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PLAN OF TALK

e Review of canonical GR in terms of unconstrained initial data on null
hypersurfaces

¢ The Poisson brackets of the main data

e Poisson brackets in cylindrically symmetric gravity
e Transformation to new data

e Poisson brackets of new data

e Quantization of new data

e Things to do
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DOUBLE NULL SHEETS AS INITIAL DATA
HYPERSURFACES

e A double null sheet is a pair of intersecting null hypersurfaces (or
“lightfronts™) - like an open book 1n spacetime.

o Ni, Ny are 3-surfaces swept out by null geodesics emerging normally
from the two sides of 2-disk Sj. S
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e initial data on N' = N U Ny, specifies solution in domain of
dependence D[N

D[A ] - a4 dimensional spacetime region
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THE FREE INITIAL DATA

Coordinates adapted to N/

o) H .
e #' 6° coordinates on Sy. Held constant on generators.

e v is a parameter along each generator defined so that the cross sectional
area of an infinitesimal bundle of neighboring generators is

A ( ‘.‘) — Anl':

where Ay is the cross sectional area at .S.
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Data
e “Bulk” data on the 3-manifolds N; and Nk. “Surface” data on S,.

e Bulk data = conformal 2-metric e, (8", 6%, v)
e Induced metric on N degenerate because A is null, so
ds* = hapd6°d6” - no dv terms
e Definition:
Eah = h‘,;./\/dcl/l - makes dete |
e Parametrize ¢, by a complex scalar p

mtJmmww_l”(m+nmmk+mm
i

withz = ' + i6° and p = /det ha

e Surface data on Sy: pg, A, 7,.
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THE POISSON BRACKETS FOR FREE DATA
ON N FOR CLASSICAL VACUUM GR
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THE POISSON BRACKETS FOR FREE DATA
ON N FOR CLASSICAL VACUUM GR

Brackets not shown vanish Forlin N = 8§

| . <
i | — g {‘II(I).(\I”-I} dnG—67°(0, = 0,)[ve 0, ply
{u(1),a(2)} dnG —6°(0, rmml.:'.n[—] L
o v 1 B £
I : § {u(1),7|f1} -l:(:'[—,—,\';il ;4]
x[ 'NII] - Ii (ABdp—pdp) /(1 —pup) P 1
VA 2 ’
For 1 € Nk (including 1 € S;)
for 1, 2 in the same branch, N,
B
{i(1), A(6:)} dnG—8°(0 u,.[mu,;n.
y "‘
{po(81), X(6:)} 8nGo°(6: - 6,) (L) =2 Il am (0= ) (5 oy ]
{m(@), 7[f]} 87 GL po(0) v/ 1 '
S £ 0. oy 1£p
{A(®), [} N.’.(I[i.,\ b=t ___(B Il=8 ,n] {a(1), 7]} ‘\'fr[(&ﬂ 3 --—uf’.l!)
s (1 — pufi) " 2 p 1
e e (- 1520, 5) (L) o2 Sboamrci-ns
{rln),7lr]} lhﬂi[r (n, L] ;[ ATAAL v Lot P F) o\
¢ L | ' : - where 1, € 5 1s the origin of the generator through 1
+[ -_m{:i-;: - Ei-r{d,_u + O 1)} 'Hﬂll‘]. Forl e N;
For1inNg — § I
I {;1!1]. ,\(H_‘}} dnG—467°(0, - 0, l[!u;d i)y
{1(1),M(0:)} = 475G —8°(02 — 61 )[vrD., s I" .
A 2 [ (ud) /(1 =pp) ;4
. 1 £,p .(;_-)1‘ l td'“h]
Wl), rlf oG | L - Ve i
lu(1 i} I | i p Ore 1 : 1 £imx
wel (1), 711 8rG e £ v 0, ji
j . - )
2 I
For1in .S, f
‘ (-.,. 1 £py 8 ;:) (_I) et [} (udp) /(1 —pp
{u(1),A(2)} 0 2 p T/
{u(1), (]} 8nGl£ p),.
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POISSON BRACKETS OF THE BULK DATA

{n(1),p(2)} = {#Q1),a2)}=0

| ,
{u(l), 3(2)} = 4nG T 60-(6, —0,)H(1,2)
192

x[1 — pi)[1 — pi) oJi (pdp—pdji) /(1= pp)

H(1,2) step function = 1 if 2 follows 1 along the generator, 0 otherwise.

e Only data on same generator have non-zero bracket. Consistent with
causality since points on distinct generators are spacelike separated.

e Bracket does not quite preserve reality of induced metric on AV, but
imaginary mode is shock wave that does not enter interior of domain of
dependence. Bracket preserves reality of spacetime metric there.
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A SIMPLER PROBLEM

e Step toward quantization: quantize the “one generator algebra™

{p(1),u(2)} = {p(1),n(2)} =0

1
1),i(2)} = 4nG H(1,2
{n(1),(2)} Ve (1,2)

<1 = pila[1 — il e BB/ =)

- Brackets with 6?(6, — 6,) removed. i, i1 functions on a single line.
o This is the bracket in cylindrically symmetric GR on N swept out by
radial light rays from symmetry axis.

P
Worldsheet of symmetry axis. \
: i R N, e
Dimension along axis supressed v i
N

—

=0

e Bracket obtained as bracket of averages (u) and (ji) over symmetry
orbits at symmetric solutions, or from symmetry reduced action.
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TRANSFORMATION TO NEW VARIABLES

Cylindrically symmetric GR is an integrable system. Quantization
exists [ Korotkin and Samtleben 1998].

Transform in steps from g, ji to variables with known quantization

- Ve Ve M

(L, jt > V2V 1s zweibein for conformal 2-metric e, on symmetry
orbits - e = VYV,

Vi ] ] | — pji ~i(p — 1)
0 ea=n @ @t au s

A natural boundary condition: 4-metric regular on axis. But we will use
V regular at axis which implies 4-metric not regular.

We treat only the branch N, which touches symmetry axis.
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e )V~ V: Define
] — V l(!]/‘
P=3J+J") Q=3 -J")

Introduce spectral parameter w. We use only real w in classical theory

l(\ w) = Q(x) + \/H thp(_\.) V(n‘) — 1(0) IP(L]“‘,' /2 J(w)

e V> M: “Monodromy matrix” M(w) = V(w)VT(w)
e Interpretation of M: It is e,, on symmetry axis at instant 7, connected
by future directed light ray to point on A where p = w/2.

2 D SYMMETRY

p=0 REDUCED SPACETIME

path of integration

Worldsheet of symmetry axis.

M is e here 9

e Transformation pu, it — M is invertible, modulo imaginary shockwave
mode.
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POISSON ALGEBRA OF NEW VARIABLES

e A lengthy calculation yields

-

2 2 1

— MW" M(w) — M(W)Q"M ()

| 2
e Matrices A and B act on different spaces, so their product is a tensor
{ -\
product: (AB)up.ca = AapBea.

e () and 27 acts in the product of the two spaces.

® Qupcd = 0aa0ch — 1/2046.4. Contracting 2 on both indices in space 2
with a matrix there gives the trace free part of the matrix acting in space 1.

L]
-

i OpdOuc + 1/20450.4 projects on trace free matrices and also
takes the transpose and multiplies by —1.
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QUANTIZATION

e Korotkin and Samtleben 1998 have presented a consistent operator
algebra that quantizes the Poisson algebra of the Ms:

| R

l

Rlv—w)MW)R"(w — v+ 2ia) M(w)

1 y .
— -/M(“')R”(l' == Zf(I)M(\‘)R(u' — 1')- —

v —w <+ 2ia

e a = 8nGh - 87 x Planck area.
® R(u)ab,ca = UOabOcd — 1A0adOh
o R(u)! ., = (u — ia)dabca + iadacOpa
M, = My,, *-algebra with M* = M,
MW (u — ia) M*2(u) — M"%(u — ia) M?*' (u) = 1.
e The quantization is known at the algebraic level, but the representations
of the algebra are not well explored. Algebra closely related to s[(2)
Yangian double.

o
C‘
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TO DO

e Study the representations of the M algebra, in general, and in single
polarization model [Kuchar 1971].

e Sy data A and p, are present in cylindrically symmetric GR. Here we
have ignored them. They should be incorporated into Poisson algebra
and quantization.

e Use the results from cylindrically symmetric GR to quantize data in full
GR. The chief obstacle seems to be that our formalism requiers that V
be regular at p = 0, and thus that the caustic at the end of the generator
be of a special type. This requierment is not generally met in the
absence of symmetry.
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