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Non-compact Horizons and the Reverse

Isoperimetric Inequality

Nathan Musoke

December 4, 2014

Nathan Musoke December 4, 2014
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Topologies of Black Hole Horizons

@ Hawking: event horizon cross sections of 4D asymptotically flat
stationary black holes obeying the dominant energy condition are
topologically S?

@ there are many ways to find different topologies

e higher dimensions = black rings
e asymptotically AdS = compact Riemann surfaces of any genus

e rotating = non-compact

Nathan Musoke December 4, 2014 2/15
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Black Hole Thermodynamics

A
P=—c

dM = T dS + V dP
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Nathan Musoke
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The Isoperimetric Equality

@ we know that for a given volume, spheres minimize surface area

@ there is a general inequality for plane curves

47.‘A<1
[2 —

@ more generally, in d-dimensions

- 1/(d-1)
()
Ad—?

Nathan Musoke December 4, 2014
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The Reverse Isoperimetric Equality

@ it has been conjectured that the opposite holds for AdS black
holes:

R >1

@ it is obeyed for the black holes which have been checked
@ saturated for Schwarzschild-AdS

o Schwarzschild-AdS are “maximally entropic”

Nathan Musoke December 4, 2014 5/15
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Kerr-Newman-AdS Metric

~

S—l—c;,,cosH.

2

Nathan Musoke December 4, 2014
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Kerr-Newman-AdS Metric

@ this metric satisfies the Einstein-Maxwell-AdS equations

6 1 |
G/H' o /?g;w p— 7_;Hf e F;:an,; T 4g;wl:n }‘F'

@ the volume and area are

27 (rf + a%)(2r?1? + &%1? — rfa®) + [?g*a?
3 2=2,

— I'h
4:.‘(r§ + a?%)

%

A

@ these satisfy the reverse isoperimetric inequality

Nathan Musoke December 4, 2014

Pirsa: 14120055 Page 79/182



Ultraspinning Limit

one can construct a new black hole from this
want to look at a — /., but there are = in denominators
make the substitution ' = ¢/=

compactify the coordinate ¢ ~ " +

Nathan Musoke December 4, 2014
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Kerr-Newman-AdS Metric
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Ultraspinning Limit

one can construct a new black hole from this
want to look at a — [/, but there are = in denominators
make the substitution ' = ¢/=

compactify the coordinate ' ~ " +
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Pirsa: 14120055 Page 82/182



Ultraspinning Limit

@ the usual thermodynamic equations are satisfied

@ the area and volume are

A=2u(l?+r?)

y L
V = §/rr+(/“ +rl)

@ the reverse isoperimetric inequality is violated:

]

| rA 1/3 2 1/2
R(z/) (A) -

Nathan Musoke December 4, 2014 9 /15
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Ultraspinning Limit

@ however, the horizon is no
longer compact

(Klemm arXiv:1402.3107)

Nathan Musoke December 4, 2014 10 / 15
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Ultraspinning Limit

@ however, the horizon is no
longer compact

@ modify the reverse
Isoperimetric conjecture to
require compact horizons

(Klemm arXiv:1402.3107)

Nathan Musoke December 4, 2014 10/ 15
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Superentropic Block Hole in 5D

@ start with general rotating charged black hole in 5D

e 2 rotation parameters a and b

@ want to look at a.b — /, but again have =,. =, in denominators

@ again make a coordinate change p = 0og/=,

Nathan Musoke December 4, 2014 11 /15
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Superentropic Block Hole in 5D

@ the reverse
iIsoperimetric inequality
Is not satisfied for
some values of the
parameters g, b

0.3
U:“ 1 0

q=0 x=r/l,y=0>b/l,

(plot by Robie)

Nathan Musoke December 4, 2014 12 /15

Pirsa: 14120055 Page 87/182



Superentropic Block Hole in 5D

@ there are non-compact horizons again

b
q
)

(plots by Robie

Nathan Musoke December 4, 2014 13 /15
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Future Directions

@ perform similar analysis for d-dimensional black holes

@ work towards a proof of the Reverse Isoperimetric Inequality

Nathan Musoke December 4, 2014 14 / 15
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A First look Into BRST Invariance

Vasudev Shyam

Perimeter Scholars International

Student Presentations

Vasudev Shyam A First look Into BRST Invariance
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The Quartet Mechaniem Harmonic Oscillator Toy Model

The Slightly Bigger Picture

Outline

@ The Quartet Mechanism
@ Harmonic Oscillator Toy Model

Vasudev Shyam A First look Into BRST Invariance
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The Quartet Mechaniem Harmonic Oscillator Toy Model

The Slightly Bigger Picture

Meet the Super Oscillator

@ The Super-Oscillator Hamiltonian:

H=w (2\“‘2\ L ATA L EE - a‘fa) (1)

@ The BRST charge mixes Bosonic and fermionic degrees of
freedom: B |
Q=Ii(Ala—a'A) (2)

Vasudev Shyam A First look Into BRST Invariance
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T i - -
he Quartet Machaniem Harmonic Oscillator Toy Model

The Slightly Bigger Picture

What Makes It Super

@ The Charge is nilpotent: @ = 0 and furthermore

{a.af} = H (3)

Il
e

@ Thus the physical Hilbert Space consisting of states that
are invariant under the action of both Q and Q' is one
dimensional and consists of but the Fock vacuum |0)

Vasudev Shyam A First look Into BRST Invariance
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The Quartet Mechanism =
Harmonic Oscillator Toy Model

The Slightly Bigger Picture

Outline

@ The Quartet Mechanism

@ The Slightly Bigger Picture

Vasudev Shyam A First look Into BRST Invariance
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T i i
he Quartet Mechaniem Harmonic Oscillator Toy Model

The Slightly Bigger Picture

How Should The Space of Physical States be
|dentified?

@ BRST invariance would have us choose kerQ, but due to
the charge’s nilpotency, imQ C kerQ, similarly for Q'

@ The solution lies in voiding imQ of physical content and
identifying as the space of physical states

Hppys = kerQ/imQ (4)

@ Introduce a Ghost Number operator: Ngj s.t. [Ngp. H] = 0,
{Ngn. Q} = Q and hence leaves kerQ invaraint, and
introduces a grading on it. The eigenvalue 0 subspace of

Ngh Is H Phys

Vasudev Shyam A First look Into BRST Invariance
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T ' =
he Guartet Mechanism Harmonic Oscillator Toy Model

The Slightly Bigger Picture

Some Caveats

@ Although the Fock space of the Super Oscialltor is a
Cartesian product of fermionic and bosonic Fock spces,
kerQ and H,p,s are not Hilbert spaces, but are indefinite

metric spaces with a pseudonorm (f'|f) = (f|J|f) where J
is a Hermitian oerator chosen such that Q'J = JQ

@ Q is thus pseudo-hermitian and states with higher ghost
number may have negative pseudo-norm.

Vasudev Shyam A First look Into BRST Invariance
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What is it good for? Gauge Theories

Outline

Q What is it good for?
@ Gauge Theories

Vasudev Shyam A First look Into BRST Invariance
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What is it good for? Gauge Theories

What The Gauge Fixed Action is Invariant Under

@ BRST transformations: oL =0

1

z
Iym

L= LYM T Tl'(—

@ The BRST operator’s action on the various fields is given
as follows

r\A — FD}”C

Vasudev Shyam A First look Into BRST Invariance
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What is it good for? Gauge Theories

Slight Demystification

@ Much like before, a BRST charge Q s.t. = ¢Q can be
introduced and the space of physical states can be
identified with kerQ/imQ.

Diagrammatics showing cancellations of longitudinal
modes etc. to ensure gauge invariance as done in class
are basically encapsulated in the fact that the S-matrix
commutes with Q, i.e.

(S.Q] =0

and the restriction of the Optical Theorem to states in
Hphys,

0), [v) € HPhys

Vasudev Shyam A First look Into BRST Invariance
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S.Q] =0
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What is it good for? Gauge Theories

What The Gauge Fixed Action is Invariant Under

@ BRST transformations: oL =0

1

z
Ivm

L=Lyy+ Tr(—

@ The BRST operator’'s action on the various fields is given
as follows

(\A e FD}”C

Vasudev Shyam A First look Into BRST Invariance
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What is it good for? Gauge Theories

What The Gauge Fixed Action is Invariant Under

@ BRST transformations: oL =0

1

z
Ivm

L=Lyy+ Tr(—

@ The BRST operator’'s action on the various fields is given
as follows

(\A — &D}”C

Vasudev Shyam A First look Into BRST Invariance
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Appendix For Further Reading

For Further Reading |

® Marc Henneaux and Claudio Teitelboim
Quantization of Gauge Systems.

Vasudev Shyam A First look Into BRST Invariance
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Using the Action in Classical Theories of
Gravity

Perseas Christodoulidis
December 04, 2014

Perimeter Institute for Theoretical Physics

According to the new rules you are not allowed to sleep

1/19
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A Puzzle from Galaxies

According to the new rules you are not allowed to sleep 2719
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A Puzzle from Galaxies
Observations of the orbiting velocity of stars show that they do not follow
the "Keplerian Law" v(r) o< 1/4/r, as they should!

o Instead we observe that their velocity is constant sufficiently far from the
center.

>

Observed
_

Expected

Rotation velocity

Distance from center of galaxy —»
Figure: Rotational Curve (source: www.philica.com)

According to the new rules you are not allowed to sleep 2/19
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i

0 05 1
Radius [radius of sun’'s orbit)

Figure: Rotational Curve of Milky Way (lllan et. al.)

According to the new rules you are not allowed to sleep 3/19
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Overview

& Very short Historical Introduction

QO Main Body
How to Construct an Action
Deriving Einstein Equations from a Variational Principle
The rotational curve problem revisited

© Conclusions

According to the new rules you are not allowed to sleep a/19
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Very short Historical Introduction

A Glimpse _ito _t_he_ Past -

o Lagrange first derived his equations from the principle of virtual works and
D’'Alembert’s principle.
Yi(F—ma)-or=0 (1)

@ Soon he realized that his equations were independant of coordinate system.
Newton's 2nd law is not.

o Later Hamilton derived Euler-Lagrange equations from a variational principle.

According to the new rules you are not allowed to sleep 5/ 19
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Main Body

Einstein Rules for S.R

O If you are talking about relativity you should use coordinate-invariant objects
because the action is an invariant quantity

According to the new rules you are not allowed to sleep 6/ 19
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Main Body

Einstein Rules for S.R.

O If you are talking about relativity you should use coordinate-invariant objects
because the action is an invariant quantity

@ An invariant is the length of a curve (or the proper time dr = v/ —ds? for
metric signature 1), = (—1.1.1.1))

According to the new rules you are not allowed to sleep 6/ 19
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Main Body

_ instein __R_Ies for S.R.

O |If you are talking about relativity you should use coordinate-invariant objects
because the action is an invariant quantity

@ An invariant is the length of a curve (or the proper time dr = v/ —ds? for
metric signature 1), = (—1.1.1.1))

© So one possible action in S.R. would be: S x 7

According to the new rules you are not allowed to sleep 6/ 19
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Main Body

Einstei_n_ Rules forS.R. |

O If you are talking about relativity you should use coordinate-invariant objects
because the action is an invariant quantity

@ An invariant is the length of a curve (or the proper time dr = /—ds? for
metric signature 1), = (—1.1.1.1))

© So one possible action in S.R. would be: S x 7

QO This is the case since you get the correct result in the Newtonian limit

L:—mcz/drz—mcz/ 1—(1—1)2dr:—mc2+%muz——--- (2)
. Y >

According to the new rules you are not allowed to sleep 6/ 19
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Main Body

Upgrade to GR

© The most important tensor is the Riemann tensor R. We can form scalar

quantities by contracting it to other tensors. For instance:
R’””"’\R‘,,,,H,\ ) lerc,\R!”} Rr.-,\ ‘ RIHIR“”’ R

According to the new rules you are not allowed to sleep

7/19
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Main Body

~
- -

_Upgrade to GR

© The most important tensor is the Riemann tensor R. We can form scalar

quantities by contracting it to other tensors. For instance:
R!mr.‘,\R‘,”’HA ) RI”’"’\R‘,,,, Rr.-,\ ‘ RIHIR“”’ R

© GRis a field theory so : S = [ d*x L for a lagragian density.
O In GR d*x — d*x\/—g

According to the new rules you are not allowed to sleep 7719
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Main Body

Upgrade to GR

© The most important tensor is the Riemann tensor R. We can form scalar

quantities by contracting it to other tensors. For instance:
R“""’\R‘”m;,\ ) RI”’"’\R‘,,,,RH,\ ‘ RIHIR“”’ R

© GRis a field theory so : S = [ d*x L for a lagragian density.
Q In GR d*x — d*x\/—g

According to the new rules you are not allowed to sleep 7719
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Main Body

Upgrade to GR

© The most important tensor is the Riemann tensor R. We can form scalar

quantities by contracting it to other tensors. For instance:
R“"”;’\R‘,,,,h-,\ ) lerc,\R!”}RH/\ ‘ RIHIR!”’ R

© GRis a field theory so : S = [ d*x L for a lagragian density.
O In GR d*x — d*x\/—g
O What L?

According to the new rules you are not allowed to sleep 7719
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of the metric tensor g,

6S = /d4x(i(\/—_gR) = /d4x(r5\/——gﬁ’+ V—2gR) (3)

According to the new rules you are not allowed to sleep

8/19
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~ We vary the Einstein-Hilbert Action: [ d*x\/—gR, w.r.t. the elements

of the metric tensor g,,,,

o / T OV g / Y T (3)

We have to calculate 3 variations:
Q i(v-g)
O Ruigh
o !’SRI”fg.;“j

According to the new rules you are not allowed to sleep 8/ 19
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1 dA 4-19A

A T T ——

so in our case with det(A) = g the result is

- 1 LV <
vV—g)= —ix/—gg’ -

According to the new rules you are not allowed to sleep 9/ 19
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AT

= (A1)

det(A) dx

so in our case with det(A) = g the result is

. 1 L <
vV—g) = —Qx/—gg" Y-

: (Y o — S(AV
VK ¥
@ Use the relation 6(g""g,.) = 0(d%) so

v MK

6gH = —ght g g

According to the new rules you are not allowed to sleep 9/ 19
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9 ORuy = 0 DAL M’\l*"+ i An+.}.w Y () e

o We go to a local inertial frame where at this point g,,,(Po) = 7., and all T
symbols vanish.

R (Po) = (3T, ) A(Po) = (5T3x) . (Po) (6)

According to the new rules you are not allowed to sleep 10 / 19
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L CR— PR, T — s e o i i " i |

9 ORuy = 0 y A Sy S ,u+ ,, )m+ ;.w')m_ BA uln,_ TR

o We go to a local inertial frame where at this point g,,,(Po) = 7., and all T
symbols vanish.

R (Po) = (3T5,) A(Po) = (5T 3x) . (Po) (6)

e The [ symbols are not tensors but their (small) variations are!

o Therefore we have an equation of tensors and in general

SRuw = (0T, )ix — (6T )

v

According to the new rules you are not allowed to sleep 10 / 19
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'Q Using these substitutions and the assumption that the variation of the
Christoffel symbols vanish sufficiently quickly at infinity we recover the
Einstein Equations for the vacuum:

R=0

© Now if we add another term in the lagrangian Ly and define

THY — _ \/274”“?; ~£) then we recover the Einstein Equations in the
7- ( _)Ifi'

presence of matter:

1 87 G
R - —Rg = T
2 & c4

According to the new rules you are not allowed to sleep
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So what have we accomplished?
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So what have we accomplished?

o This procedure gives us a straight way of generalizing our theory of gravity.
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So what have we accomplished?

o This procedure gives us a straight way of generalizing our theory of gravity.

o By changing the Lagrangian.

According to the new rules you are not allowed to sleep 12 / 19
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Main Body

Dark mattert No thanks,

2 ways to "solve" the rotational curve problem:
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Main Body

‘Dark matter? -No thanks

2 ways to "solve" the rotational curve problem:
@ increase the mass

o change the gravitational law
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Main Body

Lark matiers ho Lhanks

2 ways to "solve" the rotational curve problem:
@ increase the mass
o change the gravitational law

Both have problems!

According to the new rules you are not allowed to sleep
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Main Body

Dark matter? -No thanks

2 ways to "solve" the rotational curve problem:
@ increase the mass
o change the gravitational law

Both have problems!

@ what is the nature of the hidden mass? Not baryonic. Can we give a solid
theoretical description?

o what the modified gravity law predicts?

According to the new rules you are not allowed to sleep 13 / 19
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Main Body

Generalizing the gravitational law

o If a modified law exists then what is the area that it starts to diverge from
the previous theory?

According to the new rules you are not allowed to sleep 14 / 19
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Main Body

Generalizing the gravitational law

o If a modified law exists then what is the area that it starts to diverge from
the previous theory?

o We know that on earth scales Newton's law is sufficient. For greater scales
(solar system) GR is more accurate.

o The natural step is to assume the existence of a modified law in:
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Main Body

Generalizing the gravitational law

o If a modified law exists then what is the area that it starts to diverge from
the previous theory?

o We know that on earth scales Newton's law is sufficient. For greater scales
(solar system) GR is more accurate.

o The natural step is to assume the existence of a modified law in:

o large scales (galaxy or even the Universe)
o bigger curvatures (R)

According to the new rules you are not allowed to sleep 14 / 19
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Main Body

~ Modified theories

According to the new rules you are not allowed to sleep 15 / 19

Pirsa: 14120055 Page 146/182



Main Body

quified theories

o MOND (MOdified Newtonian Dynamics). Proposed by Mordehai Milgrom.

The new dynamical law is:
a
F=mag(—) (9)
aO

with g — 1 for a

According to the new rules you are not allowed to sleep 15 / 19
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Main Body

Modi_fied theories

o MOND (MOdified Newtonian Dynamics). Proposed by Mordehai Milgrom.
The new dynamical law is:

(9)

with g — 1 for a >> 1.

o Tensor-Vector-Scalar Gravity (TeVeS) by Jacob Bekenstein. Relativistic
generalization of MOND.

According to the new rules you are not allowed to sleep 15 / 19
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o Scalar-tensor—vector gravity, by John Moffat (PI)

o Gauss-Bonnet gravity: S = Syg + Scg, where in D dimensions

SGB - / dDX\/ _g(R2 - 4R,'m R“V il ler.'/\R“m;/\) (10)

non- trivial for D>4.

According to the new rules you are not allowed to sleep
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Scalar-tensor—vector gravity, by John Moffat (PI)

Gauss-Bonnet gravity: S = Syg + Seg, where in D dimensions

SGB - / dDX\/ _g(R2 - 4R;m R“V T ler.'/\R“w;/\) (10)

non- trivial for D>4.

Remember: Einstein Equations coupled PDE. Like Newton's law you have to
insert parameters. Usually solvable on high symmetric spaces.

The only theory with second derivatives of metric in e.o.m. is E.G.

According to the new rules you are not allowed to sleep 16 / 19
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Scalar-tensor—vector gravity, by John Moffat (PI)

Gauss-Bonnet gravity: S = Syg + Sgg, where in D dimensions

SGB - / dDX\/ _g(R2 - 4R,'m R“V il ler.'/\R“m;/\) (10)

non- trivial for D>4.

Remember: Einstein Equations coupled PDE. Like Newton's law you have to
insert parameters. Usually solvable on high symmetric spaces.

The only theory with second derivatives of metric in e.o.m. is E.G.

According to the new rules you are not allowed to sleep 16 / 19
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Conclusions

Aftrord_

o NCDM model in cosmology seems to be in greater agreement with
observations, while the vast majority of MOG do not. However nature of
dark energy yet undetermined.

According to the new rules you are not allowed to sleep 17 / 19
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o NCDM model in cosmology seems to be in greater agreement with
observations, while the vast majority of MOG do not. However nature of
dark energy yet undetermined.

o AdS - CFT correspondance.
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Conclusions

. Afteword

ANCDM model in cosmology seems to be in greater agreement with
observations, while the vast majority of MOG do not. However nature of
dark energy yet undetermined.

AdS - CFT correspondance.
Not yet clear which of these actions give physically accepted solutions.

For instance in the Gauss-Bonnet case the answer is:

According to the new rules you are not allowed to sleep 17 / 19
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OOuups ran out of time!ll

According to the new rules you are not allowed to sleep 18 / 19
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m Killing vectors to find solutions for F,,

m Black hole Meissner effect

m Problem explaining jet formation

m Review of two papers: Wald! and Bicak et al. 2

'Wald, R. (1974) “Black hole in uniform magnetic field”. Phys. Review,
vol. 10, nr 6, pp. 1680-84.

?J. Bicak, V. Karas and T. Ledvinka, “Black holes and magnetic fields,"
IAU symp. [IAU Symp. 238, 139 (2007)] [astro-ph/0610841].
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Mathematical Preliminary

m Killing vector - symmetry
L;r:r' = 3 Lw:;f =0
m Definition of Ry,.0:
:./r:f':rT T i;r:ff:!' — _L'\R,\;uw

m Cyclic permutation and Killing equation:

ke ., g Ji A
:-.;.v;r';rr — ~(~. R\;rr'nr " :-. 9 /e R .\:-.

m In vacuum: R, = 0 = Solves Maxwell's equations.

)‘H’
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Black Holes in Nature

m Schwarzschild black hole:
non-rotating, in vacuum

m In astrophysics:

m Rotating

m Surrounded by plasma

m Chargeless

m Relativistic jets are often
emitted at poles

m Model: Kerr black hole and
magnetic test field Image: NASA
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Kerr Black hole

m Metric:

" 2mr o Amarsin®6
d T = - 1 el d il
82 = —(1- S)ae? - (o

\dtd o+

> I\

() —Arsmd 5. 5 >
- sin“0do° + —dr- + Ld6*°
) 7 A

p i

. i . .
B Y =rc4+30s0.A=rc+2a“—2mr

m Parameter a = J/M € [0, M] Angular momentum per unit
mass. a = 0 = Schwarzschild, a = M = extremal
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Test field solution

m Keep the metric static and solve Maxwell's equations
m Axisymmetric, stationary, vacuum solution (eg. Kerr)

m Two Killing vectors: timelike and axial

m Superposition of the two F,,, solutions using Killing vectors
gives a black hole solution in a uniform magnetic field
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The Meissner effect for black holes

m Use the solution with magn field that is uniform at infinity.

m Extremal black holes quench external magnetic fields

IR (T
‘ | | T
1 L AT

‘ ) Hill I‘ \
Wi I
l \ (I
) | W
’ 1]
\
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Black holes and jets

Most observed black holes
seem close to extremal?

Jet creation mechanism not
understood

Blandford Znajek

mechanism considered the

most relevant 1 10 100 1 000

Black hole mass (millions of solar masses)

Field must penetrate horizon

'E. Samuel Reich (2013) “Spin rate of black holes pinned down" Nature,
vol 500, Issue 7461.
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Open question

Do extremal black holes produce relativistic jets?
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