Title: The (macro)-reality of superpositions

Date: Mar 24, 2015 03:30 PM

URL.: http://pirsa.org/15030085

Abstract: <p>This talk touches on three questions regarding the ontological status of quantum states using the ontological models</p>

<p>framework: it is assumed that a physical system has some underlying ontic state and that quantum states correspond to probability distributions
over these ontic states.</p>

<p>The first question is whether or not quantum states are necessarily real---that is, whether or not the distributions for different quantum states
must be digoint. The PBR theorem proves the reality of quantum states by making assumptions about the ontic structure of bipartite systems,
assumptions that have been challenged. Recent work has therefore concentrated on single systems, producing theorems proving the existence of
pairs of quantum states whose overlap region on the ontic state space is very small.</p>

<p>The second question is whether the ontology of a quantum system can be macro-realist---that is, can there be "macroscopic” quantities which
always have determinate values? The L eggett-Garg inequalities claim to rule out this possibility, but this conclusion has been disputed.</p>

<p>The third question is less familiar: Must quantum superpositions be ontic? That is, for some superposition with respect to some orthonormal

basis, must ontic states exist which can be obtained by preparing the superposition, but not by preparing any of the basis states? In other words, can
SchrAfdinger's cat always be either alive xor dead?</p>
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Real vs. epistemic
This work—Ilike PBR and others—considers the epistemic realist position.

Realist — there exists some underlying ontic state A\ € A of a physical
system.

Epistemic — preparing a system in quantum state |¢)) results in a
(generally) unknown ontic state obtaining according to some probability
measure: a preparation measure.

These preparation measures can, in principle, overlap.

This is attractive because perhaps certain quantum features can be
explained in terms of overlapping preparation measures:

@ Indistinguishability?
@ No-cloning?
e Exponential complexity with increasing size?

N.B. here, all quantum states are assumed to be pure.
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Example: Spekkens’ toy model
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What this talk is not about

The natural framework for discussing epistemic realism is that of
ontological models.

Every* realist approach to quantum theory can be cast as an ontological
model.

So Bohmian theories and collapse theories are included, but
Copenhagen-esque or QBist theories are exempt from this analysis.
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Ontological models (1)

d-dimensional quantum system. Measurable space of ontic states A © .

Preparation of |¢)) = some preparation measure* 4, gives prob. of
each A\ € A obtaining.

jyy has support* Ay, C A.

Measurement of M (POVM or PVM) = Conditional probability*
Pm(E|N) € [0,1] for each outcome E € M for ontic state A.

Therefore, preparation of |¢) via j,,) followed by measurement of M
produces outcome E € M with probability

/. dpepyy (A) Prg(E [ A).
JN
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Ontological models (2)

Unitary transformation U = stochastic map* ~y probabilistically
transforms the .

If some preparation 1, has been made, then the action of this map can
be understood to transform (i, to some other preparation.

Since preparing [¢) then applying U is a way to prepare U|1)), then we have

YU
ﬂ'|'¢;"!) e /{’U|'t;"’)

Assume quantum statistics

Prepare |1), apply U, and measure M to get outcome E with probability

/A dpigygy (NPM(E | A) = (6]UtEUJ).
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Reminder: Ontological models (3)

Prepare [¢)) and measure |¢) gives

&) | ) = [(9l¥)[2.

/ dptjy (A) P (
Jn

Consider the probability of y«|,,y producing

’ a A in the overlap

i) (Ao)-

Clearly, if A € Ay then Py(|o) | N) = 1,
SO

iy (Ns) < [l 2.
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Quantifying overlaps: Asymmetric overlap

This can be used as way of quantifying overlaps. The asymmetric overlap
is the probability of getting a A € A, given that we prepared |)):

w(|6) [[$) = ppyy (o).

Which must therefore satisfy

o(16) [19)) < 1(g19)2

and [1)) = |¢) = w(

¢) 1)) =1 and

'ff"‘{/' > i

8) = w(|6) | [¥)) = 0.

Asymmetric

I‘l f}‘): _‘ v I ’I‘ql}

P
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What does it mean for quantum states to be real?

Quantum states are real (ontic, state of reality) if they are ontological
properties:

@ every A uniquely identifies a quantum state.
@ preparation measures for different quantum states do not overlap.

@ A is partitioned into disjoint regions, each the preparation support of
exactly one quantum state.

The model is said to be ¢-ontic.

If some preparation measure i,y overlaps with another 4 for [1)) # |¢),
then quantum state |¢) is epistemic (a state of knowledge)*.

If a model is not v-ontic (it has at least one epistemic quantum state) then
it is 1-epistemic.
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So, are they real?

The PBR theorem [arXiv:1111.3328] proves that quantum theory is
y-ontic, but must make additional assumptions about the ontic structure
of bipartite systems, which are open to challenge.

So, try to re-create this result with single-system arguments and minimal
assumptions (just the ontological models framework).

Unfortunately, there exist 1)-epistemic ontological models for quantum
system of every finite d [arXiv:1303.2834].

PBR proves that (given assumptions) the ontic overlaps vanish between
different quantum states.

Next best thing: upper-bound ontic overlaps for preparations of different
quantum states can overlap and get close to v)-ontic.
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Bounding overlaps

Several authors have proved single-system theorems of the form: “There

exists a pair of non-orthogonal quantum states whose overlap must satisfy
this bound..." [arXivs:1310.8302; 1401.7996; 1407.3005].

Some also prove limits in which the bounds approach zero.

There are two common shortcomings:

@ The proofs are existential: they leave open the possibility that almost
all pairs of quantum states have large ontic overlap.

@ Where overlap* — 0 is proved, it is in a limit where the quantum
states — orthogonality anyway.
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What is macro-realism?

Macro-realism, introduced to quantum theory by Leggett & Garg with their
inequalities, is typically defined somewhat informally (contributing to
confusion over what it means).

Maroney & Timpson [arXiv:1412.6139] come up with the following:

Macro-realism

“A macroscopically observable property* [M] with two or more
distinguishable values [{e(n)},}] available to it will at all times
determinately possess one or other of those values.”

They then formalise this within the ontological models framework and
define three sub-varieties: MR1, MR2, and MR3

First, define operational eigenstates {..(, } of M to be preparations
which are value-definite for some value e(n) of M.
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MR1*

The only possible preparations are convex combinations of operational
eigenstate preparations: pu,, = ), Pnite(n)-

This means that A is effectively partitioned according to M, with each
A € N preparable by exactly one of its operational eigenstates.

MR1
Hego)

P(e(0)|A)=1| P(e(1)|A)=1 | P(e(2)|A)=1

Vig)

Ple(3)|)=1 Ple(4)|I)=1 Ple(5)|A)=1 A
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MR3*

The ontic state space A is again partitioned, but slightly differently.
Every A € A will (on measurement of M) return exactly one e(n) with
certainty.

In other words, each A still corresponds to one of these values, but need
not be preparable by an operational eigenstate.

All MR2 & MR1 models are also MR3.

MR3g
J“c(u)
P(e(o)|A)=1| P(e(1)|A)=1 | P(e(2)|A)=1
Vi)
P(e(3)|12)=1 P(e(4)|M)=1] Ple(5)|})=1 __A
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Example: Spekkens’ toy model (again)

B

So this model is MR2 (and therefore MR3), but not MR1.
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The Leggett-Garg inequalities
With formal definitions for macro-realism, the Legget-Garg inequalities
(LGIs) can be re-evaluated.

These are inequalities designed to hold for some measurement statistics
assuming “macro-realism”.

The LGls are violated by quantum experiments, the claim would be that
the LGls therefore prove quantum theory cannot be macro-realist

However, careful analysis by Maroney & Timpson shows that only MR1 is
strong enough to derive the LGls.

Therefore, without further assumptions, the LGls say nothing about MR2
and MR3.
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Section 4

Question 3: Are quantum superpositions real?
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Everyone's favourite superposition:

The cat can be engineered to be,

for example, in the superposition state

1 2
) = \/;](l(‘zul) + \/;

It is natural* for epistemic
realists to want the cat either alive
xor dead on the ontological level, i.e.

alive).

A

Alive

Hiy)

Dead

The alternative would be for some ontic states to not correspond

alive or dead cats.

Schrodinger's cat
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Real vs. epistemic superpositions

Superpositions are quantum states [1)) & B defined with respect to some
orthonormal basis B = {|i)};.

A superposition |1) is epistemic if, for every A € Ay, 3 some |i) € B
such that A € Aj;y too.

Otherwise, |1)) is ontic or real: there are novel ontic states for |¢’) which
are not required for B itself.

An epistemic superposition must satisfy

(i) | [9)) = [P, Vi) € B.

This is exactly what happens, for example, in Spekkens' toy model.
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Asymmetric overlap: Monotonicity

Prepare [1)) (via i) and then apply U.

Each X is (probabilistically)
mapped into some target set Qu(A\) C A

AE Ny = Qu(A) C AU|1,-"-‘)*
/\ € A(,-"J = QU()\) g AU‘(,-‘))'
Therefore A € Ay N Ay = Qu(A) € Aypyy N Ay -

So overlap As only map to overlap As and thus
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Anti-distinguishable states

A triple of quantum states is anti-distinguishable if there is a
measurement that, with certainty, identifies one that was not prepared.

re. {|v),|¢),|0)} is anti-distinguishable iffe 3 some measurement
M = {E., E~y, E-o} for which

<’¢"""|E-r::‘-'|"r"(’> - (Q")|E-1¢>|<f)) = <0‘E~10|0> = 0.

A T —

M [w) M |o)

This means that there can be no tri-partite
ontic overlap.

arXiv:quant-ph/0206110 derives sufficient
conditions for a triple to be anti-
distinguishable.

)“| P
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The construction

Suppose d > 3 and that there exists some |0) € B such that

O|Y) 2 = a2 < 3 (almost always the case).

Define another basis B’ 5 |0) such that

) = al0) + B[1) +~[2'),
By = 5]0) + n[1") + «[3)).
Where: « € (0, i), i def V2a2, 6§ - 202, 1 - V2a2,

V2

So that (for any o < %)

° [(0
° {

VY| = [{p|y)

), |¢),]0)} is anti-distinguishable.
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The argument

A

[(@|y)|=|(o]y)]
_ Ulw)=|w)}
Ulo)=|¢p)

=w(o|y) <w(p|y)

Consider measuring in the

B' basis:

P (oor1'|y)zw(o|y) + w(p|y)
22w(0|yp)

But quantum theory tells us that

HDBJ(O or 1" |'£r-"‘ll>) = |(\*|2 + |ﬂ‘2
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The conclusion

From above

o + |82
2w ([0) [ 4)).

Py (0or 1’| [¢h))
and Py (0or 1’| [¢4b))

|

IV

together imply

1 ‘
(0 110) < laf? (5 +1af? ) < laf = (010}

and, in particular

@ ([0) | [4)) < [(Of)[?

which rules out [¢)) being epistemic wrt B (which requires

([0} | 1)) = [{O[)[2).

Therefore, almost all superpositions are real for d > 3.
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Macro-realism and real superpositions

You may already have noticed the similarity between the definitions of
macro-realism and ontic superpositions.

Whilst there are important differences, an MR2 model for a quantum
system must necessarily have some epistemic superpositions.

Specifically, if the “macroscopically observable property” has N
distinguishable values* then there exist orthonormal sets B3 of at least N
quantum states such that every superposition over B is epistemic.

Epistemic superpositions imply no-MR2

Since almost all superpositions for any basis of d > 3 elements must be
ontic, it follows that no quantum system can be MR2 macro-realist for a
macroscopic quantity with N > 3 distinguishable values*.
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What about general macro-realism?

We have that MR2 is impossible for quantum systems and “macro”
quantities with V > 3 distinguishable values.

This immediately implies the impossibility of MR1.
So, for N > 3, this supersedes the Leggett-Garg inequalities.

What about MR3? Well, Bohmian mechanics is an example of an MR3
theory so it is impossible to rule out MR3 wholesale.

However, Bohmian mechanics is also i)-ontic. It may still be possible to
rule out all 1-epistemic MR3 theories.
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Bounding overlaps with single-system arguments

Proof of real superpositions works by upper-bounding an asymmetric
overlap @ (|0) | [¢)).

This is exactly the sort of thing that single-system “¢-ontology" arguments
do.

Recall that it is impossible to completely rule out v-ontic models without
further assumptions, but it is possible to bound ontic overlaps.

These are not strictly “¢)-ontology” arguments, but proving small overlaps
is almost as good as proving empty overlaps.
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A single-system 1-ontology result

By slightly modifying the above proof, we get a single-system -ontology
result.

Bounding overlaps

For any d > 3 quantum system and any pair of quantum states |¢), |¢)

(Y|P E a? < % the asymmetric overlap must satisfy*

(41 < o (G)

= lim w(|¢)||y)) = O.

d—oc

satisfying

So in the limit of large dimension, this bound approaches zero independent
from the inner product «.
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Comparison with previous results

Recall the shortcomings of previous single-system results noted earlier.

This theorem addresses both shortcomings:

@ This result is not existential. The bound holds for arbitrary pairs of
quantum states satisfying an inequality.

@ A bound is proved — 0 in a limit where quantum states remain
non-orthogonal. In fact the states themselves are not affected by the
limiting procedure.

This means that for large-dimensional quantum systems there are large
numbers of pairs of states which overlap negligibly.

On the other hand, the bound itself is weaker than some of the previous
bounds.
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Section 8

Robustness
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But what about error?

I'm sure you've noticed: |'ve been assuming exact quantum statistics.

What if the ontological model only reproduces quantum probabilities to
within +e € (0,1)7

Unfortunately, the asymmetric overlap is not error-tolerant. At all.

D), |6)) is

Fortunately, the alternative symmetric overlap w(
error-tolerant.

w(l), 1)) € [0.1]. w(ly), [9)) < 1= /1= [({W]g)[?

Asymmetric Symmetric
Mgy, f THg) Hiy)| (i)
. A A
— _— e —
Aq) Acp
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Error-tolerant result

The above result can also be carefully re-derived to use the symmetric
overlap.

Error-tolerant 1/-ontology result

For any d > 3 quantum system and any pair of quantum states |¢)),

: ; def g i
satisfying |(1|¢)|? = a? < 3 the asymmetric overlap must satisfy*

(I8, 10)) < o (%) s ;(3)(_0!2; 4)
¥)) < O(de),

)

€,

I b)Y
d;mxw(m

if quantum probabilities are reproduced to within +e.
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What does this prove?

This generalises the previous bound to apply in the presence of finite error.

However, it is only non-trivial for d > 5 (since we're now using the
symmetric overlap).

Also, this result does not imply an error-tolerant no-go for epistemic
superpositions or MR2.

It does, however, suggest that these results can, in principle, be made
error-tolerant.
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Section 9

Conclusions
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Conclusions

Almost all superpositions (wrt any given 3, for d > 3) must be real: there
must be novel ontic states that are superposition states.

As a result, all MR2 models for “macro” observables with N > 3 values are
ruled out*.

For large-dimensional quantum systems, many quantum state pairs cannot
have significant overlap*.

This third result can be made tolerant to small error.
These three results are three perspectives on essentially the same proof.

An operational characterisation would be nice. It would help to devise
possible experimental set-ups and perhaps suggest information-theoretic
implications.
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Thank you for listening

Any questions?

Thanks also to Jon Barrett, Owen Maroney, and Stefano Gogioso

arXiv:1501.05969

Pirsa: 15030085 Page 50/53



Pirsa: 15030085 Page 51/53




Pirsa: 15030085 Page 52/53




Questions summary

Question 1

What are the limits on ontic overlaps for single-system ontological models
of quantum systems? How close to v)-ontic can we get without further
assumptions?

Question 2

Bearing in mind that MR1 models are ruled out by the Legget-Garg
inequalities and that Bohmian mechanics is MR3, what limits are there for
macro-realist models for quantum theory?

Question 3

Given any |¢) & B of a d-dimensional quantum system, can [¢) be
epistemic wrt B, or must it be ontic? Must it be real?
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