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Abstract: <p>It is well known that S-matrix Analyticity, Lorentz invariance and Unitarity place strong constraints on whether Effective Field
Theories can be UV completed. A large class of gravitational field theories such as Massive Gravity and DGP inspired braneworld models contain
as limits Galileon theories which in the past have been argued to violate the conditions necessary for a UV completion. | will present arguments that
imply quite the opposite, although Galileons do not admit a standard Wilsonian UV completion, | will use the recently discovered Galileon duality
to argue that these theories can exhibit a non-Wilsonian completion consistent with the "Classicalization&€™ proposal. These theories have
quintessentially gravitational properties such as non-polynomially bounded scattering amplitudes, absence of local off-shell observables and an
exponentially soft 2-2 scattering amplitude. These properties show up in aviolation of the standard Wightman axioms and are consistent with many
of the known properties of UV completions of gravity. | will argue that the superluminal solutions found in the low energy EFT are absent in the UV
completion.</p>
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GAEGING 85 =

Galileon Lagrangian arises as Decoupling/Scaling Limits of whole
host of Infrared Modified theories of gravity, such as DGP/
Massive Gravity

We may define Galileon in Minkowski via EFT of a single scalar
field with the following nonlinearly realized symmetry

i e A e
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GAEIEEQOING 2o ER

oL g e
Follow the EFT recipe I, = 8,0,7/A3

S(}alilo()n = SA = SB

Finite number of 'Wess-Zumino’ terms
d

SRt / d%z A% Z el et

n=0

Infinite number of irrelevant operators Nicolis et al 2006

J a2n
(g d(l,l,ArH—l § :/3 d 7™
B L n,m A2n

n,m
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GAEGING 85 =

Lo(m) = e*4eAPP (8,047 )mns BNcCcNaD

1 ,
La(m) = Ft‘-“b("dﬁABCD (00 0AT)(OpOBT)TNeCNaD
1
EAlm)= FG“WEABCD(80,8A7r)((r)bagﬁ)(acacﬂ)m)(w

Ls(m) = %ﬁ"bc{ieABCD(B(L(?AW)(ab(?BW)(acacﬁ)(0(1(9D7r)7r
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GAEGING 85 =

No problem computing trees and loops perturbatively

Finite number of "'Wess-Zumino’ terms

" d
SA X / (ld.‘IIA(r‘JT Z U € EH-N.,”(I-”

n=»0
Exhibit Non-renormalization theorem

Infinite number of terms
a2n
T e Z (5 AT
SB — /(1( .LAU [3'”/’7”,@]:[]”
are renormalized

n,m
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TEHEEROBIEN

Thus at level of EFT, for momenta k < A

everything looks great!
perturbation theory breaks downat &k = A

The problem is
there is no LOCAL, LORENTZ INVARIANT, UNITARY
UV COMPLETION FORWHICH THESE ARE AN EFT OF
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VWHY!

In a local field theory, operators commute outside the lightcone
[w(z),7(y)] =0 (x—9)°>0

From this, and the assumption of stability (all states have positive
energy and mass) we derive the Jost-Lehmann-Dyson representation

OO0

(Ps|[m(z/2), m(—x/2)]|P;) = ‘/0 dpD(p, Py, Py, x) A, ()

AT (= i)
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DISPERSION RELATIONS

(Pylm(x/2), m(—z/2)]|P) =/0 dpD(p, Py, Py, x) A, (2)

In a generic field theory, D grows as a polynomial in

From this one can prove that the )i
forward scattering amplitude A(s,0) e
is analytic in the complex s plane >_< AL ><
(modulo branch cuts and poles on real axis)

with a finite number of subtractions
Hepp 1964
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POEENCIMIAEBEIIIND EDINESS

In a local field theory:
Wightman functions are tempered distributions

{k } H / dd 0|7T L] (Lg) (IEN)ff_ D iy
Momentum space growth is bounded by a polynomial in k
W({k;}) <C|Z|ki||N

Scattering amplitudes are bounded by a polynomial in k for
complex k

A({ki}) < CI 5, ki I™

)
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FROISSART-MARTIN BOUND

Assuming only Polynomial Boundedness, and (proven)
analyticity in the Martin-Lehmann ellipse

Number of subtractions in dispersion relation is never more than 2!

A(s) < constant s(In s)?

Im(A(s : ;
~ el < (2(1113)‘2
S m

a(s)
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FORWARD SCATTERING X
DISPERSION WX

Unsubtracted Dispersion Relation

1= f o ImiAls P e | (@
A(s) = — / 111’( (S)ds’ + — / - a SS) ds’ + pole terms
78 g —s T Jyma 8 +4m< + s

4m?

after subtractions

A(s) = Ap+sAr + | s / ll‘“[/l(ﬁ ) + l("l-.'n'“’ — 3)? / : ' (IHIM(S ) + pole terms
! () |

- 2 e
m me .s"z(h" — .‘w') me §'“(s' —4m + s

- i :

subtractions crossing symmetry
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FORVWARD SCAT FERING
DISPERSION

1o P2 TmlA(s | . I o Im[A(s
A(s) = Ag+sA) +—5° / l.il[ (') -+ —(-I'.'u‘2 —s)z / 5 ol (5)] + pole terms
T Jams 8'°(8'—8) T Jam2 8'°(8' — dm? + s)
subtractions

crossing symmetry

Differentiating A(0) = % /'x, Im[/}:gs )] s
JO S
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FORVWARD SCAT FERING
DISPERSION

Il ) .S‘,J

A"(0) = fl_ /% hn[A.("",)] i
(

optical theorem Im[A(s)] = so(s)

el dacnlce
A'(s=s89) = = /ds sa(s) e,
71- L

.‘;'"

irsa: 15020085 Page 14/61



BULE FOR AL GALHEEOIN
MOIE S

at best lowest order contribution
R ; :
A(s,t,u) ~ F(s" + 13 +ud) +...
A”(O) =0 in limit m—0

Adams et al 2006

which violates

.5"3

2 W Rt T
A”(H = .‘7’[)) = — /(l.‘a’ SU(S) e 0
1A
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CONCEUSICNNS

Galileons do not admit a local, Lorentz invariant, UV completion

Adams et al 2006
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FoSUMBESHCOING

Locality/causality implies analyticity through |LD representation

Locality implies polynomial boundedness (temperedness assumption)

Polynomial boundedness plus analyticity implies Froissart-Martin
bound

Together with unitarity imply A”(s) >0

All of these statements are
Rigorously proven in Axiomatic Field Theory
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FORVWARD SCAT FERING
DISPERSION

Il ) .S‘,J

A"(0) = fl_ /% hn[A.("",)] i
(

optical theorem Im[A(s)] = so(s)

el dacnlce
A'(s=s89) = = /ds sa(s) e,
71- L

.‘;'"
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EINEPOERE ROAD S =GR

We should never give up Unitarity!

Would rather not give up Lorentz invariance since then lose
motivation for considering Galileons e.g. Lorentz invariant massive
gravity

What about locality?
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L OEALTE N GRAY EEY

We already know of one theory in which polynomial boundedness,
aka locality is violated, at least for fixed angle scattering

General Relativity

This is transparent already in eikonel limit

(D—4)/2)1/(D—3)

A(s,t) ~ eta(=t)

and is expected in Black-Hole regime

A(s,t) ~ ellstVEIVE S~ 1
Giddings-Porto 2009
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ANALGERCLECMVTROUT
POLYNOMIAL BOUNDEDNESS

However if we give up analyticity, then we lose any notion of causality
(even macro-causality)

So the best possible solution (and hence our conjecture) is:

Galileons admit a UV completion with a Lorentz invariant,
Unitarty, Analytic, crossing symmetric S-matrix, but without
polynomial boundedness
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ANALGERCLECMVTROUT
POLYNOMIAL BOUNDEDNESS

This transforms the previous arguments: without P.B. we lose
Froissart-Martin

Even if the forward scattering amplitude is PB. ......

Now, Number of subtractions in forward scattering dispersion
relation can be more than 2!

irsa: 15020085 Page 24/61



ANALGERCLECMVTROUT
POLYNOMIAL BOUNDEDNESS

A(H) — All -+ /1|.S'+ /12,,-2 + A_';.s".i i (
- / m[ (s )] i —(-'lm“’ i 3)-1 / H( m[ (u )] st
Jam?2 U

) P .«;"1(.‘;’ -8) w — 4m?2 + )

0O "’
A””((]) 4 1!2 / ll]l[/ll_('.’ )] S0 AHH(U) = S"l/j\x

JO
Al 0 S

can be achieved with Galileon operator 1 :
L1z ~ 15 (8,0,m0" )’

Galileon symmetry is not in conflict with Unitarity and Analyticity!
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SEECEERA IS RERNESEIN FATHCIIN

Start with simplest case:

OO0

W (z,y) = (010 (2)O(y)|0) = / A po (1) Wi (z, y)
J()

Unitarity pro(w) 20 Stability 4 >0

) : 1/2
I-'l-’r;:.(;:f,'l}) ~ ( ﬁ) e~ VHIT=y| ,

2 2
~ o r—y) >0, tlx—yl“>1,
(f'lﬂ'l.l.' o y|)’€/2 ( J) ) I | J|

9 /\1/2
W, (z,y) ~ —ie~ /4 2vi) ey PRl

2 2
— r—1y) <0, lr —yl© > 1
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LOCALIZABEE, QUASIELOCAL
NON-LOCALIZABLE

00

W (z,y) = (0|0'()0(y)[0) = / dppo (i) Wi(z,y)

J0)

Unitarity po(u) 20 Stability  p >0

Define order of growth

po(p) ~ " x subdominant terms
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LOCALIZABEE, QUASIELOCAL
NON-LOCALIZABLE

X .
po(p) ~ e’ x subdominant terms

p(1)

|
polynomial = — — — ~ 9

stricly localizable = = = = = = |
quas|-|oc3| sssssssssss a =
nonlocalizable 2
pole I
2
()
mass
- >
gap

Pirsa: 15020085 Page 29/61



NON-LOCALIZABLE FIELDS

6(}

po(p) ~ e’" x subdominant terms

f a>1/2

the position space Wightman function does not exist!

O

W (z,y) = (0|0%(2)O(y)|0) = / ‘(l,u. po(p) Wy(x,y)

40
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NOINFOEAEZABEE FIELE)S

what does exist

et / LI R e
y \ v ) v T —
( )u : (27'[')(! J [)()

flk gkl < Ce~ 29Ik ag k| = oo

W(f,g9) = /

J0

such functions are called Gelfand-Shilov distributions

Idea promote Wightman axioms from tempered distributions to
Gelfand-Shilov distributions
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IDEA IS NOT NEW!

Historical work: Jaffe, Taylor, Efimov, Guttinger, Fradkin,
Fainberg, lofa ...

In particular Steinmann 1970 shows non-localizable fields have
LSZ formalism, cluster decomposition, CPT, asymptotic states

More recently has been proposed for Little String
Theories and M-theory .....and is implicit in
Classicalization proposal of Dvali et al
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FEHEE S TERING FRE@RIES

LSTs describe M-theory compactified on a 7°
Decoupling limit of N coincident five-branes in String theory
All’];uu'k e PG M g 0 1"\-[.k;lrim.', kept ﬁXEd

Infrared Limit are 6 dimensional superconformal field theories

No UV fixed point T-duality and stringy behavior survive

Exponential growth of spectral density associated with Hagedorn

cMgtring VA
1 N S

LSTs are QUASI-LOCAL FIELD THEORIES Kaputsin ‘99
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QUANTUM GRAVITY/M-THEORY

Argument due to Aharony and Banks ‘98

In field theory with UV fixed point at finite volume,
density of states grows as

o J171/d p(d=1)/d
[)(E) e, (,’h(-ut.rup_v ) (3(- V E
Certain special operators grow at most as power

Expect KL spectral density to scale with density of states
(unless operators have small overlap with high energy states)

Generic operators either tempered or strictly local fields
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QUANTUM GRAVITY/M-THEORY

Argument due to Aharony and Banks ‘98

In Quantum Gravity we expect high energy properties
to be dominated by production of black holes

d—2
[)(E) by (?SBII entropy — (J'."(I';/""Il’l)Hr_:s

If operators spectral densities scale with density of
states: Observables in quantum gravity are Non-
localizable fields

Fits perfectly with the rule of thumb that there are no
local gauge invariant observables in quantum gravity
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FOICAT Y BOUINE HINEESIR

Phrased differently, density of states scales as

p(E) ~ e7™'5)

where here 7.«(F) is Schwarzschild radius
This implies Giddings-Lippert 2001 locality bound

We can only talk about locality in gravity at distances

x| > 7. (E)
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L OCALITY IN GRAVITY

Non-Polynomially bounded Giddings-Lippert

Scattering Amplitudes bound
o 2| > r.(E)
Black Holes
Production in High
Energy Exponential Non-localizable
scattering \ density of states — ~ ' Shservables

AT
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W LA RS TS FEE IR
GALILEONS?

Aren’t Galileons just scalar fields theories? What has this
gravitational non-locality to do with them!?

VAINSHTEIN MECHANISM!

Just like GR, Galileons have a built in length scale at which
they become strongly coupled
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R

1 Vainshtein effect

-

W

When curvature is large R > m? recover GR

When curvature is small R < m? fifth force propagates

M :
Determines characteristic Vainshtein radius ——% ~ m?
Mz
e
Screened region r L ry ry = (rgm=1)1/3

Weak coupling region r >y

For Sun 1 |
m LOO0OM pe

s 3km

'\ '_)-#a[]/):‘
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VAINSEEEIN MEGEIAINIS

Normal phrasing: Couple Galileon to a source of matter of mass M

In 4D, Galileons strongly coupled inside Vainshtein radius

1/3
ry = A7 ik
Mp)

However Galileon profile has FINITE SELF-ENERGY !?!

= &

1/5
) and so we have r.(E) = ry(E)
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VAINSEEEIN MEGEIAINIS

When two high energy particles collide they produce
a Black Hole

In GR, the size is the Schwarschild radius, in Massive
Gravity its the Vainshtein radius

1/5
T*(E) ~/ A_l (%)

Natural to suppose same Gravitational non-locality
spreads out to Vainshtein radius

Gives us a locality bound: |z| > 74 (F)
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Pirsa: 15020085

CLASSICALIZATION

O O
Vainshtein radius is the \ /

Classicalization radius of Dvali et al; .

Proposed picture:

High Energy scattering of two hard
quanta, produce metastable bound state
(classicalon) of N quanta which decays
into N soft quanta with

Typical energy of final quanta

Final density of states ~ p(E) ~ e" ~

on

O/ \O

@]

ox

Oﬂ

"O Ohf’o,o
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1 A5SICE A LA TICIN

Final density of states p(E) ~ e ~ eZfr+(E)

In all Vainshtein/classicalizing theories,
r«(E) grows with energy

: . . : 1 [ E\ d+1
e.g. for Galileons in d dimensions re(E) = % (K) *

Thus all Vainshtein/Classicalization theories are
expected to be non-localizable field theories
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(CLASSICE AL AAIOIN

Non-Polynomially bounded Locality bound

Scattering Amplitudes 2| > 7, (E)
Classicalon?
Production in High
Energy Exponential Non-localizable
scattering \ density of states i observables

AR
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UAEROPER ES @R GAFIFECINS

THE CONJECTURE:

Galileons are non-localizable quantum fields,
whose spectral densities grow as

r. (E 7 (d+2)/(d+1)

Remarkable we can PROVE this for one special Galileon model
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GAEIEECINDIEIATRE

To prove the conjecture, we will make use of the existence of the
Galileon Duality

de Rham, Fasiello, Tolley 2013
Curtright Fairlie 2012

Under this transformation:
Galileon * Galileon with distinct coefficients
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GALILEON DUALITY

1

t =zt + — 3(9“%(:(:)
1 P~

gt =zt — —0H7(x)

A3
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GALILEON DUALITY
1

i =zt + (=)
xh = GH — %5%(:&)

Ot m(x) = "7 (%)

(@) = v(e) + 53 (0r()* |
n(z) = 7(#) ~ 55 (07(2))
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GALILEON DUALITY

/d4x c2Lo(m) + c3L3(m) + cala(m) + c5L5()

/d4m p2La(7) + p3L3(7) + pala(m) + psLs(7)

1 . k(B—k
pn =5 2 (S Eg)!(5 : mTh

One Galileon is dual to a distinct Galileon




GALIEEQINEDU ALY

In any dimension, there is one Galileon model which is dual to a free

theory
I}
TH = M + e o (zx)
L ~ L 1 Ay —
zH =" — F()’ p()

NlTE=5e(1)

S eallennl Tli= /I(]d;r [—% det(1 + ]](:r'))(f)ﬂ(;lf))2] = /.(l".r [—%(0{)(;1'))2] = Stres 0]
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SXPIEIE FEIR SR BRI E

d
/d"q/ d®k _U(ply)) ¢ ik.(z—y)+ £:-26)

Prompts following definition of quantum field:

d X
/ ‘1‘“// SN ) U (a(y)) S

Y= /(M [u oMo r)I_r""""']

Normal ordering removes infinite number of divergences, all
remaining correlation functions are finite (in momentum space)
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SXPIEIE FEIR SR BRI E

Prompts following definition of quantum field:

ik.Op(y)

3 LR T G L e ;
Gl e /(l[-y/ (2m)? e™ (@) . U(p(y)) e 4

ﬁ("') — /(U:T [(};‘._('H"'"" L (}I‘(,M'.r]

This definition seems well justified since in a coherent state

e )= B 0(2) | o)== /:U:' [n-kc o o gre ”‘”*} me(2) /.|]’ry / (‘::r:;d U(pe(y)) e*@-u+ S < e
| (B|7(x)|a) = me(z)

This will automatically be a solution of Galileon equation of motion

same would not be true if we had not normal ordered
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EVALUATIONSOF SPECTERAL
SRS R

Formal definition:

(lrf‘[\.
(2)

j i r"n(-‘ o ik Ay k. aH((0
/‘“u/ (‘I ik (2=a' =) Py k) (0] : RO 1 e TR : 0)

(§
2m)d

i:{l’.[_-"!] ik.25(0)

3 @0 (0] U(p(y)) e UH(0) €™ 3 : [0)

(07 (z)7(2')[0) = |/.(l~’-y /

Wicks theorem:

ik.dp(y) ik.04(0)
[+ 4 ‘\l‘"

e [0y =e SK1KY 0,0u(0]p(y) p(0)|0) /A7

(0] : e

£ & \ d : drf}'. ik.(z—x'—y) VA ”7" Lz ot M 1 1 !
/ g s’}‘/ (271')'!‘ ](H‘A)('\I) A?o Urf d y.h'.! ”-.f M ”.’ﬂz (”n ,-()2)-!,.-':

Wightman function
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EVALUATIONSOF SPECTERAL
SRS R

0 ] Idl!-' 5 # A
(0|7 ()7 (y)|0) = / (l;z/(( e* @) p(—k2)2md (k2 + p)0(k°)
JA) P

27)d
0 . ld I’(‘. o v
/ (l,u./ ke (). Spectral Density
Jo J (2m) 2wy ()
p f : ot A Y | | () L s
(}I JI"“ (} —,-'- 2 ™ _‘l"- = / ll Tl — o e [ AL I
(k7)6( )27 pr 0 ) . aye .17r2_1/"’_ ”Z“”g Im2 A\ ”‘I. !I"
, I =t (=) (4m?)n—*+(6n — 2r — 2)! Sum over states
2mprol) = 73 2 2 e ri(n = r)!(2r2)" (1672) " (dn — 2)!(3n — r — 1)!(3n - 7)!

n=() r=()

a 2 ( _7!:,:_‘_]_/_'?__‘) (/jé) 2
27 pro(p) = 2mo(u) + = l_rr, 2975275 | \ AB
| 9

37
Exponential growth
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EVALUATIONSOF SPECTERAL
SRS R

Repeating in D dimensions, we find (in any duality frame) there
exists at least one field whose spectral density grows as

Pt T 2 /A)(d+2)/(d+1)
p(E) ~ eN ~ eF=(E) « ¢(E/A)

Dominant contribution in sum comes from N-particle states with

2\ (@+1)/(2(d+2)
N ~ (—\-) ~ Er.(E)

consistent with classicalization proposal

Thus this-Galileon (at least) is a Non-localizable field
as conjectured
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INCFERACTING EXAMPLE s EF T OF
INFINEREECZONGESTERINGS

Cooper et al 2014

This was for a free theory, however a (non-Galileon) interacting
example with similar properties exists

Nambu-Goto with

S =[? / d'-’-n\/ —Det[nay + 120, X0, X 7]

wrong sign

E~ /tln!f \/—I)t'f[u,,,, — 20, X109, X + ... E ~ l%l*(E) rv(E) ~ f;"'zl:’
A*(s) = A(s*) e20(8) = ¢=isli/4  Im(s) >0,
A(—s) = A(s) e2i8(s) = ¢isls/4  Tm(s) < 0.

Exact, unitary, crossing symmetric, Analytic,
Lorentz invariant S-matrix
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X RECHIEL) BRI IR
GALILEONS

Appears to be no obstruction to having a Lorentz Invariant, Crossing
Symmetric, Analytic S-matrix

Violation of PB. implies no Micro-causality

Analyticity of S-matrix ensure Macro-causality

(E)(f:rrn) o / (ld:[:f;‘,,‘)(;1,‘)(?)(;1.‘) [(5“,(,) '."?’(."f,rm)] =0, (zo— '.Un);2 — 400

Macro-causality implies absence of superluminal propagation

Resolves conflict from apparent S.L. propagation in LEEFT
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SUMMARYF

One can prove that the LEEFT Galileons cannot be UV
completed by a Local, Lorentz invariant field theory

Non-localizablity has been argued to be an essential feature
of gravitational theories - exponential density of states
associated with black holes

We have been able to show, by an explicit UV quantization of a
specific Galileon that Galileons are also non-localizable field theories

Explicit S-matrix work in progress, but appears to be no obstruction
provided we accept non-P.B.
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