X(Y^2+Z^2)$$
 non concurrent $U=XY(X+Y), \qquad U=X(X^2+Y^2)$ concurrent $XY^2, \qquad X^3 \qquad 2 \text{ or } 3 \text{ coincident}$

A GRAPHIC SUMMARY (OVER THE COMPLEX)

Pirsa: 15040107 Page 37/44

SUMMARY TABLE OF SINGULAR CASES

R	C	Polynomial	P_4	Q_6	∂I_{12}	∂P_4	∂Q_6	$\partial^2 I_{12}$	$\partial^2 P_4$	$\partial^2 Q_6$
A^1	A_c^1	$-x^3 - x^2z + y^2z$	$\frac{8}{27}$	$\frac{16}{243}$	≠ 0	≠ 0	≠ 0	≠ 0	≠ 0	≠ 0
A^2	A_c^1	$-x^3 + x^2z + y^2z$	$\frac{8}{27}$	$-\frac{16}{243}$	$\neq 0$	≠ 0	$\neq 0$	≠ 0	≠ 0	≠ 0
A^3	A_c^2	$-x^3+y^2z$	0	0	0	≠ 0	$\neq 0$	≠ 0	≠ 0	≠ 0
B^1	B_c^1	$(x+y+z)(x^2+y^2+z^2)$	8 3	$-\frac{16}{9}$	0	≠ 0	≠ 0	≠ 0	≠ 0	≠ 0
B^2	B_c^1	$x(x^2+y^2-z^2)$	$\frac{8}{27}$	$\frac{16}{243}$	0	≠ 0	≠ 0	≠ 0	≠ 0	≠ 0
B^3	B_c^1	$z(x^2 + y^2 - z^2)$	$\frac{8}{27}$	$-\frac{16}{243}$	0	≠ 0	≠ 0	≠ 0	≠ 0	≠ 0
B^4	B_c^2	$(x+z)(x^2+y^2-z^2)$	0	0	0	≠ 0	0	0	≠ 0	≠ 0
C^1	C_c^1	6xyz	24	48	0	≠ 0	≠ 0	0	≠ 0	≠ 0
C^2	C_c^1	$x(y^2+z^2)$	$\frac{8}{27}$	$-\frac{16}{243}$	0	≠ 0	≠ 0	0	≠ 0	≠ 0
C^3	C_c^2	xy(x+y)	0	0	0	0	0	0	<i>≠</i> 0	≠ 0
C^4	C_c^2	$x(x^2+y^2)$	0	0	0	0	0	0	<i>≠</i> 0	<i>≠</i> 0
C^5	C_c^3	xy^2	0	0	0	0	0	0	<i>≠</i> 0	0
C^6	C_c^4	x^3	0	0	0	0	0	0	0	0

Pirsa: 15040107 Page 38/44

FURTHER DEVELOPMENTS

 EQUATIONS FOR AUXILIARY FIELDS CAN BE SOLVED ALGEBRAICALLY FOR ALL CASE FOR n=2,3 BUT THE SOLUTION MAY NOT BE ILLUMINATING....

Pirsa: 15040107 Page 39/44

(1)
$$\operatorname{Im} F^{i} = \frac{G^{i} \cdot \tilde{G}^{i} m^{j} m^{k} + A^{i} \sigma + B^{i} \sigma^{2} + C^{i} \sigma^{3}}{\left[(m^{i})^{3} + (m^{j})^{3} + (m^{k})^{3}\right] \sigma^{2} - m^{i} m^{j} m^{k} (1 + 2\sigma^{3})},$$
where $(i, j, k) = 1, 2, 3, (i \neq j \neq k)$

$$A^{i} = 2G^{j} \cdot \tilde{G}^{k} m^{j} m^{k} - G^{j} \cdot \tilde{G}^{j} (m^{k})^{2} - G^{k} \cdot \tilde{G}^{k} (m^{j})^{2},$$

$$B^{i} = G^{j} \cdot \tilde{G}^{j} m^{i} m^{j} + G^{k} \cdot \tilde{G}^{k} m^{i} m^{k} - G^{i} \cdot \tilde{G}^{i} (m^{i})^{2} - 2G^{i} \cdot \tilde{G}^{i} (m^{j})^{2},$$

$$-2G^{i} \cdot \tilde{G}^{j} (m^{j})^{2} - 2G^{i} \cdot \tilde{G}^{k} (m^{k})^{2},$$

$$C^{i} = 2m^{i} \left(-G^{j} \cdot \tilde{G}^{k} m^{i} + G^{i} \cdot \tilde{G}^{k} m^{j} + G^{i} \cdot \tilde{G}^{j} m^{k}\right).$$

(3)
$$H^{1} = \sqrt{\frac{A_{11} A_{22}}{A_{22} + 2 U \sigma \left(A_{33} \sigma + \sqrt{A_{22} A_{33} U^{2} - 2A_{22}^{2} U \sigma + A_{33}^{2} \sigma^{2}}\right)}},$$

where U is a solution of the fourth-order equation

$$U^{4}(A_{11}^{2} - 4A_{22}A_{33}\sigma^{2}) + 4U^{3}\sigma^{2}(A_{11}A_{33} + 2A_{22}^{2}\sigma) - 2A_{11}A_{22}U^{2}(1 + 8\sigma^{3})$$

$$(4) + 4U\sigma^{2}(A_{22}A_{33} + 2A_{11}^{2}\sigma) + A_{22}^{2} - 4A_{11}A_{33}\sigma^{2} = 0$$
that is consistent with the weak-field limit.

Definitions:

(5)
$$A_{ii} = R^{ii} + 2 \sigma R^{jk}$$
, with $(i, j, k) = 1, 2, 3, (i \neq j \neq k)$.

(6)
$$R^{AB} = G^A \cdot G^B + \frac{m^A m^B}{4} - \operatorname{Im} F^B \operatorname{Im} F^C$$

POSITIVITY OF THE BI LAGRANGIAN IS MUCH EASIER TO STUDY IN THE UV N=2 THEORY. IN SOME CASES POSITIVITY DOES NOT REQUIRE A QUADRATIC TERM IN THE PREPOTENTIAL (STUDY USING SYLVESTER'S CRITERION)

Polynomial	Determinant	Minor2	Minor1
$x^3 + y^3 + z^3 + 6\sigmaxyz$	$x y z (1 + 2 \sigma^3)$	$xy - z^2 \sigma^2$	x
	$-(x^3+y^3+z^3) \sigma^2$		
$-x^3 - x^2z + y^2z$	$3xy^2 - x^2z + y^2z$	$-\frac{z}{9}\left(3x+z\right)$	$-x-\frac{z}{3}$
$-x^3 + x^2z + y^2z$	$\frac{xy^2}{9} - \frac{1}{27} \left(x^2 + y^2 \right) z$	$\frac{z}{9}(-3x+z)$	$-x + \frac{z}{3}$
$-x^3 + y^2 z$	$\frac{xy^2}{9}$	$-\frac{xz}{3}$	-x
$(x+y+z)(x^2+y^2+z^2)$	$\frac{1}{27}(x+y+z)\left[x^2+y^2\right]$	$\frac{2}{9}\left(x^2 + 4xy + y^2\right)$	$x + \frac{y+z}{3}$
	$+8yz + z^2 + 8x(y+z)$	$+\frac{1}{9}\left[4(x+y)z+z^2\right]$	
$x\left(x^2+y^2-z^2\right)$	$-\frac{x}{27}\left(3x^2-y^2+z^2\right)$	$\frac{1}{9} \left(3x^2 - y^2 \right)$	x
$z\left(x^2+y^2-z^2\right)$	$-\frac{z}{27}\left(x^2+y^2+3z^2\right)$	$\frac{z^2}{9}$	$\frac{\tilde{z}}{3}$
$(x+z)(x^2+y^2-z^2)$	$-\frac{4}{27}(x+z)^3$	$\frac{1}{9}\left[(x+z)(3x+z)-y^2\right]$	$x + \frac{z}{3}$
6 x y z	2 x y z	$-z^2$	0
$x\left(y^2+z^2\right)$	$-\frac{x}{27}\left(y^2+z^2\right)$	$-\frac{y^2}{9}$	0
xy(x+y)	0	$\frac{1}{9}\left(-x^2 - xy - y^2\right)$	$\frac{y}{3}$
$x\left(x^2+y^2\right)$	0	$\frac{1}{9} \left(3x^2 - y^2 \right)$	x
$x y^2$	0	$-\frac{y^{2}}{9}$	0
x^3	0	0	x

Pirsa: 15040107 Page 41/44

FURTHER DEVELOPMENTS

- EQUATIONS FOR AUXILIARY FIELDS CAN BE SOLVED ALGEBRAICALLY FOR ALL CASE FOR n=2,3
- IN SOME CASES THE ELECTRIC FIELD OF POINT SOURCES IS BOUNDED, AS IN THE BOSONIC BORN-INFELD LAGRANGIAN. THIS SEEMS TO HAPPEN WHEN A PURELY CUBIC PREPOTENTIAL GIVES A POSITIVE KINETIC TERM

Pirsa: 15040107 Page 42/44

FURTHER DEVELOPMENTS

- EQUATIONS FOR AUXILIARY FIELDS CAN BE SOLVED ALGEBRAICALLY FOR ALL CASE FOR n=2,3
- IN SOME CASES THE ELECTRIC FIELD OF POINT SOURCES IS BOUNDED, AS IN THE BOSONIC BORN-INFELD LAGRANGIAN. THIS SEEMS TO HAPPEN WHEN A PURELY CUBIC PREPOTENTIAL GIVES A POSITIVE KINETIC TERM
- THE CLASSIFICATION OF THE n=4 CASE IS DOABLE BUT NOT FULLY DONE IN THE MATHEMATICAL LITERATURE

Pirsa: 15040107 Page 43/44

SUMMARY:

WE PROPOSED A MULTI-FIELD EXTENSION OF BORN-INFELD THAT POSSESSES A HIDDEN, BROKEN N=2 SUPERSYMMETRY.

IT ARISES AS AN INFRARED LIMIT OF AN N=2
THEORY BROKEN SPONTANEOUSLY BY (RELEVANT) FLUXES

CLASSIFICATION OF INEQUIVALENT BITHEORIES BECOMES A NONTRIVIAL ALGEBRAIC GEOMETRY PROBLEM, SOLVABLE FOR LOW n

CAUSALITY AND (NON) SUPERLUMINALITY RELATIVELY
EASY TO CHECK IN THE UV, DIFFICULT IN THE
IR EFFECTIVE THEORY

Pirsa: 15040107 Page 44/44