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Abstract: <p>In this talk | will propose a general correspondence which associates a non-perturbative quantum mechanical operator to a toric
Calabi-Yau manifold, and | will propose a conjectural expression for its spectral determinant. As a consequence of these results, | will derive an
exact quantization condition for the operator spectrum. | will give a concrete illustration of this conjecture by focusing on the example of local P2.
This approach also provides a non-perturbative Fermi gas picture of topological strings on toric background and suggests the existence of an
underlying theory of M2 branes behind this formulation.</p>
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QOutline

Toric Calabi- Yau X ~=» Quantum operator: ﬁ_\' (;f:, ﬁ)

The information on the spectrum can be encoded
in the spectral determinant.

We conjecture an explicit expression for the spectral
determinant in terms of Gopakumar-Vafa invariants
of X.

This relates spectral theory and enumerative geometry
in a novel way. This proposal is testable!

Interpretation of px (,)) as the density matrix of an ideal Fermi gas

—>» Fermi gas formulation of topological strings on X

—>» Non-perturbative, background independent,
formulation of topological strings
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Topological strings

Topological string is a 2 dimensional conformal field theory coupled to gravity

Topological sigma model on target space X

We will study the Free energy of topological strings on a Calabi-Yau X .

topological string coupling Kihler parameter,
it is related to the
/ e size of X

13
Fmp(f« 9s) = Z .(/f'q—zF_f}(f) = Z i (UH)(’—””
g m/v———

‘,.
Determined by Gopakumar-Vafa invariant on X, e.g.

di(gs) = E 2s8in - h)
! (./ ) 2

920
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Refined Topological strings

It is possible to refine topological strings by introducing an additional coupling
Two couplings: €1,€9

The Free energy: [’ I“ (€1,€0,1)

€1 = th, € —0 / \ | = —€2 = gy

Standard Topological strings

Nekrasov-Shatashvili (NS) limit
Flnp(f s )

FNS(ht) =3 ep(h)e™™
m i

Determined by refined GV , e.g.

sin(h(2j7, + 'l))s‘in(/r(‘ ir+1))
2 sin (’3) sin®(h)
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Mirror symmetry

Topological string is built on a topological sigma model

Two different types of sigma models can be used

N

A model B model
Starting point for Mirror Symmetry Starting point
th tracts for the
e construction : . - . )
Given a Calabi-Yau \ there is construction of
of the spectral another Calabi-Yau X such the A _
» . . our quantum

determinant model on X is equivalent to the

3 ¥ t "
B model on X . The manifold X operatol

is called the mirror of X.
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The geometry

Our target space X is a toric del Pezzo Calabi-Yau. These are local Calabi-Yau
which can be classified by polyhedra:

ERONEARACR NS

P! x P!

O D BA D

-% We can read off the geometrical information we need
out of these drawings.

Batyrev, Klemm et al
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The geometry

The mirror X of a toric del Pezzo Calabi-Yau X is described by the curve

Hori-Vafa, Batyrev,
H'\ ((3”-'_' (J’) — VW Katz-Klemm-Vafa, . . .

4

Polynomial in ¢, €

All the information needed to compute /,(?) on X is encoded in

VoloP T Bouchard- Klemm,
W (( y € ) = U Marifio-Pasquetti

Riemann surface of genus one

1.1_{_312 ((J.‘rT (J;) — _I_ e P _I_ e €T _.
L -

Complex modulus

Example: Local P*

= Op2 (~"- p)
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The geometry

Dijkgraaf et al,
Mironov-Morozov,
Aganagic et al

Wx(e", e?) =Ox(x,p) —u =0

We quantize this curve, i.e. we promote x and p to operators s.t [r ﬂ = ifi.

Moreover we identify the modulus with the exponentiated energy: @ = ¢”

~

Wy (e?,e®) =0 ___} Oy (if-',ﬁ)“t,-‘"-'-,,,) — oEn

a/
Un )

We will use: px (i,p) = O (&, p)
Similar to Schrodinger equation:

h? d?

P H ‘l £ W = ; U,
—+V(X)-E=0 “‘% ( 9 2 + V('I)) tn) = Enltn)
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The geometry

Example: Local [P? Wpz(e®,eP) =e" +eP +e " P —q = ()

i quantization

(A)_\'(JfT,}rj)l'(l,-".!,}.) — ((,f-‘ + (,IA’ + (,—.f:~13) |‘(‘I‘,"”> _ (}h‘”

“r‘""‘n >

e’y n( )"’"H( ’h)+(3_m—ih"’u( +’h)—( '(;'“(I')

Nekrasov-Shatashvili, Mironov-Morozov, Aganagic et al

Example: SU(2) quantum Toda chain

9 .
{J’ + e P S ]-J.

i quantization

Gaudin-Pasquier Un(x 4+ 1h) + Yp(x — ih) + ,,(..'f) = FE, ¥n(x)
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The Operator

~

The operators px (,p) = Oy (&, p)

are well defined trace class operators acting on L°(R) . They have a positive

discrete spectrum. Kashaev-Marifio

Example local PP? ; the kernel can be computed explicitly.

-~ Dy(x +1ib/3) emo(z+y)/3 o 3h
-~ Oy(x —ib/3) 2b cosh (7 (52 + %)) em

(@

[}:[nz ‘_(j) = ppz(T,Y)

®y () : the quantum dilogarithm

Question: can we compute the spectrum of these of operators?

We will see that the spectrum is encoded in the GV/refined GV invariants of
the corresponding toric Calabi-Yau.
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Old vs New

Mironov-Morozov,
Aganagic-Cheng-
Already known: Dijkgraaf-Krefl-Vafa

The quantization of the mirror curve leads to a difference equation:

+h N

e’ “-"‘I‘n("r) + ¢p(w —ih) e "2 'tr"l"#f('ll + ’h) = e '(JJI'rr(JIT)
The perturbative WKB quantization condition for the spectrum of this equation

is closely related to the NS limit.

New approach:
Behind the quantization of the mirror curve there is a well defined trace class
quantum mechanical operator acting on L*(R):

px(T,p) = ().\-I (Z,P) inverse!

In order to study its spectrum, the right object to look at is the spectral determinant.

We found that the spectrum of this operator is determined both by standard and
refined topological strings in NS limit. AN

non perturbative corrections to WKB!
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The Spectrum

From a physical point of view the discreteness of the spectrum can be understood
from Bohr-Sommerfeld quantization condition:

Example: Harmonic oscillator

A9 A
. W
( 2 + 2 ) l{-"u) - bu

phase space Bohr-Sommerfeld: each cell of volume 27/ in

":"Il"n )

R(E) = {(x,p) € R?| p* 4+ 2% < 2F}

leads to a quantum state.

Vol (x,p) ~ 2whn —-—) F, ~ hn

We expect a compact phase space region R () to lead to a positive discrete spectrum
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The Spectrum

Example: Local [P*

R = {(z,p) € R?|Opz(z,p) = e* +eP +e 7P < (e“}

Bohr-Sommerfeld: each cell of volume 274 in TR

leads to a quantum state.

4mh

Vol (x,p) = 2mhn —=» FE?~ - "
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The quantum volume

Toric Calabi- Yau X ~—» Quantum operator: px (I, )
l Bohr-Sommerfeld

|
Vol (E) = 2nh(n + ;), n >0 Widom

We expect quantum corrections of two types:

1) Perturbative in /i : all order WKB  Dunham

—1/h

2) Non perturbativein /1 : €

1
Vol,(F) + Vol,,,(E) = 2mh(n + E) n >0
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The perturbative quantum volume

The classical volume: Vol (FE) = %j)(.r)d.r = IIg(F): B period
V(x) '

B cycle: represents oscillations around minima

Vi

e

p(x) determined by: % +V(z)-E=0

Perturbative quantum volume: Vol,(E, h) = % pla, h)de = 1l g(E, h)

B Quantum B period

2 dx?

p(x,h) determined by: ( h d-I FV(x) I) exp [; / p(;;.h)rf..r;} 0
’ .

all order WKB
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The perturbative quantum volume

In our context: Wy (e”,e") =0 isa genus one curve

—>» ithas A and B cycles

<,
S

Vol,(E, h) = ¢ p(x, h)dx = 1lg(E,h)
JB

G the quantum B period

J

@ Determined by refined topological strings
OrFNS =11 (E,h) Nekrasov-Shatashvili,
' Mironov-Mironov,

Aganagic et al

One also defines the quantum % p(a, h)de =115 (F, h)
J A
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The perturbative quantum volume

|
Perturbative quantization condition: Vol,(F,h) = Ilg(F,h) = 2nh(n + ;)

Aganagic et al

Example: local [P°

Vol (E) = S E* — % — — (Fa¢(h) + be(h)) e >

2 ,
" )

3. . (:;h_) " (h) ! Diverge for infinitely
5 CsC™

many values h

~%» Vol,(E) needs extra corrections! Kalién, Marifio
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The quantum volume

Including perturbative and non perturbative correction we found

Vol,(E) + Vol,,,(E) = CE? + 2rhB(h) — ;, ' 4 Z Eay(h)e 'E
well-defined
finite quantity + Z d (h)(,—r'(:H-‘.er-m/h)l:’
T, n
e, >0 /
v

dy..(h) :refined topological strings in NS limit

d,, o(h) : standard topological strings

The operator Px(Z,P) contains information on both the standard and the NS limit
of refined topological strings

We can derive all this in a single strike from our conjectural expression of
spectral determinant associated to {)\ ( r, 1))
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The quantum volume

I
Vol,(E, h) + Vol,,,,(E, h) = 2mh(n + E) n >0

Local P? with h = 47

Order Fo

o—3E/2 3.77764328326207137402
e—6E 3.77770625855981285308
e~ 21E/2 3.77770625858220666231
e~ 12E 3.77770625858220699760
o—27E/2 3.7777062585822069986 1

Numerical value 3.77770625858220699869

/!

From a detailed numerical analysis of Op2(Z, ) Huang-Wang

This is a strong test of our conjectural expression for the spectral determinant !
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The spectral determinant

: A . . . -F
Given an operator 0 the information about its spectrum ¢ " can be
encoded in the spectral determinant (or Fredholm determinant):

Z(k) = det(1 + kp) = H (1+ H.(%_H“)

T

Once Z(x) is known, the spectrum can be computed by looking at its
Zeros:

E(k) =0 K =ebntim

The spectral determinant has an important property: is an entire function of K.
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The spectral determinant

We conjecture that the spectral determinant of px(Z,p) = Ox(Z,p)" ! is:

Ex(k, h) = e!xBNO (1, ), k= el

Grand Potential

Generalized Theta

The first ingredient is the chemical potential u

/ — 7”,‘_.(,”' — ‘f'ﬂ‘ — Z(_ l ).,.(.-”I{‘(h)(“_ __f;[.-“

>0

A

Kihler parameter
Determined by the quantum A period ( quantum mirror map) :

[M(w, h) =—rlogu+ Z ag(R)a~™™

m >0
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The spectral determinant

=x (K, ) —(').\'(N-. h), k=-¢"

Grand potential

At large [t

C'(h) .
JIx(p, h) = .(;’) ;1.“ + B(h)p+ A(h) + Jm(p, h) + Jws (pes 1)

Hatsuda,Marino,
Moriyama,Okuyama

—>» Jws (o, h) = Z Sy (B)e ™27 m T pett /T is the total free energy of standard

m>1 topological strings

—>»  Jmlp, h) Z b (pt, h)e™ ™" refined topological strings in NS limit
—>» Cancel the poles and provide a non perturbative
completion of topological string free energy
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The spectral determinant

Zx(k,h) = eXBNQ (1, h), ) Kk = et

Generalized theta function Similarto
Eynard-Marino

Ox(p,h) = Z exp [.]‘\’(}I + 2min, h) — Jx (p, h):

nez

——-) It is determined by standard/refined topological strings

-—-} In some cases it becomes a standard theta function

-—-) The zeros of the generalized theta function determine the quantum
volume

|
O, h) = 0 <> Vol,(E, h) + Vol,,,(E, h) = 2rh(n + 5, n=0

pu=FE+ir
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The spectral determinant

For some value of /i the expression for the spectral determinant is particularly
elegant: these are the “maximally supersymmetric” cases Codesido, AG, Marifio

Example: /i = 27 standard Jacobi theta

‘ x ?"27'
Ex(p, 2m) = e’ X 2™, (g + C, #)

— 4

-} has a nice and simple expression in term of genus zero and
genus one topological string free energy

r 9 o -
E = T3 (f()r[‘“(f) — (); [‘”(1))

4

2% o
T = —0; Fy(t)
T

e 2

. * o
(if;,m to Fo(t) + - f);l-[.(z))
B(27 i e
| (r )/ FFL(t) + FYS(t)
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The generalized theta function: an example

Example: Local P* and h = 27

| 3 97
Generalized theta function: © x ([u‘«, h-) = U3 ( - = —)

8" 4

i the zeros are given by

| |
E(/f)—_—lz.w+3. s=0,1,2...

s=0: FEy=2.5626420686238193889. ..

s=1: F; =3.9182131882998397787 ...

This agrees with detailed numerical analysis!
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The moduli space

Z(k,h) = e’XWMQ v (k, h) :is a entire function of the moduli space

large radius: K = o0
So far: looking at =(x,h) close to the large
radius we can derive the quantization condition
conifold: and the eigenvalues of our operator.

Next: looking at =(x, ) near the orbifold
orbifold: 1 — 0 we can compute the spectral traces of our
operator

KR = ('“
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The spectral traces

o0

Zo=Teps =) e P

n=()

From the spectral determinant:

a) We can compute them from the spectrum i.e. from the large radius expression:

. _ ] | ]
local P?, h = 27 A A
9 T2 6mV3
1 | ]
Zy = — — -

81 2472 2473

b) We can also compute them by looking at =(x, /i) close to the orbifold point:

3 8 —r)!
logZ(k, h) = Jx — log 03 (E — . T) - Z Z (_f_)_
.f,'.:-,.|

81 [

Agree with previous ones!
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The spectral traces

o0

Zy = Trp = E e tEn

n=()

From the operator:

¢) The spectral traces can also be computed directly from the operator by using
the explicit expression for the kernel:

b/t )/ Kashaev-Marifio
- ([){,(.'I.' + 'ﬂb/._;) (,’Nb(.r ty)/3 [

Oy (x —1b/3) 2b cosh (7T ('_;g + ﬁ))

Pp2 (.’If, !j)

¢

Trpgs = / dxy...dxy H pp2 (i, i)

=1

I Perfect matching with the spectral traces computed from our spectral determinant !
g I I F
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The Fermi gas picture

Toric del Pezzo Calabi- Yau X -—) Quantum operator: X (.’f:, ﬁ)

/

X
Density matrix of an ideal Fermi gas

In this picture Jx (/1, /) is the grand potential of the ideal Fermi gas

We consider the large N limit of this ideal Fermi gas. We have two types of large N
limit:

' N stop
<» ‘tHooftlimit: /o0, A= fixed: Jx = Fy"

-) Thermodynamic limit: N — oo, /h fixed, small: Jyx — Jy; ~ NS limit

2

Cure the singularities of the 't Hooft expansion
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The Fermi gas picture

~2» Reproduces the perturbative expansion of topological strings
F'(t,g.) = Y 929 2 Fy(t) gs = 4m* [h
920

~» Includes non-perturbative effects in the coupling ¢: Jy ~ e L/9s

This gives a nice non-perturbative construction for topological strings in which

refined topological strings in the NS limit provide a non-perturbative completion
of standard topological strings.

—~» Leads to testable predictions

~>» All the information on this Fermi gas can be encoded in the spectral
determinant, which is an entire function of the moduli. We have a
background independent formulation.
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Testing the 't Hooft expansion

In the Fermi gas formalism there are two ways to compute the partition function:

a) From the spectral determinant

Grand potential, determined b

F s GV invariants

Z(A’r) = / dp e’p2 (1) =Ny

The "t Hooft expansion gives the genus expansion of topological strings on [P,

F he densi atri . .
b) From the density matrix It is given in terms of

li/ quantum dilogarithm

1 e@) [ N
Z(f\[) — m Z (—,1) (o) /(/N.ZTH/)]M(-’I'},-170(':'))

T oESN Marifio-Zakany

The "t Hooft expansion at weak coupling reproduce the weak coupling genus
expansion of topological strings on [P This is a non trivial check of our conjecture !
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Conclusions

We have proposed a correspondence between the spectral theory of certain
quantum operators and enumerative geometry.

! This proposal is concrete and testable

In the “ maximally supersymmetric” cases we were able to give explicit closed

formulae for spectral determinants

! This is extremely rare, even in standard QM.

Physically, the meaning behind these results is a Fermi gas formulation of
topological strings wich is:

a) Non-perturbative, background independent and testable

b) Such that standard topological strings emerge as a "t Hooft
limit of the Fermi gas
c¢) The NS limit emerge by looking at the thermodynamic limit of the

Fermi gas.
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Future directions

Why such a conjecture should be true?
So far many successful test ... a proof?

~» Higher genus curve ?

-) It would be interesting to see if we can relax the conditions
set on the parameters of the spectral problem ( /» real, u real,...)

—} Connection to integrable systems
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