Title: Spinodal Instabilities and Super-Planckian Excursionsin Natural Inflation
Date: Jan 20, 2015 11:00 AM
URL.: http://pirsa.org/15010120

Abstract: <p>Models such as Natural Inflation that use Pseudo-Nambu-Goldstone bosons (PNGB's) as the inflaton are attractive for many reasons.
However, they typically require trans-Planckian field excursions $\Delta\Phi>M_{\rm P} $, due to the need for an axion decay constant $f>M_{\rm
PI}$ to have both a sufficient number of e-folds {\em and} values of $n_s\ r$ consistent with data. Such excursions would in general require the
addition of all other higher dimension operators consistent with symmetries, thus disrupting the required flatness of the potential and rendering the
theory non-predictive. We show that in the case of Natural Inflation, the existence of spinodal instabilities (modes with tachyonic masses) can
modify the inflaton equations of motion to the point that versions of the model with $f<M_{\rm PI}$ can still inflate for the required number of
e-folds. The instabilities naturally give rise to two separate phases of inflation with different values of the Hubble parameter $H$ one driven by the
zero mode, the other by the unstable fluctuation modes. The values of $n_s$ and $r$ typically depend on the initial conditions for the zero mode,
and, at least for those examined here, the values of $r$ tend to be unobservably small.</p>
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Spinodal Natural
Inflation
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based on arXiv:1412.6879 w/ Albrecht and Ben Richard
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Why so flat? The eta problem
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The problem arises if we consider the inflaton as described by an
effective field theory valid only at scales below some cutoff, such as

the Planck scale.

If this theory is obtained by integrating out “Planck Slop” fields, the

slow roll parameters can get corrected:
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Generically, flatness is not protected against quantum corrections!
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Calling Mr. Natural! PNGB’s to the

Rescue?
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How can we protect the flatness of |
. Shift symmetry!
the potential?
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Only the kinetic term (and higher derivatives) is invariant under

shifts; that's a little too much symmetry!

Nambu-Goldstone bosons exhibit this symmetry. But if the
underlying symmetry is explicitly broken as well we can

generate a potential.
Following QCD axion with an anomalous U(1) symmetry,

try the potential
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What does it take to get a good inflationary scenario

out of natural inflation?
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Need f greater than the Planck mass!

Pirsa: 15010120 Page 7/22



Pirsa: 15010120

This is a problem from the EFT point of view!
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Higher order terms of this form would dominate over the

original potential as the field travels a distance f.

It's Mr. Natural's Excellent Super-Planckian

adventure!
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There are many possible solutions to this problem

% Axion Monodromy
* N-flation
% Aligned Inflation

We'd like to try something a little different.
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Spinodalling for e-folds
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First note that the Planck data prefers small-
field inflation, with a concave potential during

inflation.
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In all the approaches to inflation in these potentials, the
dynamics of the inflaton is treated as if fixed JUST by the

potential

But for these concave potentials, this is NOT CORRECT!

If zero mode is above the spinodal line where
the effective mass vanishes, low wavenumber

modes will be TACHYONIC
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One resummation technique uses the Hartree approximation, which is
the N=1 version of the large-N approximation

(RH and Dan Cormier PRD62 (2000), 023520)

ont1 . (2n+ ] )! 1B
0, > (%)
2nn! "

This makes the interacting theory a Gaussian one, but with memory of the

Interactions encoded in the self-consistent calculation of the two point function

Diagrammatically, this resums “cactus” diagrams.
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Now, take the NI potential, insert the split into zero mode and

fluctuations, then apply the Hartree-ization process to this
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We see that the mode equations depend on the two point function
which in turn depends on the modes; this is the self-consistency of the

system.

What happens?

Depending on where the zero mode is placed, the dynamics starts

off as usual, but then becomes fluctuation dominated.

The hope would be that even for parameters that would NOT allow for enough
inflation just from the potential, the fluctuation dominated phase would kick in

some more e-folds
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Let's pick a situation where f is smaller than the Planck scale.
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The usual dynamics would give about 5 e-folds or so. But once the zero mode
gets near the spinodal region, fluctuations grow non-perturbatively and a
SECOND phase of inflation starts! This gives rise to the rest of the e-folds

needed.

What about r and ns?
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This is a collection of models with about the same number (~200) of
e-folds but with f less than the Planck mass. r tends to be small (but
we all know BICEP didn't see primordial B modes, right?) but ns is

within the error contours from PLANCK.
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Interesting fact: The background dynamics can be reproduced by
looking at the zero mode and a second zero mode constructed from

the long-wavelength modes
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Take-Home Lessons, Questions and Stuff to do
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Take-Home Lesson 1: You HAVE to include quantum dynamics to get the full

evolution of the system! Just using the effective potential is NOT enough.

This is especially important in light of PLANCK wanting us to be in the concave
part of the potential during inflation. There will always be spinodal regions in this

case.

Take-Home Lesson 2: Spinodal effects can save NI from itself! No need for

super-Planckian excursions (unless r stays large!)
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Question: How do we know that the Hartree approximation

captures the right physics?

It's true that the HA is uncontrolled. On the other hand, the fluctuations have to

be tamed somehow; neglecting this is NOT an option!

AND.. the same effect shows up in large-N. However, there the
spinodal line lies at the bottom of the well, where the Goldstone
modes appear. If the potential is set to be zero there, no second

phase of inflation will appear.
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To do:

1. Better grip on HA
2. Delineate parameter space of spinodal NI

3.0ther models, maybe with more than one axion
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