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Abstract: <p>The Elitzur-Vadman bomb tester allows the detection of a photon-triggered bomb with a photon, without setting the bomb off. This
seemingly impossible task can be tackled using the quantum Zeno effect. Inspired by the EV bomb tester, we define the notion of "bomb query
complexity”. This model modifies the standard quantum query model by measuring each query immediately after its application, and ends the
algorithm if a1 is measured.</p>

<p>We show that the bomb query complexity is asymptotically the square of the quantum query complexity. Moreover, we will show how this
characterization inspires a general theorem relating classical and quantum query complexity, and derive new agorithms from this theorem.</p>
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Overview

o Bomb Query Complexity
@ Elitzur-Vaidman bomb tester
@ Bomb query complexity B(f)
@ Main result: B(f) = ©(Q(f)?)

© Algorithms
@ Introduction: O(N) bomb query algorithm for OR
@ Main theorem 2: constructing g. algorithms from c. ones
@ Applications: graph problems

e Summary and open problems
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Elitzur-Vaidman Bomb Tester [EV93]

We can put a bomb in an Mach-Zehnder interferometer:

O Dy b)

no object

- — /

If D2 detects a photon, then we know the bomb is live, even though it
has not exploded.

Image source: A. G. White et al., PRA 58, 605 (1998).
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EV bomb in circuit model

We can rewrite the Elitzur-Vaidman bomb in the circuit model:

T
0) —{/or X /4| explodes if 1

Live bomb: X in the above diagram

Dud: /in the above diagram
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Quantum Zeno Effect [KWH+95]

Let R(0)) = exp(itX) = (

cosf) —sinf
sinf cosf )’

m/(20)times in total
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Quantum Zeno Effect [KWH+95]

Let R(A) = exp(i0X) = (

cosf —sinf
sinff cosf )’

m/(20)times in total

If live: First register is projected back to |0) on each measurement;
with probability sin®(0) = ©(#2) the bomb explodes.

Total probability of explosion: ©(62) x ©(1/0) = ©(6).
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Quantum Query

Quantum query
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Quantum Query vs Bomb Query

Quantum query

Bomb query

explodes if ¢ x; = 1
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Bomb Query

)
—/J=(bomb)  explodes if ¢ X = 1

)

equivalent to

Preo =S Ii)il.

x;=0
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Bomb Query Complexity

Call the minimum number of bomb queries needed to determine f with
bounded error, with probability of explosion < ¢, the bomb query
complexity B.(f).
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B.(f) = O(Q(f)?/¢): Proof

We can simulate each quantum query using ©(1/6) bomb queries:

X I X;)

|0) (discard)

—H
|
|
|

|
|
o
o |1

repeat 7/20 times repeat 7/20 times

Total probability of explosion: ©(0) - Q(f) = ©(¢), if 6 = ©(¢/Q(f)).

Total number of bomb queries: ©(1/0) - Q(f) = O(Q(f)?/¢).
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The proof uses the general-weight adversary method [HLSO07].

We know [Rei09,Rei11,LMR+11] that the general-weight adversary
bound tightly characterizes quantum query complexity:

Adv*E(f) = ©(Q(f)).

By modifying the proof of the general-weight adversary bound, we can
show that B.(f) = Q(Adv*(f)?/¢).

This implies that B.(f) = Q(Q(f)2/e).
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Since B(OR) = O(N), Q(OR) = O(V/'N).

This is a nonconstructive proof of the existence of Grover’s algorithm!

Can we generalize this further?
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Interlude: symmetric variant of bomb model

Consider using the following construction as our bomb oracle instead:

C

) C)

) — A F=bomb) explodes if 1
)

)

Ox

j_
a

/)

. @)

Here we allow an extra register a to hold a guess for the query result.
The bomb explodes only if both ¢ = 1 and x; = a.

Let the number of queries required to evaluate f be B, (f).
It can be shown (using Main Theorem) that B.(f) = ©(B.(f)).
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Main Theorem 2

Theorem

Suppose there is a classical randomized algorithm A that computes
f(x) using at most T queries. Moreover, suppose there is an algorithm
G that predicts the results of each query A makes (0 or 1), making at

most an expected G mistakes.

Then B(f) = O(TG), and Q(f) = O(VTG).
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Main Theorem 2

Theorem

Suppose there is a classical randomized algorithm A that computes
f(x) using at most T queries. Moreover, suppose there is an algorithm

G that predicts the results of each query A makes (0 or 1), making at
most an expected G mistakes.

Then B(f) = O(TG), and Q(f) = O(VTG).

For example, for OR we have T = N and G = 1, so Q(f) = O(V'N).
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Bomb algorithm with B(f) = O(TG)

For each classical query, check whether G correctly predicts the query
result of A using ©(G/¢) bomb queries.

If G guesses incorrectly then the probability of explosion is O(¢/G);
otherwise it is zero. (This actually requires using the symmetric variant
of bomb query complexity.)

The total probability of explosion is O(¢/G) - G = O(¢), and the number
of bomb queries used is O(G/¢) - T = O(TG/¢).
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Explicit g. algorithm with Q(f) = O(v TG)

We now give an explicit quantum algorithm that achieves the given
query complexity. We need the following subroutine:

Q. Algorithm for finding first marked item

There is a bounded-error q. algorithm that, given an list of N bits, finds
the location d of the first 1 in the list with O(v/d) queries.

If every bit is 0, the algorithm determines this with O(v/N) queries.
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Explicit g. algorithm with Q(f) = O(v TG)

@ Repeat until all queries of A are determined:

@ Use g to predict all remaining queries of A, under assumption it
makes no mistakes.

@ Search for the location d; of first mistake, using O(,\/d; — dj_1)
quantum queries.

@ This determines the actual query results up to the dj-th query that
A would have made.

Kothari’s algorithm for oracle identification [Kot14] actually already
uses these steps above.
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Explicit g. algorithm with Q(f) = O(v TG)
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Explicit g. algorithm with Q(f) = O(v TG)

@ Repeat until all queries of A are determined:

@ Use g to predict all remaining queries of A, under assumption it
makes no mistakes.

@ Find the location g of first mistake, using O(/d; — dj_1) queries to
the black box.

@ This determines the actual query results up to the dj-th query that
A would have made.

Query complexity: O(G) - O(\/T/G) = O(VTG).
It looks like error reduction may give extra log factors, but [Kot14]
showed that the log factors can be removed using span programs.
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Applications: Breadth First Search

Problem: Unweighted Single-Source Shortest Paths

Given the adjacency matrix of an unweighted graph as a black box,
find the distances from a vertex s to all other vertices.

Classical algorithm: Breadth First Search.

Breadth First Search

@ Initialize an array dist that will hold the distances of the vertices
from s. Set dist[s] := 0, and dist[v] := oc for v # s.
Q@ Ford=1,.-- ,n—1:
@ For all vertices v with dist[v] = d — 1, query its outgoing edges

(v, w) to all vertices w whose distance we don’t know
(dist[w] = o). If (v, w) is an edge, set dist[w| := d.
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BFS: Quantum Query Complexity

Breadth First Search

@ |Initialize an array dist that will hold the distances of the vertices
from s. Set dist[s] := 0, and dist[v] := ~ for v # s.
©@ Ford=1,.-. ,n-1:
@ For all vertices v with dist[v] = d — 1, query its outgoing edges

(v, w) to all vertices w whose distance we don’t know
(dist[w] = ). If (v, w) is an edge, set dist[w]| := d.

Worst case query complexity is T = O(n?), where n is no. of vertices.
If we guess that each queried pair (v, w) is not an edge, then we make
at most G = n— 1 mistakes, since each vertex is only discovered once.

Q(uSSSP) = O(V'TG) = O(n*?), matches lower bound of [DHH+04].
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Applications: k-Source Shortest Paths

What if we instead want the distances from k different sources?

Problem: Unweighted k-Source Shortest Paths

Given the adjacency matrix of an unweighted graph as a black box,
find the distances from vertices sq, - - , Sk to all other vertices.

Classical: Run BFS k times.

Quantum: G = k(n — 1), but T = O(n?) instead of O(kn?).
Therefore Q(kSSP) = O(k'/2n%/2),

Dhariwal and Mayar showed tight lower bound;
available on S. Aaronson’s blog, Dec. 26, 2014:
http://www.scottaaronson.com/blog/?p=2109
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Applications: Maximum Bipartite Matching

Problem: Maximum Bipartite Matching

A matching in an undirected graph is a set of edges that do not share
vertices. Given a bipartite graph, find a matching with the maximum
possible number of edges.

Classical algorithm: Hopcroft-Karp algorithm.
Essentially proceeds by using O(v/n) rounds of BFS and modified
DFS (depth-first search).

Quantum: G = O(v/n x n) = O(n*?2), and T = O(n?) (not O(n?°)).
Therefore Q(MBM) = O(n’/#). First nontrivial upper bound!
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Summary

@ Inspired by the EV bomb tester, we defined the notion of bomb
query complexity, and showed the relation B(f) = ©(Q(f)?).

@ Bomb query complexity further lead us to a general construction
of quantum query algorithms from classical algorithms, giving us
an O(n""%) quantum query algorithm for maximum bipartite
matching.
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Open Questions

@ Can we relate G, the number of wrong guesses, to classical
measures of query complexity (e.g. certificate, sensitivity...)?

@ Time complexity of algorithms?
@ Algorithms for adjacency list model?
@ Other problems e.g. matching for general graphs?

@ Relationship between classical query complexity R(f), and B(f)?
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Relationship between R(f) and B(f)?

For total functions the largest known separation between R(f) and
Q(f) is quadratic (for the OR function).

It is conjectured this is the extreme case, R(f) = O(Q(f)?).

We only know that [BBC+98] R(f) = O(Q(f)®).

We know that B(f) = ©(Q(f)?).
Therefore the conjecture is equivalent to R(f) = O(B(f)).

We give some motivation for why this conjecture might be true...
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Projective Query Complexity, P(f)

Aaronson (unpublished, 2002) considered allowing access to the black
box only with the following:

C)

0) — A
.| Ox
/) —

We call the number of queries required the projective query
complexity, P(f). Note the algorithm does not end on measuring a 1.

Straightforwardly Q(f) < P(f) <
Regev and Schiff [RS08]: P(OR)

R(f) and P(f) < B(f).
— Q(N).

Open question: Does P(f) = ©(R(f)) for all total functions?
I this is true, implies R(f) = O(B(f)) = O(Q(f)?).
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