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Abstract: <p>Main properties of generalized contraction methods of Lie algebras, known also as expansion methods, are briefly introduced.
Between some of their physical applications, one might study the nature of solutions in theories constructed with those expanded algebras. In
particular, as we are interested in solutions that could be relevant in the context of AAS/CFT and Holographic Superconductors, we would like to
study the holographic QFT dual to Chern-Simons gravity for an expansion of AdS algebra. As a first step, we studied charged static spherically
symmetric BH solutions of a CS theory for the most simple extension of AdS symmetry: AdSA—U(1). It is shown that in this kind of higher
dimensional gravity, degeneracy in some sectors of the space of solutions can appear. In fact, arbitrary functions remain undetermined after the field
equations are imposed. This is related to an increase in local symmetries and it is shown that the knowledge of these "accidental symmetries’ can
help to formulate a simple criterion that avoids unwanted degenerate ansatze. Finally, main properties of Pure Lovelock gravity are presented and
some issues about black hole solutions this theory are aso discussed.</p>
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Introduction

We use first order Einstein-Cartan formulation of gravity

(t‘f, , u"‘:," r 8uv = J]l,”‘(“;,t‘f" - R — (dw + w? }'”‘, T = Dé*).

For example, in D = 4 Einstein-Cartan theory

> ) \ a b ¢ I
L EC ((.‘ (.(‘] = K ‘-:;?f?;'.le?! l.t t"f _ '—t'.](" t.L t‘li . K = -
' 6 q‘: 7[(.1

is equivalent to Einstein-Hilbert theory
(g, '} (g) , under assumption T, =0, Vg, =0)
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Introduction

We use first order Einstein-Cartan formulation of gravity
o )
(¢ “1;,.'::) r Suv = "/.-:!“v?:"f" : R% = (dw + «?)®, T% = Dé").

Mo

For example, in D = 4 Einstein-Cartan theory

- ) \ { I
A EC ((n‘ ((»] =K t-ﬂblldRﬂ! (.t {.if _ _{H(,! (,L vlf . K = -
) h F‘W: }T(_r

is equivalent to Einstein-Hilbert theory
(gw ., '} (g) , under assumption T, =0, Vg, =0)

Ley (8T (8)) = —x/—8(R—2A) .

Generalization to D-dimensions: Lanczos-Lovelock (L-L) gravity

31
(2]
L —_ Z (\;ILIV ’
p=0
() . 111~ lan_185p Arpns i
L ; == ttf‘l"'ri[)Rlll""'R""[ 1|"'(' = 1"'('1“.
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Requiring the theory to have the maximum possible number of
degrees of freedom, leads to a special choosing' of &, which in even
D gives to Born-Infeld (BI) gravity; while in D it gives

gravity, described by

IR. Troncoso, |. Zanelli, Class. Quantum Grav. 17 (2000) 4451.
2Dadich et al, arXiv:1006.0337, 1201.4994.
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Introduction

We use first order Einstein-Cartan formulation of gravity
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For example, in D = 4 Einstein-Cartan theory
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. . . . . 2 .
Another interesting family is Pure Lovelock theory®, which have only
«p and an (N = [(D - 1) /2]) non-vanishing.

IR Troncoso, |. Zanelli, Class. Quantum Grav. 17 (2000) 4451.
2Dadich et al, arXiv:1006.0337, 1201.4994.
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We will see here that some L-L theories might have degenerated

sectors in the space of solutions.
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We will see here that some L-L theories might have degenerated

sectors in the space of solutions.

For example, consider (in the torsionless sector: T* = D¢ = 0) the
following ansatz,

” ") ) 1: 7 ) ) ”
ds® = —f<(r)dt- + fi’( ) +rodQp_, ; withf*=1—=¢(r)r.
' f2(r . :
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We will see here that some L-L theories might have degenerated

sectors in the space of solutions.

For example, consider (in the torsionless sector: T? = Dé* = 0) the
following ansatz,

) ) S o R R
ds® = —f~(r)dt* + fi; ) +r°dQp_, ; withf*=1—=¢(r)r.
¥ ) - " = )

L-L field equations reduces to,

: {
F(r)=Lay" = 3,

’!

where uis the mass parameter and &y = ap2x (D —2p) (D —2)!.
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When coupling constants are such that F (1) has a degenerate zero,
the field equations leaves ¢y arbitrary (and were called
‘geometrically free” solutions by J. T. Wheeler).

S
9

Banados et al (1994), Crisostomo et al (2000).

Pirsa: 15040071 Page 19/113



Introduction Expansion methods Accidental symmetries Conclusions
0000000000000000

When coupling constants are such that F (1) has a degenerate zero,
the field equations leaves ¢y arbitrary (and were called

‘geometrically free” solutions by J. T. Wheeler).

There are two wavs to reduce arbitrarieness of the theory:

S
e ]

Banados et al (1994), Crisostomo et al (2000).

Pirsa: 15040071 Page 20/113



Introduction Expansion methods Accidental symmetries Conclusions
0000000000000000

When coupling constants are such that F (1) has a degenerate zero,
the field equations leaves ¢y arbitrary (and were called
‘geometrically free” solutions by J. T. Wheeler).

There are two wavs to reduce arbitrarieness of the theory:

@ To assume fully degeneracy of that polynomial, i.e. that there is
a unique vacua

(py-pN =0,

which ammounts to choose Ap as in the Bl or case until some
order k < [D/2].

s ]
e |

Banados et al (1994), Crisostomo et al (2000).

Pirsa: 15040071 Page 21/113



Introduction Expansion methods Accidental symmetries Conclusions
0000000000000000

When coupling constants are such that F (1) has a degenerate zero,
the field equations leaves ¢y arbitrary (and were called
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There are two ways to reduce arbitrarieness of the theory:

@ To assume fully degeneracy of that polynomial, i.e. that there is
a unique vacua

(y-p" =0,

which ammounts to choose Ap as in the Bl or CS case until some
orderk < [D/2].
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They are known as dimensionally continued BHs ~,
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“Banados et al (1994), Crisostomo et al (2000).
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@ The other way is to restrict to non vanishing coeficients « and

an (with N = [(D-1)/2]), known as Pure Lovelock case?:

4Dadich et al, arXiv:1006.0337, 1201.4994.
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@ The other way is to restrict to non vanishing coeficients « and
an (with N = [(D-1)/2]), known as Pure Lovelock case?:

q‘.'\; — ‘\ — "' ,
2 ) H N
f =1—r (:1 -+ ‘,ﬂ_—l) ,

—  dS/AdS Schwarzchild BH ( fAf=1-ar? — o ) ,

large r

— dimensionally continued BH .
r—rp ’

4Dadich et al, arXiv:1006.0337, 1201.4994.
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This work also deals with expansion methods of Lie algebras® and
gravity theories constructed with them (for which BH and a

cosmological solutions have already been studied®).

?Hatsuda-Sakaguchi (2003); de Azcarraga, [zquierdo, Picon, Varela (2003);
[zaurieta, Rodriguez, Salgado (2006).

®Quinzacara et al, arXiv:1401.1797; Crisostomo et al, arXiv:1401.2128.
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This work also deals with expansion methods of Lie algebras® and
gravity theories constructed with them (for which BH and a

cosmological solutions have already been studied®).

With O. Miskovic (PUCYV, Chile) — to explore solutions of those
theories that could be relevant in AdS/CFT context, because:

@ Four-dimensional holographic QFT at finite T is dual to
five-dimensional BH in AAdS gravity

@ Non-perturbative phenomena and phase transitions in QFT can
be analized holographically

@ There are some unconventional superconductors (discovered 78
and 86") whose theoretical description so far is based on

holography [e.g., arXiv:1308.2976 for a recent review|.
o O

?Hatsuda-Sakaguchi (2003); de Azcarraga, [zquierdo, Picon, Varela (2003);
[zaurieta, Rodriguez, Salgado (2006).
(‘Quinmmm et al, arXiv:1401.1797; Crisostomo et al, arXiv:1401.2128.
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@ Field content: Gravitational field + Electromagnetic field +
Symmetry breaking matter fields
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@ Field content: Gravitational field + Electromagnetic field +
Symmetry breaking matter fields

Ex. 1: scalar field @ in AdS gravity is related to the order parameter O
in QFT

Ex. 2: Gauss-Bonnet holographic superconductor + Maxwell field +
Minimally coupled scalar field [e.g., arXiv:1009.1991]

GB coupling & does not admit the Chern-Simons limit &« — s .

Our proposal: Studying holographic QFT dual to Chern-Simons
gravity for an expansion of AdS algebra

As a first step in arXiv:1406.3096 - also in collaboration with G.
Giribet (UBA, Argentina) and J. Zanelli (CECs, Chile) - we studied
static spherically symmetric BH solutions of a CS theory for the most
simple extension of AdS symmetry: so(4,2) x U(1).
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Objective for the first part:

@ To bl'iet'l_\' describe main properties of the expansion methods.

“Charge is needed for the holographic application.
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Objective for the first part:

@ To briet’l_v describe main properties of the expansion methods.

Second part:

@ To show that charged” solutions in CS theory for so(4,2) x U(1)

requires to have non-vanishing torsion.

“Charge is needed for the holographic application.
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Objective for the first part:

@ To briel’l_v describe main properties of the expansion methods.

Second part:
@ To show that charged’ solutions in CS theory for so(4,2) x U(1)
requires to have non-vanishing torsion.

@ To see that degenerated sectors appear in the space of solutions
and explain how this is related to the presence of additional
local symmetries symmetries (called "accidental”).

“Charge is needed for the holographic application.
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Objective for the first part:

@ To briet’l_v describe main properties of the expansion methods.

Second part:

@ To show that charged” solutions in CS theory for so(4,2) x U(1)

requires to have non-\'ani:‘ahing torsion.

@ To see that degenerated sectors appear in the space of solutions
and e.\'plain how this is related to the presence of additional
local symmetries symmetries (called "accidental”).

@ To explain how that knowledge was useful to identify a new
physical solution ; and then why it should be useful in the next
step, when consdering CS theory based on expanded algebras.

“Charge is needed for the holographic application.
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Expansion methods, brief introduction

Expansion methods are examples of procedures giving non-trivial

relations between Lie algebras and groups.
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They allow to understand interrelations between physical theories.

The first example, proposed by L.LE. Segal in 1951,
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relations between Lie algebras and groups.
They allow to understand interrelations between physical theories.

The first example, proposed by L.LE. Segal in 1951,

Physics Theories Symmetry Group
Special Theory of . ]
Relativity Poincaré's Group
_3 (1/c —»0) 2
Newtonian i
Mechanics Galileo's group
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Expansion methods, brief introduction

Expansion methods are examples of procedures giving non-trivial

relations between Lie algebras and groups.
They allow to understand interrelations between physical theories.

The first example, proposed by L.E. Segal in 1951,

Physics Theories Symmetry Group

Special Theory of

Relativity Poincaré's Group

?

Galileo's group

Newtonian
Mechanics
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Inonii-Wigner contraction of G :

[t is made with respect to a subalgebra £, first reescaling elements of
the coset G/ £ by some parameter and then performing a non trivial
limit.
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the coset G/ £ by some parameter and then performing a non trivial

limit.

Example: iso(3,1) from so0(3,2)
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[t is made with respect to a subalgebra £, first reescaling elements of
the coset G/ £ by some parameter and then performing a non trivial

limit.

Example: iso(3,1) from so0(3,2)

al

[Mr?f?f A/I(‘{f] — 'r/m-Ml?d T ’/[:l-Mnd o ’i{th/Ibt' + }]b,fA/Lh‘ , a, [’f s = l, ceey

Reescaling M5, = RP,, with y,v,... =1,...,4 leads to
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[nonii-Wigner contraction of G :

[t is made with respect to a subalgebra £, first reescaling elements of
the coset G/ £ by some parameter and then performing a non trivial
limit.

Example: iso(3,1) from so0(3,2)

[Mr?bf A/I(‘d] = 'I/m-A/Il?d o ’/[:l-Mmf o ’imel?t' + ]]b,fA/Im‘ , a, [’r e lr sy

al

Reescaling M5, = RP,, with y,v,... =1,...,4 leads to

1

Pu P = -

3 ’/;_:.NJ;H'
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Different mechanisms known as contractions, deformations and

extensions appeared in literature.

Brief history:
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Different mechanisms known as contractions, deformations and

extensions appeared in literature.

Brief history:
@ 1953: lnénii-\*’\-"igner contractions
@ 2000 - 2003: Generalized contractions, Weimar Woods

@ 2003: Expansion method, Hatsuda, Sakaguchi
[arXiv:hep-th/0106114] & de Azcarraga, Izquierdo, Picon, Varela
[arXiv: hep-th/0212347]
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Different mechanisms known as contractions, deformations and

extensions appeared in literature.

Brief history:
@ 1953: [nénl'.i-\f'\-"igner contractions
@ 2000 - 2003: Generalized contractions, Weimar Woods

@ 2003: Expansion method, Hatsuda, Sakaguchi
[arXiv:hep-th/0106114] & de Azcarraga, Izquierdo, Picon, Varela
[arXiv: hep-th/0212347]

@ 2006: S-expansion method, [zaurieta, Rodriguez, Salgado
[arXiv:heo-th /0606215]
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Advantages and some applications of the S-expansion method:

@ Direct supersymmetric extension
@ It provides non trivial invariant tensors for the expanded
algebra (different from the (super)symmetrized trace)

@ That was useful to construct® a CS action for the M-algebra
(which was obtained as an expansion of osp(32 1))

SE. Izaurieta, et al, arXiv: 0606225; see also de Azcarraga et al, arXiv:0212347

F. lzaurieta et al, arXiv:0903.4712

0Edelstein ef al, arXiv:0605174; [zaurieta et al, arXiv:0905.2187; PX. Concha, et al,
arXiv:1309.0062, 1402.0023, arXiv:1405.7078.
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Advantages and some applications of the S-expansion method:

@ Direct supersymmetric extension

@ It provides non trivial invariant tensors for the expanded
algebra (different from the (super)symmetrized trace)

@ That was useful to construct® a CS action for the M-algebra
(which was obtained as an expansion of 0sp(32 |1 ))

@ A dual formulation” of S-expansion method permits to perform

the expansion at the level of the Lagrangian.

SE. Izaurieta, et al, arXiv: 0606225; see also de Azcarraga et al, arXiv:0212347

?F. 1zaurieta et al, arXiv:0903.4712

0Edelstein ef al, arXiv:0605174; [zaurieta et al, arXiv:0905.2187; PX. Concha, et al,
arXiv:1309.0062, 1402.0023, arXiv:1405.7078.
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Advantages and some applications of the S-expansion method:
@ Direct supersymmetric extension

@ It provides non trivial invariant tensors for the expanded

algebra (different from the (super)symmetrized trace)

@ That was useful to construct® a CS action for the M-algebra
(which was obtained as an expansion of 0sp(32 [1))

@ A dual formulation” of S-expansion method permits to perform
the expansion at the level of the Lagrangian.

@ By constructing lagrangians invariant under expansions of
so (D —1,2), it has been found standard General Relativity (SGR)
in even and dimensions as a special limit of a Bl and °

Lagrangian l‘t‘SpeC[j\'el_\,lll'

] . . e p— y . ' : -
°F. lzaurieta, et al, arXiv: 0606225; see also de Azcarraga et al, arXiv:0212347

?F. Izaurieta et al, arXiv:0903.4712
10Edelstein et al, arXiv:0605174; [zaurieta et al, arXiv:0905.2187: PK. Concha, et al,
arXiv:1309.0062, 1402.0023, arXiv:1405.7078.
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All generalized contractions, mentioned before, can be reproduced in
the frame of the S-expansion method by using one of the semigroups

5;2- ) = {Ao, ..., AN+1} defined by:

’\Il’\‘f; — a\(]_’r;, lI N+ !.; 1“\“ + I
,\d.\!‘; — ,\;\:_l, iil O -+ ;‘; -~ .‘\" +1

Expansions with other semigroups can generate algebras that cannot
be reached, nor by any contraction neither by an expansion of de
Azcarraga et al.

C
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All generalized contractions, mentioned before, can be reproduced in
the frame of the S-expansion method by using one of the semigroups

‘(1‘\\"] -y
Sg’ = {Ao, ..., AN+1} defined by:
’\Il’\‘f; — a\l]_’r;, lI. X -+ !.; A“\“ + I
,\:11\!‘; — ,-\;\r_l, iil O -+ ;‘; - .‘\" + 1
Expansions with other semigroups can generate algebras that cannot

be reached, nor by any contraction neither by an expansion of de

Azcarraga et al.

As many physical applications have been appeared by using this

methods, we wanted to answer the following question:
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All generalized contractions, mentioned before, can be reproduced in
the frame of the S-expansion method by using one of the semigroups

(N v
bi- ) = {Ao, ..., AN+1} defined by:

’\ll’\ﬁ = ,-\n_ﬁ’ if o + ‘{-‘: < N+1
'\“'\!’; = AN+, ifa+B > N+1

Expansions with other semigroups can generate algebras that cannot
be reached, nor by any contraction neither by an expansion of de

Azcarraga et al.

As many physical applications have been appeared by using this

methods, we wanted to answer the following question:

Given two Lie algebras, can they be related by an S-expansion?
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Conclusions

To answer that, one should consider the complete family of abelian

semigrops, i.e., to take into account the history of their classification:

order | (2 = # semigroups

1 1

2 |

3 | 5

l 126

h [, 160

§ 15,973

7 836,021

3 1,843.120,128

9 52,989,400,714,478

Forsvthe 54

Motzkin, Selfridge "55]

_r’|r'||11||n>||r~ ‘I'.{m_
:.]ln‘_:(-nwn_ Wick '.'1,]

Satoh, Yama, Tokizawa "94|

Distler, Kelsev, Mitchell "09]
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In particular, we have found!! some criteria, related to the

preservation of some properties of the Lie algebra, that allows to

answer ithat question:

general
Lie
algebra L

/\ N \ c_fr
VAN 7\ \\‘ . ~T
1 —"——'1'_—\‘ “simple real L
v complex Vv / c?mgnct
complex simple | algebras
¢ | semisimple algebras 4
algebra § ,'] (‘:4‘!" .ELI:"D'/] w] simple reg
i 474%0 7'?3' ! | non compact
yid, ”t ,‘1,’ / algebras
J o I |
.\]-
solvable
maximal nilpotent —> abelian
radical N algebras : algebras

1][

.. Andrianopoli, N. Merino, F. Nadal, M. Trigiante, General properties of the

S-expansion method, arXiv:1308.4832

Conclusions
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[n particular, we have found!! some criteria, related to the

preservation of some properties of the Lie algebra, that allows to

answer ithat question:

general
Lie
algebra L

‘/ \ {\
A ] a \
EE—— %
V complex \/
complex simple
¢ semisimple algebras
algebra § /] Aw B, Co, Dy
I Gyl EgEq.l 4
h———...TJH'II - !
Y, ( /
= DA N
solvable
maximal nilpotent
radical N algebras

1][

S-expansion method, arXiv:1308.4832

-> abelian
.. algebras

- simple reg

9 %l\\«
\ F"'Zh‘ _
Vsimple real
compact
algebras

non compact
algebras
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. Andrianopoli, N. Merino, F. Nadal, M. Trigiante, General properties of the
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We have also implemented computer programs to perform expansion
with any semigroup (up to order 6 ) that allow us:
@ to study all resonant decompositions of a semigroup,

@ to establish the isomorphism of an arbitrary semigroup with
one of those classified in the literature and
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As an example, we have applied the procedure!? in the context of
Bianchi algebras:

Principal Idea: can be related 2 and 3-dimensional isometries?
Considering the two set of algebras: |y, x,] = 0 and
X1, X2) = Xi

Pirsa: 15040071

Group Algebra
= | type | X1, X2 X1, X3 [X2, X3 0
= | type I1 RYIRE X1, 3] =0, [Xo, N3] = X
> [Type TIT | [X1, X2] — (X2, X3] — 0, [X1, N3] — X1
type IV N X 00 X NG XL (XS X X1+ N>
> I type V X, \_\J 0. L\l \1] Xi. Vs, X3 Y,
type VI Xy, Xs| | 0, |X;.X3 A ST B T ¢ hX,
where h £ 0.1
:f\‘]w\”] [ (X1, X2] =0, [X1,X3]= X2, [Xa X3]=-X]
type Vllz ;\\11.1_'1‘1\' ;.] £ 0 (0 \.‘].- \jju v [ te . '
type VI1II X1 Xol = Xy, (X0, Xal = 2Xa, [ Xo. X3 X3
type IX | [X7.X0] = Xa.  [Xo, Xa] = X, [Xs. Xa] = Xo

12R. Caroca, I. Kondrashuk, N. Merino and F Nadal, arXiv: 1104.3541
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As an example, we have applied the procedure!? in the context of
Bianchi algebras:

Principal Idea: can be related 2 and 3-dimensional isometries?
Considering the two set of algebras: |y, x,) = 0 and
X1, X2) = Xi

Group Algebra
=1 type | X1.Xo Xi1.X; [.\';. X3 0
= | type I1 AYTRE X1, N3] =0, [Xg, X3] X
» | type IT1 X1 Xo| = [ X, X3 — 0, [X), X3 Yy
l\'llt' I\ .\'| ’ ‘\"-l 0, I.\.l. .\’_;l .\'| “ .\-_-. ‘\--: .\" 1 .\'3
> [ Lype V '\1 \_\J 0. L\l \1] Xi. ‘\'; X3 .\'_
type VI X1, Xo| =0, (XX, A ST b €Y, € hXs,
where h #£ 0.1
Ctype VI, | [X1, X2] =0, [X1, X3]= X2, [X2, X3]=-X,
| - (X7, X2] =0, [X).X3] = Xo. X2, X3 X, +hXe

type VIL2 | are h £0 (0 < h < 2).

X1, X0 = Xi, (X0, Xs) = 2X0, [ Xo. X3 = X

type VIILI
' (X1, Xa] = X3, [Xa, Xa] = X),

tyvpe IX

12R. Caroca, I. Kondrashuk, N. Merino and FE Nadal, arXiv: 1104.3541
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[n particular, we currently working!? in finding how the mechanism
. (@) O

works in the case of Lie group transformations.

S-expansion

(” (; 1 (}Ir'r.t'll'

action

<~

action

@ How acts the ’Q .'/"

S-expansion
here?

e

13[)iscus-inn.- with M. Calderon, 1. Kondrashuk and M. Trigiante.
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As the metric could represent a solution of either GR or Cosmology,
we expect this extension to be useful to relate solutions in different
kind of theories.

In fact, a BH'* and a cosmological®® solution have already been
studied for a CS theory based on expanded algebras.

However, an important issue related to degeneracy in some sectors of
the space of solutions in higher curvature theories must be taken into

account. This is the subject of the next part of the talk.

14Quin/.1mr.1 et al, arXiv:1401.1797

15Crisostomo et al, arXiv:1401.2128
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Action, field equations and some solutions

The Lagrangian is a CS density constructed from (FA ... AF), = dLcs(A),
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Action, field equations and some solutions

The Lagrangian is a CS density constructed from (FA .- AF), = dLcs(A),

1 |
A = A'TH= "+ Tv"l’\, +AT;, T4 €s0(4,2) xu(1),

R 4 %f) T+ 3 T'Pa+FTy, F=dA,

ra| =

so we have,
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Action, field equations and some solutions

Conclusions

The Lagrangian is a CS density constructed from (FA .- AF), = dLcs(A),

1 1
A = 14'-"1“." = :(l‘;w_lﬂ!, -1 ?L‘HPJ —AT] ’ T.-l (S 50(4,2) < 1 ),
I ab ] , 1
F o= 5 (RY+ ;¢ ) Jao+ ;TP +FTy, F=dA,

so we have,
[A] » I 2 1 3 I 5
fcs‘iA_=/ L-LMAJ=:/ AF - -FA +mA
M 3 2
M

= f [L‘:\dﬁ("' w) + L‘Ul II{A) + L‘int("v w,A ]} ’
M

Pirsa: 15040071
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Action, field equations and some solutions

The Lagrangian is a CS density constructed from (FA .- AF), = dLcs(A),

1 1
A = /"i'.‘lT‘." = :(l‘;w_lﬁ!, -+ ?L‘HPR —AT] ’ T.\ S 50(4,2) < 1 ),
] ab ] a b 1 qa
F = = (R®+—é)Jp+-TP.+FTy, F=dA,
2 £ (
so we have,
uvcue =
I 1 ] ‘\ p— 1 I
Ics|A :f L.U,[A)ij A F? ——FA + — A®
’ M ‘»l\] \ 10

.[[L Ads (€ W +L“'1|(AJ+L"“(( w A]}

M
LCags(e, ) = k . (R*RA + P”’ cd Acb ool ) ot
\Li‘:‘ ’ / _1[‘ ll'f](i (L _‘(_ _‘(_l ’

Lya)(A) = PAF?,
14

2
Lot = 5 [R¥Ry+ 7 (Ritese, ~T'T,) | 4
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Field equations are

< L
|

= (R"”’ + (I—zc”vf') Jab + %T"Pﬂ +FT,, F=dA,

|

Ics[Al :f Lcs(A) = i/ AF? — LEA3 £ L AS
s M 3 2 10

M

. f [L‘:\df‘v[v' w) + L‘U: ll("q) + [int("v w,A ]} ’
M
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In the local coordinates x* = (t,r, x™) (with x™ = x, y, 2), the ansatz

9]

" ') (il

ds* = —f*(r)dt? + —— + 1*8,, dx"dx",
| f=(r)
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In the local coordinates x* = (t,r, x™) (with X = x, v, z), the ansatz

9]

) ) ) [h 7 .
ds® = —f=(r)dt* + = + r°Opp dx"dx",
f2(r)
and has seven Killing vectors:

_& — (:-”E)‘” = (‘f); + (I,,,(—"”k”.l'”(—);\» + [’mam .
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In the local coordinates x# = (t,r, x™) (with x™ = x, y, 2), the ansatz

9]

g e’) 2 f ) ~
ds® = —f=(r)dt- + [,,; + 178,y AX" dX",
| f2(r)

and has seven Killing vectors:
&= 'y = o + awe™ X" + by .
In order to use Riemann-Cartan formalism, we split group indices as
a=(0,1,1) (withi = 2,3,4), so
¢! = f(r)dt, el = i ¢ =ré dx" .= rdx'.

| F)’ "t
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Demanding the gauge field F = dA and torsion to have the same

isometries (£zF = 0 and Sr’f'}},, = () leads to,
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Demanding the gauge field F = dA and torsion to have the same
isometries (£zF = 0 and Sg’f'}},, = () leads to,

A = A¢(r)dt + A, (r)dr,

TV = —% dt Ndr , T :_)‘.,\'l.dl Adr,

¢

7_;‘ (‘)'lke‘k,”” (i.l-” /\ {i.\-f” .

L (, dt + ¢ dr) Adx' +
b
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Demanding the gauge field F = dA and torsion to have the same
isometries (£zF = 0 and Sg’]-f:,, = () leads to,

A = As(r)dt + A, (r)dr,

70 = —'%(u Adr, T'=fx,dtAdr,

¢

7_r (‘)'rke‘k””; (i.l-” /\ {i.\-f” .

L (, dt + ¢ dr) Adx' +
»

inctions to solve:
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Demanding the gauge field F = dA and torsion to have the same

isometries (£zF = 0 and HL];:, = 0) leads to,

A = As(r)dt + A, (r)dr,

70 = '}’ dt Adr, T'=fx dtAdr,

T = (3, dt + 1, (f))/\d\ + L

1
- (‘) 6}\,”” (11” /\ f\f”
] r

Eight functions to solve:

f(r), Au(r), Ae(r), @(r), X (1), Xi(r), ¥,(r), (1) -
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Field equations are

k

. berde 200,
ke = 1 €abcde ]_h Ph -

T rﬂ]:r

6w™ 0= €qpage F'TC + 20 FyF,

_ | G (G
JA:  0=FF+5R"Ry— ;— d(T%,) .

\\'ilh ]_’:?f? — Rr?f’ + %(’”(’b,

We look for exact spherically symmetric charged BH solutions to

these field equations.
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Field equations reduces to four independent ones:
Demanding the gauge field F = dA and torsion to have the same

isometries (£zF = 0 and Sj’[-f:,, = () leads to,

A = As(r)dt + A, (r)dr,

TY = —'}% dt Ndr, T :_f,\'l.dl Adr,

¢

_‘ (S]ke‘k,”” (i.l-” /\ {f.\-f” .
21

L (, dt + ¢ dr) Adx' +
»

Eight functions to solve:

FIrY AdrY. A(r)Y ob(rY. v (N v.(r) b () b.(r) .
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Field equations reduces to four independent ones:

(¥ e, 2, 9 (!
o—( LA i (:)‘H (‘f’ ).

0 = (— f’ + 2 (p, —r)* + ;f: - 1(—4) »
0= (/(a P fFy — 1f X, 0, + 711 — 1f2y’

i ](—_ + 2 fx +rxm — P —rff'y,
0 = nxe —fxetp — fXCH " — [—if

A solution with axial torsion (¢(r) # 0) was considered by Canfora
et al [arXiv:0707.1056], however, is uncharged.
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Case with non-vanishing ¢ and ¢

2(r) = I(—; +br —u,

o(r) = 2Cr*,
\/1‘3 + 2br — €2 — € V12— (2C?
r )
\/1'3 + €br —

This f () represents the five-dimensional analogue of the hairy BH
solution considered in conformal gravity and massive gravity in
three dimensions by Oliva et al [arXiv:0905.1510, 0905.1545].
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The parameter b can be regarded as a gravitational hair. For some
range of the parameters jt and b, the solution represents a topological

BH (or black brane).
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The parameter b can be regarded as a gravitational hair. For some
range of the parameters jt and b, the solution represents a topological

BH (or black brane).

Study of the corresponding horizons, asymptotic behavior,
calculation of the mass (on the curve (b = +2./C? — I, where
electric field vanishes), Hawking temperature and entropy of this
black branes was also made in arXiv:1406.3096.
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Torsion and degeneracy

By adding non-vanishing i, one gets

fe© =mtbr—u+80, ¢ =2Cr,
_ fi v o— e
A =@ —d (' +1), o, =t
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Torsion and degeneracy

By adding non-vanishing i, one gets

fz '73-+br—n+H ¢ =2Cr,
A =0-do (rf+2) .y, =r+}

= g 2.2 _ 1
Xy —fzq;f P, = &yf \/!/ +Cre— &

where 6(r) is an arbitrary function.
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General solution

) !':
ff=m+br—pu+0,

k o br ro; = r(6. —6,)
A =P - 4+ —=—+———F— (= +br—u+6 —_— .
’ lerl 2 9’—9,’._9,(r3+” ) )+ -
Ar=0,

¢ = 2Cr?,

[ 12 [ (7 6] PP
p, = eyerry) ;— +br—p +9\J; (’(— +br—p+ 9) (’—’) +C2 — '(—

0 — 0. + 6
ré;
¥r ="(' N 9’—9;.+9,) ‘
6’ — 0, + 6
Xt = 3 ’
o eper r0) ’

]

+br — u+ H\('(—: +br—pu+ 9) (—’”'—)h +C2- 0

8'—0,+6, 2

~

& \ (

where 0;(r),0,(r), and 6(r) are arbitrary functions.

I.'I [
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[n CS (super)gravity theories, the appearance of arbitrary functions
arise from degeneracies in the symplectic structure on certain sectors
of phase space!®.

[n those sectors the system acquires extra gauge symmetry and looses

dynamical degrees of freedom.

6Banados, Garay, Henneaux / arXiv:hep-th/9506187, 9605159.
17Saavedra-Troncoso-Zanelli (2001).
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[n CS (super)gravity theories, the appearance of arbitrary functions
arise from degeneracies in the symplectic structure on certain sectors
of phase space!®.

In those sectors the system acquires extra gauge symmetry and looses

dynamical degrees of freedom.

However it is not an exclusive feature of CS theory since, as mention
at the begining, arbitrary functions (called “geometrically free
solutions” by J. T. Wheeler) are known to exist in some sectors of

general Lovelock gravity.

6Banados, Garay, Henneaux / arXiv:hep-th/9506187, 9605159.
17Saavedra-Troncoso-Zanelli (2001).
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[n CS (super)gravity theories, the appearance of arbitrary functions
arise from degenemcies in the 5.\-'111p|eclic structure on certain sectors

of phase space'®.

[n those sectors the system acquires extra gauge symmetry and looses
dynamical degrees of freedom.

However it is not an exclusive feature of CS theory since, as mention
at the begining, arbitrary functions (called “geometrically free
solutions” by J. T. Wheeler) are known to exist in some sectors of
general Lovelock gravity.

Furthermore, this behavior also exist in many mechanical systems 17,

6Banados, Garay, Henneaux / arXiv:hep-th/9506187, 9605159.
17Saavedra-Troncoso-Zanelli (2001).
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General Lovelock theory has a pathological structure of its phase
space because of the non-invertible relation between the metric and
its conjugate momentum %,

This introduces an indeterminacy in the dynamical evolution and
leads to degenerate dynamics.

Metrics with undetermined components were reported in
higher-dimensional theories in the torsionless case as well, e.g., in
Einstein-Gauss-Bonnet (EGB) AdS gravity when the transverse
section of the metric is maximally symmetric!?.

I8Teitelboim-Zanelli (1987).
9Zegers, gr-qc/0505016.

200liva, arXiv:1210.4123.
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General Lovelock theory has a pathological structure of its phase
space because of the non-invertible relation between the metric and
its conjugate momentum %,

This introduces an indeterminacy in the dynamical evolution and
leads to degenerate dynamics.

Metrics with undetermined components were reported in
higher-dimensional theories in the torsionless case as well, e.g., in
Einstein-Gauss-Bonnet (EGB) AdS gravity when the transverse
section of the metric is maximally symmetric!?.

In case f (t, r), there are still branches with undetermined

. S . 2
components in C5 theories?Y.

I8Teitelboim-Zanelli (1987).
9Zegers, gr-qc/0505016.

200liva, arXiv:1210.4123.
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[t has been argued that the arbitrariness in the metric that appear in
five-dimensional CS AdS gravity can be removed by:
@ changing the cosmological constant, so that CS gravity becomes
- » - . )
effectively EGB gravity?!.
. e M . . . . . .
@ gauge-fixing <, however a solution obtained in this way is still

degenerate, i.e., the gauge-fixing hides the original arbitrariness
in the metric.

?1Banados, hep-th/0310160.
22 Aros-Contreras, gr-qc/0601135.
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Accidental symmetries

The presence of three arbitrary functions in the general solution is

consequence of a local symmetry.

This symmetry cannot be a restriction of the gauge transformation
A" = ¢71(A + d)g that preserves the form of the spherically
symmetric ansatz A.
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Accidental symmetries

The presence of three arbitrary functions in the general solution is

consequence of a local :~_\'mmetr_\'.

This symmetry cannot be a restriction of the gauge transformation
A" = ¢71(A + d)g that preserves the form of the spherically
symmetric ansatz A.

We have shown that the infinitesimal gauge transformations that
preserve this ansatz are necessarily rigid (¢ = Const).
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Accidental symmetries

The presence of three arbitrary functions in the general solution is

consequence of a local symmetry.
This symmetry cannot be a restriction of the gauge transformation
A" = ¢71(A + d)g that preserves the form of the spherically

symmetric ansatz A.

We have shown that the infinitesimal gauge transformations that

preserve this ansatz are necessarily rigid (¢ = Const).

Thus, residual gauge symmetries of this kind cannot explain this.
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Accidental symmetries

— Our background is not generic and it possesses additional local
symmetries (different from A and ¢) called "accidental" because they

happen to exist onl_\' in certain sectors.
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Accidental symmetries

— Our background is not generic and it possesses additional local
symmetries (different from A and ¢) called "accidental" because they
happen to exist only in certain sectors.

[n fact, we proved that field equations (in the branch where all
spherically symmetric torsion components are swiched on) are

insensitive to the infinitesimal changes

08 = 21’-'(!'] ’

(\-Hf — 2/(#?(?'},
.

00, = —Zfdrp(r) -I—Z/dr /dﬂ(sj +20(r),
0
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Accidental symmetries

which induces the following local transformations on the fields

5f = <
0] f p
k 2 £2
A = ——= m’+in-'-f —(J——ﬂ).‘ .
Cla f X; rX;
. re U
oYy, = —T7T——p,
IJP I\’f _f)‘\'f !L
(54‘ — (J . ﬁ) o+ ..F:f} r:r‘-{ —_ j}'P
: ,.f - H[’, 4}.\'; i
., 1 73 r? frx, P’x, r*
Xy =—0 =X, | =5+ (*"i-—(]—'__)T*'-,_p—_P,
, 'y ’ (Af' Py ) P, P X T Xt P,
(gt\)f _— p’

with local parameters o(r), T(r) and p(r).
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Accidental symmetries

The transformations are Abelian because [d1,d2] = 0 upon acting on
any field.
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Accidental symmetries

The transformations are Abelian because [d1, 2] = 0 upon acting on
any field.

This new unexpected on-shell symmetry U(1) x U(1) x U(1)
cannot be a Cartan subgroup of SO(2,4) x U(1) because we already
showed that there are no residual gauge symmetries.

In fact, we found that on this sector there is only one degree of
freedom and that Hamiltonian is (off-shell) invariant under
4-parameter local symmetry that on-shell reduces to the 3-parameter
transformations (0f , 0Ay, 0, 01, OX,, OX;)-
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Conclusion and future directions

Degeneracy in the space of solutions may appear in different families

of L-L gravity in cases with and without torsion.

23Banados-Ga ray-Henneaux, arXiv:hep-th/9506187, 96051 59.
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Conclusion and future directions

Degeneracy in the space of solutions may appear in different families

of L-L gravity in cases with and without torsion.

We studied charged BH in CS AdSx U (1) gravity and saw there
exist degenerated branches in the static spherically symmetric sector.

" . - - . . . 1
In contrast with a generic CS AdS gravity with a U(1) field=, that
possesses maximal number of degrees of freedom (14 in this case), we
found that there is only one dynamically propagating mode in the

static symmetric sector of phase space.

23Banados-Ga ray-Henneaux, arXiv:hep-th/9506187, 9605159.
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Conclusion and future directions

[ndeed, missing degrees of freedom were related to an increase in
local symmetries and thus our example provide an explicit

realization of a non-generic CS gravity.

[n particular this shows that the knowledge of these "accidental
s_vmmelries" can help to formulate a simple criterion that avoids

unwanted degenerate ansatze.
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Conclusion and future directions

[ndeed, missing degrees of freedom were related to an increase in
local symmetries and thus our example provide an explicit

realization of a non-generic CS gravity.

[n particular this shows that the knowledge of these "accidental
s_\'mmelries" can help to formulate a simple criterion that avoids

unwanted degenerate ansatze.

This way, we identified two interesting solutions: the axial torsion
one - already known in the literature -, and a new 2-components

torsion solution.
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Conclusion and future directions

This issue of accidental symmetries should then be taken into account
when studying charged solutions in CS theory based on expanded
algebras, which is the next step to find an application in the
Holographic context.
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