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Abstract: We show how nonlinearly realized N=2 supersymmetry gives rise, in the low-energy limit, to an N=1 Born-Infeld U(1) Lagrangian. We
then extend the construction to many N=2 vector multiplets. We show how the classification of inequivalent nilpotency constraints arising in the
low-energy limit is connected to the theory of cubic polynomials and curves. We comment on causality of signal propagation in these systems.
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MULTI-FIELD BORN-INFELD
LAGRANGIANS, NILPOTENT N=2

FIELDS AND CUBIC POLYNOMIALS
(FERRARA, SAGNOTTI, M.P,YERANIAN)

e CONCRETE REALIZATION OF N=2 BROKEN
TO N=I

e LOW ENERGY LIMIT: NILPOTENT FIELDS AND
N=2 ==> N=| VOLKOV-AKULOV ACTION
(BORN-INFELD)

e MANY VECTOR MULTIPLETS

e FIELD REDEFINITIONS AND INEQUIVALENT
ACTIONS. ROLE OF CUBIC PREPOTENTIALS
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A CONCRETE EXAMPLE OF N=2
BROKEN TO N=|

ANTONIADIS, PARTOUCHE & TAYLOR ’95

ONE N=2VECTOR MULTIPLET

ONE N=1VECTOR MULTIPLET V +
ONE N=| CHIRAL MULTIPLET X

L=4XU - XU'|p +ilU'W? +U'm + eX]p + c.c.
W, =D*D,V U=r1X?3
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THEAPT ACTION CONTAINS BOTH MASSLESS AND MASSIVE
DEGREES OF FREEDOM

INTHE IR IT REDUCES TO THE ACTION OF THE GOLDSTINO
MULTIPLET FOR THE PARTIAL BREAKING
N=2 —> N=|

EQUATIONS OF MOTION:

DU = XU+ U"W2+U"m+e=0

SETTING TO ZERO THE FERMIONS,
THE LAST COMPONENT OF THESE EQUATIONS IS

~U"FF + U"’G’i + U"Fm + derivative terms = 0
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X =Y +uz, U'(x)ym+e =0

THE IR LIMIT IS EQUIVALENT TO SENDING ALL MASS
SCALES TO INFINITY, LE.

’( Hl| >> |[ ”(.'I'f)‘

IN THE LIMIT, A SELF-CONSISTENT SOLUTION
FORTHE CHIRAL FIELD IS

~YD*Y +W?+Ym=0
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X =Y +u=x, U'(x)ym+e =0

THE IR LIMIT IS EQUIVALENT TO SENDING ALL MASS
SCALES TO INFINITY, LE.

’( Hl| >> |[ N(:I.:)‘

IN THE LIMIT, A SELF-CONSISTENT SOLUTION
FORTHE CHIRAL FIELD IS

~YD?Y +W?+Ym=0
THE LOWEST COMPONENT IS
(m—F)y+AA=0

SO THAT Y OBEYS THE NILPOTENCY CONSTRAINTS

Y2 =0, YW, =0
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THE FULL ACTION
L =ImeF

ISTHE SAME AS THE NONLINEAR ACTION
DESCRIBING A GOLDSTINO N=| SUPERMULTIPLET
(N=1 VOLKOV-AKULOV ACTION)

BUT IT ISALSO AN N=1 BORN-INFELD
ACTION,WHOSE BOSONIC PART IS

- Ime -

4 4
1—\/1+ G2 — —(GG)?| - —GG

m

T2

L (Ree) m? mA m
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—FF + G’i + Fm =0

SOLVING FOR FAND PLUGGING BACK INTHEACTION
WE FIND A NONLINEAR (BORN-INFELD) ACTION FOR G

L =ImeF

WE CAN DO BETTER AND SOLVE THE EQUATIONS
OF MOTION SUPERSYMMETRICALLY TO
EXPRESS X INTERMS OF W

SHIFT THE CHIRAL SUPERFIELD X AS

X =Y +uz, U'(x)m+e=0
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OTHER GENERALIZATIONS ARE POSSIBLE (ASCHIERI,
BRACE, MORIARU, ZUMINO)
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OTHER GENERALIZATIONS ARE POSSIBLE (ASCHIERI,
BRACE, MORIARU, ZUMINO)

OURS POSSESSES AN N=2 SUSY LINEARLY REALIZED IN THE
Uv

WE START FROM AN N=2 THEORY WRITTEN IN N=|
SUPERFIELD LANGUAGE:
n ABELIAN VECTOR MULTIPLETS AND n CHIRAL MULTIPLETS

N=2 MEANS THAT THE THEORY IS DEFINED BY A
HOLOMORPHIC PREPOTENTIAL

U(X) — %(.f‘.‘/.;XAng -+ .s;_|d/1]3(__,'XAXBXCI

NEEDED TO ENSURE POSITIVITY OF KINETIC TERMS
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LAGRANGIAN
L=1Im {{UapW* WP + Usm™ — X ealr + [X*Ualp}

AS INTHE n=1 CASE IT IS CONVENIENT TO SHIFT THE
SUPERFIELD X BY ITSVEV.

XA =v4 424, UA/;(:I:)MB = €4
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LAGRANGIAN
L=1Im {[UapWAW?E + Usm® — X?%ealp + [ X Ualp}

AS INTHE n=1 CASE IT IS CONVENIENT TO SHIFT THE
SUPERFIELD X BY ITSVEV.

XA =v4 424, UA/;(:I:)mB = €4

E.O.M. FOR X IN LIMIT Uap(z)| < |daBc|

il
/

R l co D=
dape |WAWE 4 Y B(mS —1)2}/(')+§1)2(Y”y6) = ()
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SELF-CONSISTENT ANSATZ IN IR LIMIT
(fA ]g(;'YBYC — 03 (XA[;(;*YB I/VC =0

GENERATES Bl CONSTRAINTS

(ZAB(}[WAM/B + YB(’I'H.C — Dzyc)] = ()
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SELF-CONSISTENT ANSATZ IN IR LIMIT
dapcYPY® =0,  dapcYPWC =0
GENERATES Bl CONSTRAINTS
dapc[WAWE + YB(m© — D*Y9) =0

SELF-CONSISTENT?
BECAUSE OF FIERZ IDENTITY

WAWFEWS) =0
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AFTER SOLVING THE CONSTRAINTS, IN THE
IR LIMIT, THE Bl LAGRANGIAN IS

L=TIm {[{Uap(@)Y'YP|p = [Uap(@)WAWF]r}
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AFTER SOLVING THE CONSTRAINTS, IN THE
IR LIMIT, THE Bl LAGRANGIAN IS

L =1Im {[UA[;(:IT)YAY”]D - [UAB(."I?)VVAVVB]]{‘}
SECOND SUSY

) I/V(‘:‘ — m.A'z;ﬂ + terms vanishing on the vacuum
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OUR THEORIES ARE EQUIVALENT UNDER
LINEAR FIELD REDEFINITIONS

INTERACTIONS AND CONSTRAINTS DEPEND
ON CUBIC TERM ONLY

HOW MANY INEQUIVALENT INTERACTIONS
ARE THERE, UP TO LINEAR FIELD REDEFINITIONS?

SOLUTION KNOWN FOR n=2,3 AND, PARTIALLY
FOR n=4; UNKNOWN FOR GENERAL n
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TWO RELATED PROBLEMS

) FIND CANONICAL FORMS FOR THE (CUBIC) PREPOTENTIAL

2) FIND INVARIANTS CHARACTERIZATIONS OF
INEQUIVALENT THEORIES

Pirsa: 15040107 Page 25/44



TWO RELATED PROBLEMS

) FIND CANONICAL FORMS FOR THE (CUBIC) PREPOTENTIAL

2) FIND INVARIANTS CHARACTERIZATIONS OF
INEQUIVALENT THEORIES

WE WILL START WITH THE SIMPLEST NONTRIVIAL
CASE: n=2

CUBIC PART OF PREPOTENTIAL
REAL HOMOGENEOUS CUBIC IN XY

U=(X—aY)(X —-bY)(X —¢Y)

a,b,c =real or a =real ,b = c*
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LINEAR, HOMOGENEOUS COORDINATE CHANGES = GL(2,R)
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LINEAR, HOMOGENEOUS COORDINATE CHANGES = GL(2,R)

A) THREE REAL, DISTINCT a,b,c
WITH GL(2,R) SET a=1,b=0,c=-1

U=X(X"-Y?)
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INVARIANT POLYNOMIALS: THEY CLASSIFY THE
ORBITS OF GL(2,R) [SAME AS SL(2,R)]

Iy = —27(]522(lf11 + (1521(['1212 + 18dooody11d112d201 — 4dyy ld?zz - ~"1dgggd§”
CASEA): I, >0 CASE B): Iy <0

CASEC): 14 =0 CASED):. I, =0, 0l, =0
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INVARIANT POLYNOMIALS: THEY CLASSIFY THE
ORBITS OF GL(2,R) [SAME AS SL(2,R)]

[ = —27(]'32)(]1“ +(I))I(IT1’ +18(’333(]|||(]1|3([3_3| — 1(]|11(]1))— 1(] 1; 11

CASEA): I, >0 CASE B): Iy <0

CASEC): 14, =0 CASED): I, =0, oly =

INEQUIVALENT QUADRATIC TERMS (UP TO SHIFTS IN X,Y)

A a(X?*+Y?)  BbXY O)cY?  D)aY?+bXY
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CASE n=3: CUBIC POLYNOMIALS UPTO GL(3,R):

REPRESENTATIVE POLYNOMIALS

A BIT OF (PROJECTIVE) GEOMETRY:
A CUBIC HOMOGENEOUS POLYNOMIAL
IN 3 REALVARIABLES DEFINES A
CUBIC CURVE ON THE PLANE

(ON THE COMPLEX, IT DEFINES A GENUS ONE
CURVE)
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CASE n=3: CUBIC POLYNOMIALS UP TO GL(3,R):
REPRESENTATIVE POLYNOMIALS

A BIT OF (PROJECTIVE) GEOMETRY:
A CUBIC HOMOGENEOUS POLYNOMIAL
IN 3 REALVARIABLES DEFINES A
CUBIC CURVE ON THE PLANE

(ON THE COMPLEX, IT DEFINES A GENUS ONE
CURVE)

THE EASIEST CASE ISTHE NON-DEGENERATE ONE:

dancXPXC not all =0 on curve dage XA XPXY =0
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IRREDUCIBLE AND SINGULAR:
EITHER NODE OR CUSP

U=Y?Z - X>+eX?Z, e=0,+1
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IRREDUCIBLE AND SINGULAR:
EITHER NODE OR CUSP

U=Y?Z - X*>+eX?Z, e =0,+1
REDUCIBLE: QUADRIC TIMES LINE: QL
Q=X"+Y*+ 27 L=X+Y+7Z
Q=X*+Y*-2° L=XorL=ZorL=X+Z
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IRREDUCIBLE AND SINGULAR:
EITHER NODE OR CUSP

U=Y?Z - X*>+eX?Z, e =0,+1
REDUCIBLE: QUADRIC TIMES LINE: QL
Q=X"+Y*+4+ 27 L=X+Y+Z
Q=X*+Y*-2° L=XorL=ZorL=X+Z
REDUCIBLE: THREE LINES
U=XYZ, U=X(Y*+2Z% non concurrent

U=XY(X+Y), U=X(X*+Y?  concurrent
Xy?, X3 2 or 3 coincident
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A GRAPHIC SUMMARY (OVER THE COMPLEX)
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SUMMARY TABLE OF SINGULAR CASES

‘ R|C Polynomial Py Qs | O1o | OP Q¢ 815 | O%P; 0*Qq
Al | Al —z3 — 222 + 32 o | ais | #AO|#0|[#0| #0 | #0 | #0
A? | A —23 + 222 + 22 2 | —245 | O |#O0[#0| #0 | #0 | #0
A | A? 23 + 32 0/ 0 0 |#0 | #0 #0 | #0 | #0

B' Bl |[(@+y+2)(@®+y?+2) | § |- | 0 |#0[#0| #0 | #0 | #0

B? | B! z(z? + y° — 2°) 2t | o | 0 |#O0|[#0 | #0 | #0 | #0
B | B} z(z? + y? — 22) o | an| 0 [#0 |#0 | #0 | #0 | #0

B' | B? | (z+ z2)(z*+y° - 2°) 0] 0 0 [#0] 0 | 0 | #0 | #0

c! | C! 6xyz 24 | 48 0 |#0|#0] 0 #0 | #0
72| C} z(y? + 2%) 2 | —245l O |#0[#0]| 0 #0 | #0
N|C? zy(z + y) 0] 0 0 0,0 ] 0 #0 | #0 |
vl 2A z(z? + y?) 0] 0 0| 0] 0 | 0 |#0]#0
ct | C} ay? 0, 0 O ]JoO] 0O | 0 |#0] 0
ct|c? - 0| 0 000 0 0 | 0
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FURTHER DEVELOPMENTS

e EQUATIONS FOR AUXILIARY FIELDS CAN BE
SOLVED ALGEBRAICALLY FOR ALL CASE FOR
n=2,3 ...BUT THE SOLUTION MAY NOT BE
ILLUMINATING....
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(:”-()"m-" mk + Ale + Bio? + Ctod

() HILE [(m*)? 4+ (m?)3 + (mhk)3] o2 mimd mk (1 4 203)
where (4, 5. k) = 1,2,3, (i #£ 5 # k)
A = 2G7.GEm?m¥ 7 G (mP)? GF . Gk (m?)?
B G Gimimd + GFLGhmim* - GG (m')?
2G - GI (m?)? — 2G' Gk (m*)?
(2) C 2m' ( GGkt 4+ G Ghd + GG m") .

Aq1 Aoo
(3) i 2 it

.'1'_}-;: t 2(-‘.”(;‘;{_-;(? 4 \//.'l-_g-_g .";{;;l"‘l“l ..).'l'_illﬂ t .'l;‘;’._‘gﬂ“") .

where U is a solution of the fourth-order equation

Ut (lfl 4 Ago Agy ﬂz) 4 U? o (.'\“ Azy + 2 ‘::ﬂ, rT) 2A ,'1-_)'_ll"‘£ (l 8 rr;g)
(I) b AU .'1'2 (;l-__)-_g .‘l_‘g;g + 2 'I'f| (Y) + 1:;_3 4 .'11| ;‘.;g;; (T.", 0

that is consistent with the weak field limit.

Definitions:
(’r]) -‘lu III”. } 2("!1)".“{ .

with (i, 4, k) = 1,2,3, (i # j # k).

|
(G) RAB GA.GP 4 I P I
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POSITIVITY OF THE Bl LAGRANGIAN IS MUCH
EASIER TO STUDY IN THE UV N=2 THEORY.IN
SOME CASES POSITIVITY DOES NOT REQUIRE A
QUADRATICTERM IN THE PREPOTENTIAL
(STUDY USING SYLVESTER’S CRITERION)

Polynomial . Determinant Minor2 | Minor
T FGoaxy pz (1 + 20%)
(@ 4yt 2t) o
3 res e i (3 + 2)
/ _,I.', (a® + y?) = (=3 ) !
by’ % 3
/ ) (2° + ) (a4 + 2 : (% + Ay + 4*)
FRyz + 22 + S Fi (A0 + y)
v (0% + y* - 2%) S (302~ y ) § (3%~ y?)
: ) 37 (% +y* + 32%)
(24 2) (a* + y* = 2°) (i ( } )~y
( 2y 0
e (y? + 2%) G (y? 4 2?) 0
[ ) 1] (=a% = 2y = %)
( ) 0 (3 y?)
( ]
() (
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FURTHER DEVELOPMENTS

e EQUATIONS FOR AUXILIARY FIELDS CAN BE
SOLVED ALGEBRAICALLY FOR ALL CASE FOR
n=2,3

e IN SOME CASES THE ELECTRIC FIELD OF
POINT SOURCES IS BOUNDED,AS IN THE
BOSONIC BORN-INFELD LAGRANGIAN.THIS
SEEMS TO HAPPEN WHEN A PURELY CUBIC
PREPOTENTIAL GIVES A POSITIVE KINETIC
TERM
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FURTHER DEVELOPMENTS

e EQUATIONS FOR AUXILIARY FIELDS CAN BE
SOLVED ALGEBRAICALLY FOR ALL CASE FOR
n=2,3

e [N SOME CASES THE ELECTRIC FIELD OF
POINT SOURCES IS BOUNDED,AS IN THE
BOSONIC BORN-INFELD LAGRANGIAN.THIS
SEEMS TO HAPPEN WHEN A PURELY CUBIC
PREPOTENTIAL GIVES A POSITIVE KINETIC
TERM

e THE CLASSIFICATION OF THE n=4 CASE IS
DOABLE BUT NOT FULLY DONE INTHE
MATHEMATICAL LITERATURE
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SUMMARY:

WE PROPOSED A MULTI-FIELD EXTENSION OF
BORN-INFELD THAT POSSESSES A HIDDEN, BROKEN
N=2 SUPERSYMMETRY.

I'T ARISES AS AN INFRARED LIMIT OF AN N=2
THEORY BROKEN SPONTANEOUSLY BY (RELEVANT) FLUXES

CLASSIFICATION OF INEQUIVALENT BI THEORIES
BECOMES A NONTRIVIAL ALGEBRAIC GEOMETRY
PROBLEM, SOLVABLE FOR LOWV n

CAUSALITY AND (NON) SUPERLUMINALITY RELATIVELY
EASYTO CHECK INTHE UV, DIFFICULT IN THE
IR EFFECTIVE THEORY
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