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Abstract: <p>Shape Dynamics is atheory of gravity which replaces relativity of simultaneity for spatial conformal invariance, maintaining the same
degree of symmetry of General Relativity while avoiding some of its shortcomings.</p>

<p>In SD severa kinds of singularities of GR become unphysical gauge artefacts, and the presence of a preferred notion of simultaneity fits better
into the structure of quantum theory. In this talk | will outline the present status of research in SD on black holes and gravitational collapse, on the
emergence of spacetime and on the first-order formulation of the theory.</p>
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l-—jl DOING PHYSICS WITH SHAPE DYNAMICS

Flavio Mercati

Perimeter Institute for Theoretical Physics

Templeton Frontiers Colloquium

Feb 25th, 2014

[ ‘A Shape Dynamics Tutorial’ (upcoming book) arXiv:1409.0105 ]

| several upcoming papers (stay tuned on the arXiv) ]
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GR’s classical problems

General Relativity ‘predicts its own demise’ (J. Wheeler '70s)

Schwarzschild spacetime:
- 2m . o2m = : : :
r/s‘z = — (l — —) rfl“, - (l — —) tf!'j + I'jfl(..?i
/ i r

9
Kretschmann scalar: Ry, p0 RFVP7 = 8Bm-
r r—0

Big-bang singularity:

.{r'r}“' +ada+k
)

ds® = —fHI_' + u‘“](f) rf\_:.‘,. R=¢ =
a“

common expectation: only quantum gravity will resolve singularities
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GR’s quantum problems
Spacetime diffeomorphism invariance problematic for quantum gravity,
In particular: freedom to slice spacetime into hypersurfaces of simultaneity.

SR i \‘..-z_L(i‘;‘,__] S T N T
Hamiltonian constraint H = 77 \PPij 5(trp) ) Vg R . quadratic in
momenta p¥ — does not correspond to a vector field on configuration space,

unlike gauge symmetries like Yang-Mills or 3D diffeomorphisms.

Refoliations locally indistinguishable from dynamical evolution
of local fields, so H intertwines gauge symmetry and dynamics.
A preferred time coordinate fits better the structure of quantum theory.

Dropping ‘H altogether is not a good idea: it is responsible for GR having 2
propagating degrees of freedom. Dropping it introduces a new scalar dof.

SD trades refoliation invariance for another local gauge invariance which
does correspond to a vector field in a configuration space.
The resulting theory has 2 dofs and is locally equivalent to GR.
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A message from the 60-70’s

Arnowitt—-Deser-Misner (60’s)

i : : o —_\"') + q;; ELE) g1 ck
Hamiltonian formulation of GR: (‘”_q,,,, -~ ( 'l'-jl_k“ >0 JikS :

.I’f”,‘ L\ _”/.‘.IJ

—

Einstein action: /'fll.rvf(‘i)_c,r WR = /.cf!rf'l'.r (;’;,-J,'p"-" + N H|g, p| + L"H,’[_q.p})

3D-Diffeo constraint: H; =-2V.p);~0 (p*7 must be transverse)
i i i !

Hamiltonian constraint:

H=— (/’“ - %ﬂ”"ﬁ) (J‘f.f' = %fh.f”f’) = 'Ia:trf’:‘:h T Wigs
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Lichnerowicz, York, Choquet-Bruhat (70’s)
Conformal method: in CMC slicing trp = .fh‘_;'l”"j - jT\ﬁ
H ~ 0 and H; =~ 0 decouple and turn into elliptic equations.

Each solution of GR is specified by a 3d conformal geometry
and a symmetric transverse-traceless (TT) tensor

—2V,p/;| = diffeomorphisms
8gij = V,—:,‘J- + V& . generates
pty changes

trp = g;;p”/| = conformal transformations of shape

, |
0gij = W Ggij

conformal geometries represent the physical configuration space of GR,
TT-tensors are their conjugate momenta.
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The exceptionality of CMC/maximal slicing

Marsden-Tipler [Phys. Rep. 3 1980] argued that all physically relevant
singularities are avoided by maximal slicing.

In the CMC case the same holds except for crushing singularities

(big-bang-like).

ON OUR TODO LIST: Study singularity theorems in SD.
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What is Shape Dynamics?

A different Hamiltonian theory of gravity
equivalent to GR in ADM formulation in a particular gauge

Linking Theory:

e Variables: 3-metric & momenta (g,;,, p®*) + scalar field (¢, 7,,)

e Gauge redundancies:
~ 3-diffeomorphisms

— refoliation invariance

~ conformal invariance g, = w' g, ¢ — ¢ —logw
V4
¥ b
GR: gauge ¢ = 0 SD: gauge 7, = 0
- refoliation invariance - conformal invariance
(simultaneity) (rel. of scale)
- 3-diffeomorphism invariance - 3-diffeomorphism invariance

™

In a common gauge, they're equivalent (ADM in ‘CMC’ gauge)‘
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Local volume dofs: /g, conjugate dilatational momenta: trp

SD repackages those in the following way:

e local volume form ,/g/V": gauge,
e fluctuations of dilatational momentumtrp — ,/g(trp) =0

alobal volume V': York Hamiltonian,

global dilatational momentum (tr p): CMC time.

York Hamiltonian: Hyou(T) = [ d°z ﬂﬂ}“[g‘p'_‘r. T
(1 solution of Lichnerowicz—York equation:

9
;/;—%gtrp i . :
8QAQ+ — — =1° (" — Q° R+ (matter) = 0.
gs S
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The ‘iconic diagram’ of SD

Flowof
Ist class part

‘Generates evolution
on intersection

= on Conformal
constraint surface

which extends to flow
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Are GR & SD different only at the quantum level?
NO!

Different already at the classical level - different requirements behind them:

ooks for solutions which represent

n GR one postulates a 4D spacetime and
smooth 4D manifolds (and sometimes doesn’t find them: singularities)

In SD one postulates a smooth 3D conformal geometry evolving in time.

(e.g. spherical symmetry, a certain distribution

of matter & gravity waves, etc.) give rise to inequivalent solutions in GR & SD.

Ihen the same assumptions

Example:
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The wormhole solution in Shape Dynamics

SD wormhole (inferred) 4-metric
. L —rp/r\° . ra\4 o, 2 2"
g2 — (LY o, (1 # i) [drf # ;-3J£2~’]
l + 73 /7 r

SD wormhole has no singularities:

e at horizon r = rp, 4-metric degenerate det Guv =0,

but 3-metric regular det g3 # 0, and all curvature invariants are finite,
E)
e inversion symmetry between horizon interior and exterior: r — rj /7,

e interior is another asymptotically flat region: it takes infinite proper time to

reach the origin r = 0 - like a point at infinity.
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Properties & open questions on SD wormholes

e Not diffeomorphic to Schwarzschild:

two Schwarzschild exteriors glued together,

e at horizon Raychaudhuri equation singular:
discontinuity in expansion scalar,

e Einstein equations break down at the horizon:

equivalent to singular T o &(r — ry,).

. : . ; "I' BN AR, \
e Closed timelike curves? ¥ N w /\4
e Penrose diagram of the wormhole? I
e What happens to infalling matter? Y A— \ ]
| —
.f. "\,
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Thin shell collapse (work in progress)

Tentative Penrose diagram: no closed timelike curves and no singularities
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Thin shell collapse (work in progress)

Expanding compact flat region inside the shell.

In spherically symmetric case full exact calculation including backreaction
essentially finished. Can reduce the dynamics to two global degrees of

freedom (shell area and radial momentum). Remains to simulate solutions
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Big-bang singularities in SD

2+1 dim. Bianchi | model with torus topology:

: rd .
homogeneous metric g;; = V'3g;(7,), Teichmiller parameters 7,

Hyork = \/P" pij

Hy,« generates curves in Teichmuller space
that can be continued indefinitely.

But in the gauge in which we have equivalence with GR:

I
8 oo 12
v . l a1 ¥ ¥
d CMC—? b — :;_,_" o
,-’.‘_","-—')\ *f‘*._.\
VS & 8

these curves can translate into spacetimes which can have

crushing singularities (€2 — 0) anywhere on the curve

Still admits ‘shape’ singularities: curves can hit the

boundary of Teicmuller space (pancake or cigar-shaped universe).
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How to construct spacetime from an SD solution

Take a solution of SD + matter : it is an evolving
conformal geometry, parametrized by York time.

You can construct a (piecewise smooth) spacetime manifold from it,
by solving the LY equation and the lapse-fixing equation.

What is the interpretation of the constructed 4-metric? The spacelike and
timelike distances it measures are those read by idealized measuring rods
and clocks, /.e. ignoring their backreaction on the geometry.

It Is striking that the theory [...] Introduces two kinds of physical
things, i.e. (1) measuring rods and clocks, (2) all other things, e.q.,
the electromagnetic field, material point, etc. This, in a certain sense,
IS Inconsistent; strictly speaking measuring rods and clocks would

have to be represented as solutions of the basic equations... not, as

it were. as theoretically self-sufficient entities

(Einstein., 1949)
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We studied an example of a precise realization of Einstein’s idea in a toy
model of a closed universe: the N-body problem with Jiot = Eiot = 0:

Q & AD 5 0 o 8 e L‘_
o a (& ] L
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{+) o 0.p0.0% © -
gt " R, 0%
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) K] o :
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%0 c = i 0
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D (o] o
- - - - - - T -
TOEEAEPELT TR >
v Ll "

at the central ‘big bang-like’ state the motions are chaotic, no stable

subsystems that can be used to measure lengths and time interva

)
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A late stages the system breaks up into clusters, subclusters and planetary

systems, which stabilize as the universe expands. Only the total energy FEiqt,

angular Jit and linear momentum B, are conserved, but asymptotically also
E, J and P of isolated subsystems become conserved.

L] Y [
A L ] L ] ® .
° e " J P E
b {
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Tim’s ‘experienced spacetime’

T. Koslowski made a first step towards a generalization of this to full SD
[arXiv:1501.03007]: construct spacetime experienced by matter fluctuatio

1. Start with a background solution of SD: a conformal geometry - repre

sented in some gauge as a 3-metric g;j(z,7) and momenta p*/(z, 1)

2. add O(y/<) n r fluctuatio e.g. free scalar field (quadratic Hamilto
an Hpy(gij, ¢ ﬂ :—1\/_i”r + 0;08"p + m*p?), and solve LY equation:
lp—dote]
: ‘!’*:‘E-‘f”/" 3 2 6 2 1 |
SQAQ+ o — 2T = R + ¢Hp[g;C0", o, 7] =0,

at first order in ¢, setting 2 = Qy + = Q1 + O %),

3. Calculate the York Hamiltonian Hyyk = | (l-‘”.r\/r;&z“ up to first order In
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ere Neme 1S the solution to

E tha . P R 7 PO, e
9. LU (.)( }1[ rm s ’ (] .’ﬁ.\cmc [[m“fh..}.?,.n s WV
the zeroth-order lapse-fixing equation:

6|

| |
‘U—:T'_f] trp‘ 9_9

ba AI. A\vcmc.(_ 2[} ) _‘|’_\. J\ycmc .A & 2(] T Tf (_.?(; _+_ _) S .)_“ ]]} f\'vcmc = CO”St.

g8l

6. Then the matter fluctuations evolve like a scalar field on the background
metric S‘zll]”uh with |‘-1“!‘\“ J\rcmc

Henecuve — / :‘/:;.I'U“ \/a -\‘cmc[-"'- T) f[m[g E(I]_t;,'_),'. P, ﬂ'] + O(e7)
and the equations of motion for ¢ are
Lp — m? =0,
where O is the D'Alembertian associated to the 4-metric

ds? = —N§ dr? + Qf gijdx'da’ .
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Isolated subsystems & emergence of MinkowskKi

Boundaries (e.g. asymptotica

But AF models well matter evolving in a large empty region of ‘finite infinity’:

If L > ¢ and the typical time scales
within ¢ are smaller than the time
light takes to propagate through L
we can approximate the region r <
R with an asymptotically Euclidean

space, g;j ~ (5‘”._ Pi_l |

C

ly flat) against SD’s relational principles.

L - ~ =
’
Wolf 359 Py B\
/ \
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\ !
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N /
A r
- ”

Alpha Centauri -

Barnard’s Star
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Then matter perturbations in the small region r < ¢ evolve according to an

effective Hamiltonian which is invariant under the conformal isometries of 3D

Euclidean space:

) , O

,” — p . J..:” = € I -.]' p Y

! Ora a It

r[) e () £Q . O 0 .h () .fi . ()

J = ; T ) & =2 1 : h—.i J},. a )
dx dr Jx

the conserved charges are:

and they close a SO(4,1) Poisson algebra. The generator associated to D

turns out to be proportional to the Hamiltonian.
Quantum fields on a SD background are representations of this algebra
Tim checked out the canonical quantization of a scalar representation. Taking

the Inbn0—Wigner contraction of SO(4, 1) into the Poincaré group 1.50(3,1)

one reproduces the scalar field Hamiltonian on Minkowski.
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First order formulation of SD
e [o couple fermions to SD we need frame fields “ir or vielbeins.

e We want them to transform conformally: Lee Smolin has a proposal for
defining Ashtekar variables in SD, « |lr‘ k out [arXiv:1407.2909]

¢ | think they should transform also under special conformal transforma
tions: vielbeins are internal vectors and those, unlike the metric g;;, dis
tinguish between Weyl and special conformal transformations.

e Tim’s canonical quantization on a SD background further motivates con
idering full SO(4, 1) in place of dilatations alone

e Promising framework: Cartan =;~nmu‘-’|‘-«,f (non-flat model spaces) using
G = S0(4,1) and the maximal parabolic subgroup H as vertic

= sub
group. Model space G/H is ('uuu:._n” '
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Conclusions

e Learning how to construct familiar space-time notions from SD solutions,
e Wwe are getting the first solutions of SD+matter,
e studying the result of grav. collapse: frozen star or pocket universe?

e IBD:w
e [BD: what of singularity theorems in SD?

\at happens to matter crossing the horizon?

e Study QFT on a SD background
Does it differ physically from Poincaré-invariant QFT?
e Quantization of SD itself?

)

e First-order formalism? Can couple fermions? New physics”
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