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Abstract: <p>Holographic duality is a duality between gravitational systems and non-gravitational systems. In this talk, | will propose a different
approach for understanding holographic duality named as the exact holographic mapping. The key idea of this approach can be summarized by two
points: 1) The bulk theory and boundary theory are related by a unitary mapping in the Hilbert space. 2) Space-time geometry is determined by the
structure of correlations and quantum entanglement in a quantum state. When applied to lattice systems, the holographic mapping is defined by a
unitary tensor network. For free fermion boundary theories, | will discuss how different bulk geometries are obtained as dual theories of different
boundary states. A particularly interesting case is the AdS black hole geometry and the interpretation of the interior of a black hole. We will aso
discuss dual geometries of topological states of matter.</p>
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QOutline

e Background and motivation

* The definition of exact holographic mapping (EHM)
and the free fermion example

* Thermodynamics and black hole geometry

* Optimal disentanglers and the interior of blackhole
 Holographic dual of topological states

e Discussion and summary

Ref: XLQ, arXiv:1309.6282 (2013)
Unpublished works
1) Michael Zaletel, XLQ
2) Yingfei Gu, Chinghua Lee, Gil Y. Cho, Xueda Wen,
Shinsei Ryu, XLQ
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Holographic duality

Understanding quantum
gravity
>

QFT < du ality gravity

|
\ Understanding strongly
correlated electrons

* Holographic duality, or AdS/CFT (maldacena

‘97, Witten ‘98, Gubser, Klebanov & Polyakov '98)

 The extra dimension can be
interpreted as energy scale. Bulk A
equation of motion

<~ renormalization group flow.
(E. Akhmedov, 98, Heemskerk & Polchinski ‘10)

e Application to condensed matter
(FOI" a I"eVieW, S e s. sachdev, Annual Review of
Condensed Matter Physics 3, 9 (2012})

extra dimension
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Holographic duality

e Holographic duality also relates space-time
geometry with quantum entanglement.

* Bekenstein—Hawking formula

A
Black hole entropy S = —— Black hole area
4Gy
* Ryu-Takayanagi formula (s ryu & 1 1akayanagi PrRL ‘06)
A
Entanglement entropy S = G- Minimal surface area
N

O.X gm
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Tensor networks
* Multiscale Entanglement Renormalization Ansatz

(MERA). A unitary tensor network describing critical
states (vidal ‘07)

 MERA has been proposed to be related to AdS/CFT

(Swingle ‘10, Evenbly&Vidal 11, Haegeman et al ‘11, Nozakietal "12,
Hartman&Maldacena ‘13)

* How this relation exactly works remain an open

question

Many-body j ] -f \ ) \L

State \ A7 ._70 - ;:-_. Nl continuum

N \ | / o Tensor L4 - ~o [ )~ limit??

network rep. « ~ " \/ \V/ T\~

~ — P X XA PP S —
N AEL7)3 ' — Yahén D%
— \“--uh_ . 7 X —C o A - \ )

7 NANES . I

Pirsa: 15020134 Page 5/38



Step back and think about two questions about
quantum space-time geometry

e Classical space-time: Riemann
manifold consisting of points, and the
distance between points given by geodesics.

* Quantum space-time geometry: How to define
points in the geometry, and the distance between
points?

e Points: A set of points corresponds to a direct
product decomposition of the Hilbert space H =

[T H,.
* Distance: Distance between points shall be

measured by physical correlation functions. More
correlated sites are closer to each other.
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How to define distance between points?

e A choice of points is only meaningful if physical correlations

are local. \Ek/
e Example: Massive free fermion m
X

e Real space basis x. Imaginary time
Correlation function Cy( y0 = (GIC;tCy0|G) o< Coe_d(xi)-(%o)/‘f.
Natural distance definition

Cxt,yO
Co

e For all massive state, this definition works and recovers the
classical space-time geometry.

d(x,t),(y,00 = —¢ log

* Mutual information I,,, = S, + S,, — S, can be used as an

unbiased measure of equal-time correlation. (wolf et al ‘08)
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From gapped states to critical states

dx,t),(y,00 = —¢ log

& X

Gapped states Critical states

Geodesic distance restored Cxy X |x — y| =24
Triangle inequality holds dy, o< log|x — y|
dxz’ -+ dz'y = dxy dxzr -+ dz’y = dxy

* A new basis and new geometry is required for
critical system
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Relation to holographic duality

e Lesson from the discussion so far:

* A new basis may be defined for critical systems,
which leads to a new geometry.

e The new geometry is naturally hyperbolic

Basis
Y transform M

=)

(holographic

Critical system (CFT) Antl—de—Sltterd(AdS) space
_Gxy
C x<e ¢
_ —2A “ acd
Sy oSl dyy o log |x — y|
~ >caling dimensions Mass of bulk fields
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Definition of the exact holographic mapping (EHM)

e 1. Starting from 2% sites, U maps each two neighboring
sites to a “low energy” site and a “high energy” site

2. Repeat step 1 the 2V~ 1 |Jow energy sites.

» Unitary mapping M = [[,ectwork U Mmaps boundary (2%
sites)tobulk (1 +1 + 2 + --- 4+ 2N—1 = 2N gjtes)

e A modification of MERA

B

S1

e RTINS
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Definition of the exact holographic mapping

IR

Bulk state M|W)

uv

Boundary state |W)

* A “lossless” generalization of real space RG.

e Degrees of freedom at different energy scales are all
kept, and they can entangle with each other.
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Relation of EHM and MERA
A MERA state corresponds to acting the reverse EHM of
a direct product bulk state |[MERA) = M~ 1[[® |¢,)

e The goal of EHM is to allow bulk states to entangle and
use that to probe the geometry.

|P0)

IMERA) =
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Exact holographic mapping: bulk geometry

e Bulk space-time geometry determined by bulk
(O(x,‘r)o(y'-,_-’y
Co )

correlation functions d(x 1),(y,zrn = —¢$ log

(T is the imaginary time)

- Mutual information can be ° 1 x0 Ay
used for equal time distance.

(A realization of ER=EPR

(Maldacena&Susskind)) '.\':"}XL o
e Different choices of mapping [T =

U correspond to different ".?;_/

choices of “spatial slices”. -

e The quantum geometry is
generically different from the classical structure of the

network.
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Exact holographic mapping: free fermion

* 1+1d lattice Dirac fermion Ey,
H = Y, cif (sin ko, +(m+ 1 — cos k)ay)ck,\

e Unitary mapping /\ Je

. (€1 ay _ 1 (Cc +
(CZ)_)(b)_ﬁ(C&_Cz)

* In many-body Hilbert space %\
1 0 0 0 &
U — 0 1//2 1/4/2 0 bﬂ{ %\a
0 —1/V2 1/4/2 o)
0 0) 0) 1 C1 C2

- - L 4 v

|00) [10) [01) |11)
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Exact holographic mapping: free fermion

e Basis transformation between boundary and bulk

RS
rx Av

“Haar wavelet”

wavefunctions at the
boundary ¢ (i)

I

T
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Local basis in the bulk

by = Z b (e
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Ground state of critical system
e T=m=20
« Spatial direction: compare the distance

obtained from d,, = —¢& loglf—y to the
0

AdS space distance

* Embedding of the bulk sites in AdS is determined by
scale invariance (special for the critical state)
(,n) = (p,6),j =1,2,..,28N ™"

— oN—-n_1_ —(; 1 1 )\t
p =2 2n’9_(j 2+2"+1)p'

2R |x—y|
z log =

* Angle direction d(x n)(yn)/¢ =
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Ground state of critical system
e T=m=20
« Spatial direction: compare the distance

obtained from d,, = —¢& loglf—y to the
0

AdS space distance

* Embedding of the bulk sites in AdS is determined by
scale invariance (special for the critical state)
(,n) = (p,06),j =1,2,..,28N ™"

— oN—-n_1_ —(; -1 1 1
p =2 2n’9_(j 2+2"+1)p'

2R x—
2R 16 |l x—y|

o Ang|e direction d(x,n)(y,n)/f = & g R
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Ground state of critical system B

 Fitting of the angle direction distance Ve
-» AdS radius "

1
R = (64m?log4) ¢ = 0.33,&§ = R/3,

(Ching Hua Lee &XLQ)
* Radial direction d 4 ) (x,1), Qualitatively ggree

() I? =0.328142, £ =0.1086G, n =8 (b)) R =0.32842 . £ =0.32388
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Ground state of critical system

* Time-direction: Imaginary time direction distance
defined by d(x z)(x,00 = —§108(T b (T) b5 (0))
* Compared with AdS3 formula d(x 7). (x.0) =

2

p* T P
R acosh [(F + 1) cosh; — =3

e R can be independently fitted R = 0.34

(d) R =0.34157. £ =0.227G9

T
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Finite temperature and black hole

e T >0, m = 0. Geometry is modified for non-critical
systems, even if the same mapping is chosen.

* Spatial direction: d x n),(y,n) Cross-over from AdS (o<
log |x — y|) to Euclidean (o< |x — y|).

e IRIlimitn — N, Stretched horizon region.

* angle-direction distance dg,;, xn = (1 — 2nT)2"" ' x =

Area saturates to a finite value 27Tp ~ 141-71'71 2N (ching Hua
Lee &XLQ) - (av) =p: 'l istivne

I DA e o 3
’ : " i‘ - “‘,-"” .ao""'..‘w

1.5

1
! i)

8]

1( 20 I'.

|!|*f|
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Ground state of critical system

* Time-direction: Imaginary time direction distance
defined by d(x z)(x,00 = —§108(T b (T) b5 (0))
* Compared with AdS3 formula d(x 7). (x.0) =

2

p* T P
R acosh [(F + 1) cosh; — =

e R can be independently fitted R = 0.34

(d) R =0.34157. £ =0.227G9

T
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Finite temperature and black hole

* Time direction: In IR region, fermion bandwidth<T
e The time dependence of correlation function
exponentially slows down. d(x ) (x,0) — O in IR

e General reason: reduced density matrix of the stretched
horizon region p;r o« I=»Trivial time evolution.

d(x,7;x,0) VS T
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Finite temperature and black hole

e The observed behavior agrees with BTZ blackhole
metric

« ds? = (p2 — b2)d1? + R? dpb2+p2d92

* Near the horizon p — b, the time direction becomes
infinitely short. We observe this behavior in the
correlation functions, because the states in IR are in
the infinite temperature limit. (d) entropy per site

e Each bulk-site in the IR carries | S = 2108 2
maximal entanglement entropy.

 logD = log4.

e The entropy in this region shall be |
considered as the black-hole {
entropy
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Einstein-Rosen bridge

Entangled chains l wormhole ‘

e There are different black hole
geometries.

e A pure state of a two-leg ladder
system in a thermal double
state |W) =
>, e BEn/2 7)), In)y is dual to
a worm hole (maldacena ‘01)

d _(n)

* Time evolution of two-sided i I
blackhole (Hartmanamaldacena 13) | n
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Quantum quench on the wormhole geometry

* The blackhole interior can be indirectly ¢ i, e singularity

probed by the distance between BH
outside points (Hartman & Maldacena JHEP "13) ~ e

* Time evolution by Hp, — H; gives

_(2it+E
W(©) = X, e (B2 17y, In)g,
and changes the entanglement WH

structure between the two sides.

* In free theory, the worm hole stretches and returns in
timet ~ L/2
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Tensor network point of view
BH

e Outside frame (red) N s

[£4

S <.
P .

e Hartman-Maldacena tensor network. Does it
correspond to the minimal
surface (blue)?

* It looks more like the green \
slice. The scrambling of - —-—- ﬁ
time evolution is removed. /

Throat size never shrinks.
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More general EHM tensor networks

e In general, the suitable EHM should depend on the
physical state.

* |In the same way as MERA, we can modify EHM by
introducing disentanglers
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More general EHM tensor networks

e In general, the suitable EHM should depend on the
physical state.

* |In the same way as MERA, we can modify EHM by
introducing disentanglers
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More general EHM tensor networks

 More generally, multilayers of disentanglers
can be allowed

}é\ o —

V A
~—— >=<><>=< U, %

>=<><><>< ><>=<><><><
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Criteria of optimal EHM tensor networks

e Although there is probably no unique choice of EHM
which is the “best” choice, there shall be one family
of tensor networks that are “optimal”, which means
the remaining entanglement of the bulk states is
most short-ranged compared to other EHM with the
same structure.

e Criteria: GEVa—

1.r | 2r 3! 4’
* For disentanglers U N minimize S5/ (U)
1 2 3 4
* For coarse-graining 1./?;\ minimize S,/ (V)
1 2

 “Distill” the entanglement to fewer IR qubits

Possibly related criteria in Evenbly&Vidal PRB ‘10
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Application of the optimal EHM to the thermal
double state

* Two different disentangling scheme can be applied to
the doubled system.

/I/% side view PT\ {\T Pb‘
% S =
— 11

|
—— g
Separate disentangling: outside frame
| _ side view
| , N C] O\ &
et o )7 T

Q

isentanglers

Joint disentangling: infalling frame vertical
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Application of the optimal EHM to the thermal
double state
* For the quenched thermal double state |W(t)) =

—BEn_oip. ¢t : :
dn€ 2 |n; )|ng) the separate disentangling stops
working at energy scale E~T = 1/[.
e Outside frame (red dots):

separate left and right bulk
regions. Left and right are not

smoothly connected N e eessses

* Infalling frame (blue dots): X > y
states in IR depends on both )
sides of the boundary.

e Blue states are further i R

disentangled compared to red,

to define a smooth geometry.
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Numerical results

e Carrying the disentangling
procedure until the IR states ALt
are direct products p;p =
I[1; o

e This factorization can be
judged by the value of

2S(pi) — S(pr)

-S'J'trz'rar( 1 ) - S rﬁ:nr /IJ

1 1
g 0. 092
18 —— 9251 H 10
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ad 8
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&= 7
w i ==t
'a 15
» osf 5
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e oef 4
»
N o 3
oz} 2
o . ! 0 2 4 5]
0 4 - - 10 1 I‘ t
n og(t)
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Numerical results

e Distance between bulk sites
e The throat remains smooth,

with a shrinking area (and
expand againatt ~ L/2)
* Question: Can we see the

singularity?

Pirsa: 15020134

12
1"

10

o

- n w & v (] ~ (o]

di2

40

——————
=185 3 \
\
\
25 \
3 \
L33
wg 20 ,Ir 9.351 \
15 \
[l-mrra[ - . : i -t - g
5 - > . 4
- . N
_______________ - )
0 e e i e . s . ) . s, b, .
0 4 3 8 10 1
n
1000
900
800 |- 3
|
700 \
m -
DL s00 |
[4+]
-— 500 | |
(1] 1
e 400 | |
i \
e |
300
200 .
100 .
0 i L - _....n__.._.k
-4 0 2 4 &
log(t)

Page 34/38




Topological edge states and black hole
evaporation

e Temperature vs time

1.

e Difference from
semiclassical blackhole:

specific heat is still
positive

o
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Summary and open questions

Exact Co rrelation\
holographic ~ defines -
[ Quantum mapping Points distance / Emergent Space— J

many body (A new set of . "
system local basis) S BECERSY

-

e Relation between quantum entanglement and space-time
geometry.

e A quantum model for blackholes.

e A possible new approach to strongly correlated condensed
matter systems.

e Open questions:
O Application to physical strongly correlated problems.
O The black-hole information paradox.
¢ How to describe a “quantum” geometry, beyond the
concepts of points and distance?
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Topological edge states and black hole
evaporation

e Temperature vs time

e Difference from
semiclassical blackhole:
specific heat is still
positive

((((((
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Summary and open questions

Exact Co rrelation\
holographic ~ defines -
[ Quantum mapping Points distance / Emergent Space— }

many body (A new set of . .
system local basis) rEr BRESSIEEEY

-

e Relation between quantum entanglement and space-time
geometry.

e A quantum model for blackholes.

e A possible new approach to strongly correlated condensed
matter systems.

e Open questions:
O Application to physical strongly correlated problems.
O The black-hole information paradox.
¢ How to describe a “quantum” geometry, beyond the
concepts of points and distance?
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