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Abstract: <p>Recent research has suggested deep connections between geometry and entropy. This connection was first seen in black hole
thermodynamics, but has been more fully realized in the Ryu-Takayanagi proposal for calculating entanglement entropies in AAS/CFT. We suggest
that this connection is even broader: entropy, and in particular compression, are the fundamental building blocks of emergent geometry. We
demonstrate how spatial geometry can be derived from the properties of a recursive compression algorithm for the boundary CFT. We propose a
general algorithm for constructing MERA-like tensor networks and elucidate connections to the mathematical field of integral geometry.</p>
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Motivation
What does a theory of quantum gravity look like?
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Motivation

What does a theory of quantum gravity look like?
Gravity is often described in different situations as:
1. A coarse-grained/effective theory

>, A microscopic unitary quantum theory

Gravity is Entropic:

From this perspective, gravity is best understood as a thermodynamic
theory. Entropy generates spacetime, but seems agnostic about what it is
purified by.
- Black hole thermodynamics [Bekenstein and Hawking]

Einstein equations as equation of state [Jacobson]

Gravity as entropic force [Verlinde]

Extremal surfaces from entanglement entropy [Ryu-Takayanagi; Hubeny, Rangamani,

Takayanagi]

AdS geometry as a MERA entanglement network [Swingle]

AdS Rindler horizons and ER =EPR [Van Raamsdonk; Maldacena, Susskind]

Linearized Einstein equations from EE [Lashkari, McDermott, Faulkner, Hartman,; Myers, Van
Raamsdonk]
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Gravity is Pure:

From the other perspective, the microscopic structure of
entanglement purification is important.

Through AdS/CFT we have confirmed that gravity can be described by a
microscopic unitary theory

EFT in curved space-time: vacuum state is a particular entangled state
Eternal AdS black hole described by particular TFD state

Which of these perspectives is correct? Is there a middle ground between
the two perspectives?
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Fl re Wa l |S [Almheiri, Marolf, Polchinski, Sully; Braunstein]

Resolving the tension between these two perspectives isn't
simply a question about quantum gravity at the Planck scale.

The black hole information paradox and the question of

firewalls hinges on which of these two perspectives we

believe:

« Thereliance on EFT and the belief that the vacuum has a
fixed structure seems to lead inevitably to firewalls

- Asmooth vacuum state at the horizon requires fields to be
in the local Rindler state at the horizon, with entanglement

between the outgoing and ingoing Hawking partners.
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The incompatibility of mutual entanglements that
leads to the firewall can be resolved if one tracks
entanglement, but not its purification.

This entropic approach builds a smooth geometry by
constructing the interior Hawking modes from
whatever the exterior Hawking mode happens to be

entangled with.

This leads to constructions like the proposal of
Papadodimas and Raju for building non-linear (state
dependent) interior operators and the EPR=ER proposal
of Maldacena and Susskind.

CLASSIC
WORMHOLE
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Black holes are an invaluable pressure test for our ideas about quantum

gravity, but they also add to the confusion about what we are doing.

- Lifeis confusing enough without immediately confronting, for
example, whether quantum gravity can accommodate violations of
quantum mechanics.

While this may drive straight to the heart of the issue, perhaps
something can be learned by less invasive surgery of what we think we
know.
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Black holes are an invaluable pressure test for our ideas about quantum

gravity, but they also add to the confusion about what we are doing.

- Life is confusing enough without immediately confronting, for
example, whether quantum gravity can accommodate violations of
quantum mechanics.

While this may drive straight to the heart of the issue, perhaps
something can be learned by less invasive surgery of what we think we
know.

It seems valuable to explore the tension between entropy and purity in
the absence of black holes.
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Questions we would like to answer:

1. What states have good geometric duals?
To what extent is this geometry determined by entropic CFT
quantities? What information about the state is necessary?

Is there an entropic interpretation of the holographic RG and the
emergence of the radial direction?

What is the entropic meaning of areas in spacetime?
What is this entropy actually counting?
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Questions we would like to answer:

1. What states have good geometric duals?
To what extent is this geometry determined by entropic CFT
quantities? What information about the state is necessary?

Is there an entropic interpretation of the holographic RG and the
emergence of the radial direction?

What is the entropic meaning of areas in spacetime?
What is this entropy actually counting?

In this talk | will describe what | think is substantive progress in
answering all three of these questions.
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Our Starting Point

The classic results of black hole thermodynamics sugﬁest we should
ing horizons):

associate an entropy to black hole horizons (or any ki
A
S = ——
BH = o

Natural to then ask: can we associate a notion of entropy to any choice of
bulk area?
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Our Starting Point

The classic results of black hole thermodynamics sugﬁest we should
ing horizons):

associate an entropy to black hole horizons (or any ki
A
"2 = G

Natural to then ask: can we associate a notion of entropy to any choice of
bulk area?

[Bianchi, Myers]:
In a theory of quantum gravity, for large regions of smooth spacetime, the
entanglement entropy between the degrees of freedom describing the given
region with those describing its complement will be given by the BH formula at
leading order.
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Hints from MERA:

For a CFT, one can efficiently represent certain low-energy states by a
network of unitary operators. Swingle has suggested that the structure of
this lattice for the vacuum state of a CFT mimics the coarse structure of AdS.
(Qa) [Vidal; Swingle]
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Hints from MERA:

For a CFT, one can efficiently represent certain low-energy states by a
network of unitary operators. Swingle has suggested that the structure of
this lattice for the vacuum state of a CFT mimics the coarse structure of AdS.
(Qa) [Vidal; Swingle]

- Lattice points deeper in the bulk encode IR entanglement in the CFT (Q2)

«  When we cut out a region of the MERA lattice, we
remove a number of unitary operators proportional to

the area of the cut.

The number of possible states that fills in the lattice is
proportional to the area of the cut. (Q3)

However, the subspace spanned by these states does
not necessarily form a tensor factor of the Hilbert space.
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. . . . [BALASUBRAMANIAN,
Differential entropy is the continuum analog of our CHOWDHURY, CZECH, DE BOER

procedure of assigning an entropy to a length in the e er)
MERA.

- Differential entropy says that we can rewrite the
integral for the length of the boundary of a region in
terms of it's tangent vectors.

We can do a (non-local) transformation from the

tangent space to the boundary-anchored geodesics
that the tangents lie on.

For geometries that are ‘boundary-rigid,’ these

geodesics are always minimal. RT tell us their length
is actually the Entanglement entropy of the region.

-+ The integral takes a miraculously simple form: "'

Saiff = /dAdQ;()\A) as[v(gzj u(A)] / \

Pirsa: 15020080 Page 16/63



The Radon transform and the Crofton formula can be naturally extended to
hyperbolic space (uniquely determined by symmetry):

- Let I be the space of planes in H? with the unique
invariant measure. Then:

LC) = § [ #n 0

- The invariant Crofton measure on the space of planes is
given by , 1
d*y = — dudv
sin“(u — v)
It is natural to assign geometric meaning to this
Kinematic Space.
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The Radon transform and the Crofton formula can be naturally extended to
hyperbolic space (uniquely determined by symmetry):

- Let I" be the space of planes in H* with the unique
invariant measure. Then:

L(C) = § [ #n 0y

- The invariant Crofton measure on the space of planes is
given by 1
d?y = — 5 dudv
sin“(u — v)
It is natural to assign geometric meaning to this
Kinematic Space.

- Taking the Crofton form to be the curvature density, we
find Kinematic space is Lorentzian de Sitter space.
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Causal Structure

- What is the meaning of the causal structure in Kinematic

space? &
- Time-like:
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Causal Structure

- What is the meaning of the causal structure in Kinematic

space? i
- Time-like:
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General Geometries

- Is there anything that can be done in more general geometries?
« The derivation of the correct measure in integral geometry relied on symmetry...

In fact, YES! We can use the meaning of this causal structure as a quide to
choose an appropriate curvature form on the space.

» There is a natural Crofton Form that reproduces the lengths of any curve in
any geometry whose tangent space is covered by boundary-anchored
geodesics.

- The Crofton measure is given by
d*y = 0,0, L(u, v)dudv

- It will be natural again to interpret this density as the
curvature density d*y = dV R .This s the curvature form of
some asymptotically de Sitter, Lorentzian metric on the cylinder <—
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- Cusps from non-convex curves are jut regions with higher intersection number
because geodesics can enter and leave a region multiple times
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LESSONS FROM MERA
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What is MERA?

- MERA is a variational ansatz for solving the ground
state of a CFT on a spatial lattice

[Img: Evenbly, Vidal]
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What is MERA?

- MERA is a variational ansatz for solving the ground
state of a CFT on a spatial lattice

It is a particular tensor network skeleton which is
sequentially composed of two distinct types of
tensor nodes.

These nodes prepare the state from a product state
by:

1. The removal of local
entanglement by
disentanglers
Coarse-graining by
Isometries

[Img: Evenbly, Vidal]
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M E RA an d H (9] I Og a3 p hy [Swingle; Evenbly, Vidal]

- The MERA network has an additional spatial dimension to the
boundary state.
- ltisrelated to the length-scale of entanglement coarse-graining.

+ Itisthen natural to view the MERA as related to a holographic
geometry.

« This can be made precise:

+ Associate a fixed distance to crossing each
line of the lattice.

In coordinates z = log(L),
the corresponding metric is that of a spatial
Slice Of AdS2Z X (space) [Img: Evenbly, Vidal]

z (length scale)
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- MERA viewed as a discretized AdS2 geometry also realizes the Ryu-
Takayanagi procedure for calculating entanglement entropies:

+ Consider a minimal cut in the MERA network that is homologous to
some boundary region of length L (measured in lattice sites)

+ Thelength of the cut is then given by:

-

O(log(L))

=

[Img: Evenbly, Vidal]
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assigning a me Euclidean signature

ned, not ¢

T —————

Pirsa: 15020080 Page 28/63




Lessons from MERA for general TN
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Lessons from MERA for general TN

- If the boundaries of the RT region are uncorrelated, then information
and correlations are determined by local properties of the network:

b : &
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Lessons from MERA for general TN

- If the boundaries of the RT region are uncorrelated, then information
and correlations are determined by local properties of the network:

Sap +Spc —Sapc —SB
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Lessons from MERA for general TN

- If the boundaries of the RT region are uncorrelated, then information
and correlations are determined by local properties of the network:

Sap +Spc —Sapc —SB

I(A,C|B)
Conditional Mutual Information
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BASKET WEAVING 101

In which we assemble the gbits and pieces of a tensor network
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Lessons from MERA for general TN

« Picture from MERA is not perfect. But, | would like to translate the
workings of MERA into general principles for constructing a tensor
network. What is MERA really doing that's useful?

+ MERA only realizes the RT procedure because the links cut are
assumed to be uncorrelated, so distances and cuts are both additive
and locally measurable. This is the heart of the connection between
tensor networks and geometry.

- This is equivalent to saying that the RT surface in the TN encodes the
compressed state of the interval.

 We argue this should be elevated to a principle:

Principles of Tensor Networks for Gravitational States:
1. TheTN should encode compressed states along the '‘RT’ surfaces.
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Interpreting Kinematic Geometry

» Recall that local geometric invariants of Kinematic Space can be
written in terms of entanglement entropy.
- Notably, the curvature density was given by

dV R = 9,,0,S(u,v)dudv

- Let’s see what this density gives us integrated over specific causal regions
of Kinematic Space:
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+ Notice that the marked region in Kinematic space
describes the exact same quantity as does the
marked region in MERA for the ground state of a
CFT

I(A,C|B)

« Itis just a small leap now to suggest that the MERA
network is actualy describing not hyperbolic space,
but its dual de Sitter space!

« The '‘RT’ surfaces should actually be understood as
the causal domain of dependence of the boundary

region of dS2

- The tensor nodes aren’t describing a point of
discretized H2, but are points of discretized dS2
associated to a particular geodesic/boundary interval
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» But, we didn't just find a Kinematic space for the AdS vacuum.

« Using our principled approach to understand what MERA is doing, and our

knowledge of Kinematic geometry, can we find efficient tensor networks
for more general states?

- In hindsight, let's modify our principles:

Principles of Tensor Networks for General States:

1.

The TN should encode compressed states along the boundary of
the domain of dependence of a boundary interval.
The purpose of the domain of dependence is then to extract all the
mutual information a region has with its sub-sytems.
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» But, we didn't just find a Kinematic space for the AdS vacuum.

« Using our principled approach to understand what MERA is doing, and our

knowledge of Kinematic geometry, can we find efficient tensor networks
for more general states?

- In hindsight, let's modify our principles:

Principles of Tensor Networks for General States:
1. The TN should encode compressed states along the boundary of

the domain of dependence of a boundary interval.

The purpose of the domain of dependence is then to extract all the
mutual information a region has with its sub-sytems.

Conditional Mutual Information is encoded locally by the curvature
of Kinematic space.
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» The requirement that our network performs compression along the future
boundary is extremely powerful:
- Correlations between subsystems A and C cannot be created outside the future
boundary of ABC because this is a compression surface,
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» The requirement that our network performs compression along the future
boundary is extremely powerful:
- Correlations between subsystems A and C cannot be created outside the future
boundary of ABC because this is a compression surface,

« Nor can it propagate outwards from the future boundary of B
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» The requirement that our network performs compression along the future
boundary is extremely powerful:
- Correlations between subsystems A and C cannot be created outside the future
boundary of ABC because this is a compression surface,

« Nor can it propagate outwards from the future boundary of B

» So all correlations must arise from the part of the network in the top
diamond

« Information flows in a compression network along light rays
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- Consider the colored region of Kinematic space below. It's easy to check
that this encodes the Mutual Information I(A,B).
- Since the red borders encode compressed states for the corresponding
boundary region, mutual information between regions A and B can only be
created by tensor nodes in the orange region.
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- Consider the colored region of Kinematic space below. It's easy to check
that this encodes the Mutual Information I(A,B).
- Since the red borders encode compressed states for the corresponding
boundary region, mutual information between regions A and B can only be
created by tensor nodes in the orange region.

- As in MERA, the density integral must be equal to a boundary term measuring
the difference in the number of network lines crossing the top and bottom
edges of the region.

« The cuts are uncorrelated = additive contributions to entropy.

- This is perfectly consistent if we interpret the curvature integral as
measuring the density of isometries inserting ebits into the network.
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- Likewise, consider the Conditional Mutual Information I(A,C|B):
- If all boundaries are uncorrelated, then CMl is just the difference in lines cutting
the top and bottom and the colored region

- The density integral that reproduces this is exactly the density of isometries
inserting ebits into the network

I(A, C|B)
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- So for an arbitrary choice of entanglement entropies S(u, v), we can use
the corresponding curvature density to add lines to the network that
prepare a state with exactly these entropies




The Role of Disentanglers

First, we can compress two side-by-side regions A and B independently.

But we need to be able to iterate the compression process to the joint
system AB.

So all mutual information between A and B must be directed to the
inward pointing legs.

The outward pointing legs at 1 and 2 must have zero mutual
information because they are unaffected by the next step.
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Tripartite Information

« This is an appropriate time to make an important aside. Tripartite
information can also be written

I3(A, B,C) = I(A,C) — I(A,C|B)
- Since all mutual information between A and C must arise from the
purple region of our network, we conclude that

Ig(A,B,O) < 0

» This is NOT generic, but rather a restriction on the states we can build

irsa: 15020080 Page 48/63



Tripartite Information

« This is an appropriate time to make an important aside. Tripartite
information can also be written

I3(A, B,C) = I(A,C) — I(A,C|B)
« Since all mutual information between A and C must arise from the
purple region of our network, we conclude that

Ig(A,B,O) < 0

» This is NOT generic, but rather a restriction on the states we can build

- Negative tripartite information is a necessary condition
to have geometric bulk dual. [Hayden, Headrick, Maloney]

» We conclude that our tensor networks can
construct Quasi-Gravitational States.
- Should be a wide enough class for interesting OG.I\/
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- To understand the relationship between disentanglers and tripartite
information, it will be useful to examine their behavior in a state with
a geometric dual.

- Let’s consider three contiguous regions again, but let's work in the regime
where A and C have non-zero mutual information so that

S(AUC) = S(B) + S(ABC)

- Then some basic algebra gives

I5(A, B,C) = —S(B|A) — S(B|C)

- This corresponds to a simple region of integrated curvature:
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- To understand the relationship between disentanglers and tripartite
information, it will be useful to examine their behavior in a state with
a geometric dual.

- Let’s consider three contiguous regions again, but let’s work in the regime
where A and C have non-zero mutual information so that

S(AUC) = S(B) + S(ABC)

- Then some basic algebra gives

I5(A, B,C) = —S(B|A) — S(B|C)

- This corresponds to a simple region of integrated curvature:

» The integrated curvature in this region gives
twice the total number of lines crossing the
lower surface. So each line destroys one
ebit of mutual information.
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- We can easily model this mixing that destroys the potential mutual
information between two regions:
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- Gravitational states then can be seen to be ‘maximally mixing’ in that
every pair of crossing lines must distribute the information amongst
themselves as does our toy model, and in doing so destroys the
maximal amount of information.

- We want to quantify how far away our disentanglers are away from a
gravitational state where they are maximally mixing.

» To do this, consider one last time the gravitational state:
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- Thus in a general state, we define two different metric/curvature
structures:

AV R = —9,I3(A, [u — du,u] , [u, v])dv

dVPRP) = 9,0,5 (u, v)dudv

- The condition that our state has a good geometric dual is that these
two densities are identical.

- In that case, we can count the insertion of lines into our network either by
mutual information created, or dually by mutual information destroyed.
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IMPLICATIONS AND

OPEN QUESTIONS
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Orbifolds

- Our tripartite metric is sufficient to distinguish between N copies of a
CFT and the symmetric orbifold:

. . . e
- For N copeies, the different copies of the network RRRRRRREN

\NAANAANAANAL

don’t mix with each other. R R R IR H I TR)

\/ "9‘5‘ L/

AV R2) — nav G pG)

- In the symmetric orbifold theory, the lines
becomes sufficiently mixed between the different
copies so that

AV RE2) — qv G RG)
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Smooth IR Geometry vs Singularities

- Our construction of the tensor network depended on our ability to cleanly
direct information to the L or R. What happens at large distances when this
breaks down?

- Our L/R distinction fails precisely when a > /2.

Do we need to be worried about constructing the
network in this region?

- Surprisingly, no! We know from differential entropy
that the length of a curve that circles the origin is o.
- So it must follow that there are no lines that cross the
corresponding surface in Kinematic space as we approach
a point.
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Kinematic Space and Holographic RG

- Natural to ask what the real space holographic RG looks like in Kinematic
Space.

- Itis not just as simple as removing the top and bottom or undoing part of the
tensor network.

- Easy to see what's happening by examining the geodesics
themselves under RG.

- See that that the bulk RG can be understood as a
transformation on the causal structure of the dual space.
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- But the non-perturbative perspective given to us by
MERA sees the counting very differently.

- We are counting the different states that can be
prepared by different choices of the IR network.

- What does this extra spike do to the entropy?

- Not all cuts can count positively towards the entropy.
- Some must be interpreted as negative constraints.

e
oS o2

8!

B RS RS
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- But the non-perturbative perspective given to us by
MERA sees the counting very differently.

» We are counting the different states that can be
prepared by different choices of the IR network.

- What does this extra spike do to the entropy?

- Not all cuts can count positively towards the entropy.
- Some must be interpreted as negative constraints.

Crosses the causal cone of sites
already cut by surface.
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