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Abstract: <p>Modern physics rests on two basic frameworks, guantum theory and general relativity. Quantum gravity aims to unify these two
frameworks into one consistent theory. One can expect that such a formulation delivers in particular a novel understanding of space and time as
guantum objects.</p>

<p>I will give an introduction to some basic concepts in quantum gravity research and present possible models of quantum space time.</p>

Pirsa: 15040091 Page 1/49



antum
Bpase Iime

o T
v

|
-;T ! Pl.mml yA
e d

- \ ) A
N e o) Copyright: The M. C, Eschér Comp 2.'.:"\'9 :

Pirsa: 15040091 Page 2/49




Pirsa: 15040091

v a1

R et

AL

e p
o

e »-f's.,,\.a;.‘. it

PERIMETER
INSTITUTE

g O

Page 3/49




20th century accomplishments

matter gravity
(+gravitons) (+classical matter)
Quantum (field) General
theory Relativity

Bl

lives on a classical describes shape of classical
space time space time
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One theory to rule them all

Quantum General
(field) theory Quantum ’ Relativity
Gravity
gravity
space time
geometry

Quantum
Space Time
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What is
Quantum Space Time!

Overview

How to do quantum field theory without space time?

How to construct quantum geometry?

How to construct quantum space time?

Pirsa: 15040091 Page 8/49



Pirsa: 15040091

(Perturbative) Quantum Field Theory

HFock

free th;ory

e

time

o

o(t, x)

_free theory
.HI'\ wek

——

space

no Hilbert
space for interacting
theory

observable of
(free) theory

Perturbative quantum

Hilbert space for Py fml_s:
free non-renormalizable.

theory
And does not
answer crucial
questions

(eg big bang).
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Quantum gravity

: Hilbert space
o supporting
diffeomor'phism

invariant ) :
excitations?? Space time coordinates

have no physical significance.
Need to implement
diffeomorphisms invariance.

time?! This avoids assigning
unphysical
quantum fluctuations to
not observables B ¢ di
of the choice of coordinates.
theory
N, B
Nspace??
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Aim:

Construct Hilbert space
supporting diffeomorphism invariant excitations
and operators to extract quantum geometry.

Examples: loop quantum gravity™ ,
causal dynamical
triangulations, group field theories, ...

approach which most explicitly constructs
such a Hilbert space and quantum geometry
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Progress

® 1990's: Ashtekar, Isham, Lewandowski

First construction of a spatially diffeomorphism invariant Hilbert space

supporting the (kinematical) observable algebra of general relativity and matter.

Based on a no-spatial-geometry vacuum.  2005: F-LOST uniqueness theorem.
. 200/ Koslow (Sahlmann,Varadarajan
Condensation vacuum with background spatial geometry. Diffeomorphism co-variant.
. 2014: BD, Geiller (2015: Bahr, BD, Geiller)

Construction of an alternative spatially diff invariant Hilbert space with no-curvature vacuum.

Topological field theories (topological phases) give rise to spatially diff invariant Hilbert space.

* 2012/14: BD
Strategy to obtain space-time diffeomorphism invariant theory:

solving the full dynamics in an approximation scheme
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Progress

® |990°s: Ashtekar, Isham, Lewandowski

First construction of a spatially diffeomorphism invariant Hilbert space
supporting the (kinematical) observable algebra of general relativity and matter.

Based on a no-spatial-geometry vacuum.  2005: F-LOST uniqueness theorem.

Fleischhack - Lewandowski, Okolov, Sahlmann, Thiemann

L 2014: BD, Geiller (2015: Bahr, BD, Geiller)
Construction of an alternative spatially diffeomorphism invariant Hilbert space

based on a no-curvature vacuum.

® 2013: BD, Steinhaus

Topological field theories (topological phases) give rise to

spatially diffeomorphism invariant Hilbert spaces.

Pirsa: 15040091 Page 13/49



Non-perturbative gft: lattice gft and

condensed matter systems

Using a lattice allows

Lattice gauge formulation of non-perturbative physics.
theory variables:

Problem: breaks diffeomorphism symmetry.
f '\
Wilson loop
measures
curvature B Key: use the same variables but
do not restrict to the lattice.
aladnits Challenge: specifying a diffeomorphism

flux through invariant vacuum state ‘everywhere’.

surface (in (3+1)D)
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Building (loop) quantum geometry
representation of operators encoding

geometry on Hilbert space
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Quantum geometry operators

Ashtekar variables (1986)

Geometric variables (metric, curvature) can be encoded into variables of electro-magnetism

(generalized to SU(2) Yang Mills).

magnetic field observable:
Wilson loop operator associated to a
curve,

measures magnetic field
integrated over enclosed surface
generates an electrical flux line

J
h(-nrvv ®

electric field observable:
Electric flux associated to a surface.

measures electric field flux through
surface
generates magnetic field

b‘h' urf

gravity context:
measures (extrinsic) curvature,
generates ‘quanta of spatial geometry’

gravity context:
measures (spatial) areas, angles, volumes
generates (extrinsic) curvature

Page 16/49



Pirsa: 15040091

Quantum geometry operators

Ashtekar variables (1986)

Geometric variables (metric, curvature) can be encoded into variables of electro-magnetism

(generalized to SU(2) Yang Mills).

magnetic field observable:
Wilson loop operator associated to a
curve,

measures magnetic field
integrated over enclosed surface
generates an electrical flux line

J
h(-nrvv ®

electric field observable:
Electric flux associated to a surface.

measures electric field flux through
surface
generates magnetic field

]—3‘5 urf

gravity context:
measures (extrinsic) curvature,
generates ‘quanta of spatial geometry’

gravity context:
measures (spatial) areas, angles, volumes
generates (extrinsic) curvature
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Algebra of quantum geometry operators

[[‘:“'”"I.‘ hi}'ur\'t‘} - h"(}'urw- © (T)J

’ Lie algebra generator l

Only non-vanishing if holonomy curve
(electric flux line) cuts through surface.

Is of topological nature.
(Does not need background metric.)
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Building quantum geometry states: version |

‘fA\"‘l. K Lewandows Ishan 3 tation, ‘P‘:"'

the vacuum state:
all flux operators have vanishing
expectation values and vanishing 107
fluctuations

excited states:
i 1 ]2
by applying Wilson loop L R
operators,
some fluxes get non-vanishing
expectation values.

10)

encode spatial
oidl - . . .
geometry: First rigorous realization of quantum geometry.

velli, Smolin, Jacobson, Lewandowski, Isham,

Pirsa: 15040091 Page 19/49



Building quantum geometry states: version |

‘ \shtekar-Lewandows Ishan tation ‘?Ei-

the vacuum state:
all flux operators have vanishing
expectation values and vanishing 107
fluctuations

excited states:
i | ]2
by applying Wilson loop Prve, arves Mtrvey
operators,
some fluxes get non-vanishing
expectation values.

10)

encode spatial
ol - . ' .
geometry. First rigorous realization of quantum geometry.

velli, Smolin, Jacobson, Lewandowski, Isham,
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Building quantum geometry states: version |

vacuum = state where spatial geometry is
totally degenerate

al
L:-;m'l'

area, angles

Volnodes

flux lines = defects away from
totally degenerate geometry

Quantum state determines quantum geometry
(in a spatial diffeomorphism invariant way).
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Building quantum geometry states: version ||

[BD, Geiller 14a,14b; Bahr, BD, Geiller to appear 15]

the vacuum state:
all curvature operators have 0)
vanishing
expectation values and vanishing
fluctuations

excited states:

by applying flux operators,

some curvature pperators get &
non-vanishing 5
expectation values.
curvature defects
only exponentiated along curves (in (3+1)D a2
fluxes exist as operators

('xl)(“.‘{jh‘mlrl'_‘ ) “XI’(“'_’jh‘hllrIg ) (‘X])(H 1 ’.h‘am'l'] ) “'>

)
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Building quantum geometry states: version ||

[BD, Geiller |4a,14b; Bahr, BD, Geiller to appear |5]

the vacuum state:
all curvature operators have 0)
vanishing
expectation values and vanishing
fluctuations
excited states:

by applying flux operators,
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some curvature pperators get
non-vanishing
expectation values.

curvature defects
only exponentiated along curves (in (3+1)D
fluxes exist as operators




Building quantum geometry states: version ||

[BD, Geiller 14a,|4b; Bahr, BI pear |5]

vacuum peaked on vanishing curvature,
flux variables (spatial geometry) maximally
uncertain

lines = curvature defects

state of
BF topological theory
with defects (= excitations)

7y

Remark: Gives solution of
(2+1)D gravity
(with point particles).

Quantum state determines a (very different) quantum geometry
(in a spatial diffeomorphism invariant way).
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Two vacua (and quantum-geometry representations)

[BD, Geiller 14a, 14b]

Ashtekar - Lewandowski - Isham vacuum (90's) BF (topological) theory vacuum

l-'l!\'n('({h('ln'\-'(-}) = ] L'\'.‘u'({h]unps}) . ]-Il““l‘-‘" d(’”““l’-“)

peaked on degenerate (spatial) geometry peaked on vanishing
maximal uncertainty in (Ashtekar connection) curvature
(extrinsic) curvature maximal uncertainty in spatial geometry
excitations: excitations:
spin network states supported on graphs curvature defects on edge network
describing spatial geometry defects (triangulation)

e — s —

©
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Quantum geometry dynamics!?

All quantum geometry states describe 4D quantum geometry (histories),
however (almost) all of these describe “virtual” (non-dynamical) quantum
histories.

Need physical states, which solve the quantum equations of motion of the theory.
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Why different (kinematical) vacua?

In standard qft: needed to describe symmetry breaking / condensation processes.

In g-gravity: need states satisfying the quantum equations of motions (physical states).
This is like asking for the energy eigenstates of an interacting quantum field theory: solving the theory.
Such states will not be (normalizable) in the Hilbert space we started with (kinematical Hilbert space).

Nevertheless some kinematical vacua might give easier access to physical states than other
kinematical vacua.

Indeed BF theory is the starting point for spin foams, encoding the dynamics of (loop) quantum gravity.
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What is a good vacuum (physical) state?

Should be adjusted to the dynamics of the system.

Time-evolution = applying path integral.

Usually:

Vacuum state should be invariant under time evolution.

In diff-invariant systems:
All physical states should be invariant under time
evolution.

Path integral is a projector onto physical states.

Need to construct the gravitational path integral.

Changing coupling constants
and thus adjusting the the
dynamics.
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Path integral = sum over spacetime geometries

‘boundary states’ encode (actually 4D) quantum geometry

t-"‘"o"u.’
0 ‘sum’ over quantum space
time geometries
Vin »
need to define
quaptum amplitude how to sum
(Yout | P|Vin) Yout (ourconf 1) exp( ;}H(c-nnf 1)) Yin(dinconfl) + path integral

Yout (Dourcont 2) exp( ; S(conf2)) ¥in(Oinconf2) +... matrix element

[

Physical states: ¢ = Py
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Path integral = sum over spacetime geometries

‘boundary states’ encode (actually 4D) quantum geometry

t-"‘"o"u.’
0 ‘sum’ over quantum space
time geometries
Vin »
need to define
quaptum amplitude how to sum
(Yout | P|Vin) Vout (Gourconf 1) exp( ;}H(c'nnf 1)) in(Qinconfl) + path integral

Yout (Dourcont 2) exp( ; S(conf2)) ¥in(Oinconf2) +... matrix element

[

Physical states: ¢ = Py
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Path integral is a projector SRR

sum over all space
time geometries with
arbitrary time
extension

sum over all = P p ® 7.7 I P

boundary
states projector

sum over all space property
time geometries with

arbitrary time
extension

sum over all space
time geometries with
arbitrary time
extension
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Discretization and spin foam models

‘A sum over
\\ geometries =
| il / : | b |
+ o KA/t 7 sum over labels
AW \/ associated to the
b ,/ triangulation
// I"‘ «'/“I\‘
L Iy 2 3

construction of amplitudes from GR action
spin foam model

[Reisenberger, Rovelli, Barrett

Crane, Freidel, Krasnov, Livine, Spezials

However the projector property can be expected

to hold only in the refinement limit.

[lLII.\ BD. Steinhau 1Y

Do we know states with ¢ = Py ?

® |n 3D:yes, the BF vacuum state
® |n 4D: not yet for ‘gravitational’ spin foam models (it is actually the key problem)
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How can we construct physical states?

(version of)

Hartle Hawking

] no boundary wave function.

Is a physical state.

path integral

with one

vanishing boundary
(with kinematical
vacuum state)

Path integral over a disk gives
/ vacuum functional for boundary wave functions
Ar'm‘(‘-'m.'f) — <C'r;rrf|’P|w>

encodes (continuum) dynamics,
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How can we construct physical states?

(version of)

Hartle Hawking

] no boundary wave function.

Is a physical state.

path integral

with one

vanishing boundary
(with kinematical
vacuum state)

Path integral over a disk gives
/ vacuum functional for boundary wave functions
Ar'm‘(‘-'m.'f) — <C'r;rrf|’le>

encodes (continuum) dynamics.
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Need to compute the path integral

in the refinement limit.

Problem: Extremely difficult for 4D (gravitational) spin foams.
® cannot apply Monte Carlo simulations, due to complex amplitudes

® additional difficulties: infinite summations and (emerging) divergencies due to
diffeomorphism symmetry

® 5o far no real space coarse graining method for 4D spin foam models ‘zli_\[/airl?ble . "
oL, IYHZera, ot Naus -
(but under tensor network method are under development)

Devised 2D *analogue models’ capturing key dynamical ingredients of spin foams.

® mimics a 2D-4D duality of lattice gauge theory to spin systems
‘|D[}.|(\HI‘HHII'| Benito, Schnetter

® hope that phase structure is similar

® path integral / refinement limit can be computed via tensor network

renormalization

[Vidal, Levin-Nave, Gu-VVen
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Need to compute the path integral

in the refinement limit.

Problem: Extremely difficult for 4D (gravitational) spin foams.
® cannot apply Monte Carlo simulations, due to complex amplitudes

® additional difficulties: infinite summations and (emerging) divergencies due to
diffeomorphism symmetry
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» ] ,‘ v 1ZCra, YL Naus &
(but under tensor network method are under development)

Devised 2D *analogue models’ capturing key dynamical ingredients of spin foams.

® mimics a 2D-4D duality of lattice gauge theory to spin systems
“‘\[},|(‘|4I[]\\Il'.!‘,‘.'l'-: yCNI

‘-rl"\l'l.\\."_ | | 1 3

® hope that phase structure is similar

® path integral / refinement limit can be computed via tensor network

renormalization

[Vidal, Levin-Nave, Gu-VVen
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Need to compute the path integral

in the refinement limit.

Problem: Extremely difficult for 4D (gravitational) spin foams.
® cannot apply Monte Carlo simulations, due to complex amplitudes

® additional difficulties: infinite summations and (emerging) divergencies due to
diffeomorphism symmetry

® 5o far no real space coarse graining method for 4D spin foam models ‘leﬁllaihlble . "
2L, Mizera, St haus | 4
(but under tensor network method are under development)

Devised 2D *analogue models’ capturing key dynamical ingredients of spin foams.

® mimics a 2D-4D duality of lattice gauge theory to spin systems
‘|D|3,|(‘|JI‘[|HI|'| Benito. Schnetter

® hope that phase structure is similar

® path integral / refinement limit can be computed via tensor network

renormalization ‘ A
|‘.'|f|.t , Levin-Nave, Gu-VWen
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Phase diagram for spin foam analogues

® models are similar to anyonic spin chains [Feiguin et al 06]

® but can be also interpreted as particular spin foams describing the gluing of two

space time atoms $
® changing certain parameters in initial model: changes how the atoms glue
(technically: changes implication of simplicity constraints)

® anyonic spin chains support very rich phase structure, classification in

[BD, Kamin: I3 and to appear]

0.0

blue

14 Positive indication for finding a

geometric phase in spin foams.

0.0

[BD, Martin-Benito, Schnetter NP

0.0 o] 4 ) ( )
5 BD, Martin-Benito, Steinhaus PRD | 3]
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Phase diagram for spin foams ?

® need to develop (tensor network) coarse graining algorithms for
spin foams = generalized lattice gauge theories
® first algorithm for 3D Abelian lattice gauge theories: decorated tensor networks

[BD, Mizera, Steinhau:
® 3D Non-Abelian lattice gauge theories [Delcamp, BD to appear]

Phases in lattice gauge theory

coupling

A
confining phase ‘no space’ phase
deconfining phase BF topological phase
(topological phase) (gives 3D gravity!)

A 4
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® need to develop (tensor network) coarse graining algorithms for
spin foams = generalized lattice gauge theories
® first algorithm for 3D Abelian lattice gauge theories: decorated tensor networks

[BD, Mizera, Steinhaut
® 3D Non-Abelian lattice gauge theories [Delcamp, BD to appear]

Phases in lattice gauge theory

coupling

A
confining phase ‘no space’ phase
deconfining phase BF topological phase
(topological phase) (gives 3D gravity!)

A 4
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New phases give rise to new vacua

and new quantum geometry reallzatlons [BD, Steinhaus NJP |3]

phase

vacuum functional
underlying the Hilbert

= topological

(lattice) field
space representation

theory

continuum

defects of topological

s Hilbert space

theory = excitations - s

inductive limit

construction:
allowing

arbitrary lattices

for excitations
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New phases give rise to new vacua

and new quantum geometry reallzatlons [BD, Steinhaus NJP |3]

phase

vacuum functional
underlying the Hilbert

= topological

(lattice) field
space representation

theory

continuum

defects of topological

S Hilbert space

theory = excitations o St

inductive limit

construction:
allowing

arbitrary lattices

for excitations

Pirsa: 15040091 Page 44/49



How to express the continuum dynamics o np 12,14

Boundary Hilbert space

Boundary Hilbert space
with low complexity with high complexity
wave functions P i wave fupetiSis,

embedding of
boundary
Hilbert spaces

embedding of

i boundary
initial discrete Hilbert spaces

theory gives
approximation
restricts to

to
1o med com a ) high com
‘ ow com y 4 : i s
vac (‘- Now rnm) M) -Ar*m‘ (" med c-nm) vace (‘-‘ ln;_',h r:ml)

A (complete) family of consistent amplitudes defines a theory™ of quantum gravity.

Corresponds to a complete renormalization trajectory,

with scale given by complexity parameter

Amplitudes can be computed iteratively in an approximation scheme.

Least effort necessary for low complexity = homogeneous configurations.
[BD NJP 12, 14]
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How to express the continuum dynamics o np 12,14

Boundary Hilbert space Boundary Hilbert space
with low complexity with high complexity
wave functions SN wave fupetiSiisy

JK ) I & \:\“ ) \‘.

embedding of
L boundary
initial discrete Hilbert spaces

theory gives
approximation
restricts to

to
-
low com med com ¢/, < ) shigh comy,
-Apm» (‘- Now rnm) N) 'Ar*m‘ (" med c-nm) A;-m- (‘ high r:ml)

embedding of
boundary
Hilbert spaces

A (complete) family of consistent amplitudes defines a theory™ of quantum gravity.

Corresponds to a complete renormalization trajectory,

with scale given by complexity parameter

Amplitudes can be computed iteratively in an approximation scheme.

Least effort necessary for low complexity = homogeneous configurations.
[BD NJP 12, 14]
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Summary

Quantum gravity
models
as many body system

+ tensor network al
* categorification

|dentify phases
and transitions

* (modified) inducti
limit constructi

New quantum
geometry
realizations

limit with tensor
network algos

continuum limit:
consistent family
of amplitudes

Quantum
Space Time
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How to express the continuum dynamics o np 12,14

Boundary Hilbert space

Boundary Hilbert space
with low complexity with high complexity
wave functions SN wave fupetiois
- P A Y
/’. C——’ "/ T / ?' Fo
embedding of o embedding of
e boundary boundary
initial discrete  yibere spaces Hilbert spaces
theory gives
approximation )
to restricts to

LY
low com med com ¢/, @ ) shigh com/,
Ai'm' (‘- low rnm) q\) Af‘ru‘ (" med c-um) 'Ar'm- (l hig_',h “,m)

A (complete) family of consistent amplitudes defines a theory™ of quantum gravity.

Corresponds to a complete renormalization trajectory,

with scale given by complexity parameter

Amplitudes can be computed iteratively in an approximation scheme.

Least effort necessary for low complexity = homogeneous configurations.
[BD NJP 12, 14]
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