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Abstract: <p>The Ryu-Takayanagi formula relates the entanglement entropy in a conformal field theory to the area of a minimal surface in its
holographic dual. | will show that this relation can be inverted to reconstruct the bulk stress-energy tensor near the boundary of the bulk spacetime,
from the entanglement on the boundary. | will also show that the positivity and monotonicity of the relative entropy for small spherical domains
between the reduced density matrices of an excited state and of the ground state of the CFT, tranglate to energy conditionsin the bulk.</p>
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NMotivation

 In gauge/gravity duality, how do gravitational
dynamics emerge from CFT dynamics?

 Recent work (e.g. Ryu and Takayanagi) suggests
that entanglement is key.

- Entanglement dynamics of CFT are dual to
linearized Einstein equations around pure AdS.

[Lashkari, McDermott, van Raamsdonk] [Faulkner, Guica, Hartman, Myers,

van Raamsdonk]
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Main ldea

e TJoday | will discuss some holographic consequences
of other universal properties of entanglement in CFT'’s
(positivity of the relative entropy and monotonicity
under increase in the size of the entangling domain)

| will show that these properties imply (an integrated
form of) positivity of the bulk stress tensor in the
linearized near-AdS region for a holographic dual to
an excited state of a CFT.

 Moreover, | will show that the bulk stress tensor in this

near-AdS region can be reconstructed point by point
from the entanglement on the boundary.

Pirsa: 14120054 Page 5/38



Pirsa: 14120054

Relative Entropy

Given density matrices po and p1, the relative
entropy is defined as

S(p1lpo) = tr(py log p1) — tr(p1 log po) .

Relative entropy is a measure of distinguishability
between quantum states.

It is positive, b-v([)l |[)()) > 0.

It increases with system size,

Spylps) < SPYley ),V € W.
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 We'll specialize to the case where the density
matrices are reduced density matrices over a
spatial domain for two states of a QFT.

« When Po and P1 are reduced density matrices for
two states across a family of domains with
characteristic size R, the second property implies

8};{5([)1 |[)()) = 0.
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 |In terms of the modular Hamiltonian of 2o which is

Iits normalized log

P_ H?n.uri

PO = tr(e—Hmoa) ’

the positivity of the relative entropy can be expressed as

S(pi1lpo) = A{(H oa) — ASEr = 0

where
A<H7rwd> = tr(p1Hmod) — tr(p(JH?nod):
ASpr = —tr(py1 log p1) + tr(po log po) -
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Modular Hamiltonian

* For most density matrices, the modular Hamiltonian
has no simple form in terms of local operators of
the theory. There are a few special cases where it is
Known.

« For example, for a global thermal state of
temperature T,

H’rn.od. — H/T .
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e Yet another example where
the modular Hamiltonian is
known is a ball-shaped
entangling domain B in the IO
vacuum state of a CFT.

* This is because a conformal
transformation maps the
Rindler wedge to the domain
of dependence of the ball.
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- Explicitly, the modular Hamiltonian for the reduced
density matrix of a ball shaped domain, in the
vacuum state of a CFT, is

R2 . ?,2

H'n:,od = 27 /Lg ddﬂ? oR TU()

where T is the CFT stress tensor.
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Entanglement First Law

« Going back to the relative entropy
51(/)] |f)()) ——— A(-H?'n()d) - ASF’JP] 2 0 .

when the density matrices are close, the inequality
IS saturated to linear order [Blanco, Casini, Hung, Myers]:

5<H?nod> — 5SEE = 0.

e |l.e. S(p(N)|po) at linear order in A\, where
PAN) = (1 — XN)po + Apq .
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Assumptions
e CFT vacuum |0) is dual to AdSg41 .

e Jo talk about relative entropy, we need an excited
state of the CFT. I'll assume it has a holographic
bulk dual whose near-boundary geometry is
expanded in Fefferman-Graham form,

22

— 2 , : ST N %
gAdS — ; I:(iz + (r)’j,]/ + ,I’[},U)(Z'L, (i.L ] N

-

e | assume that entanglement entropy in the excited
state is given by the Ryu-Takayangi prescription.
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Holographic Entanglement Entropy

 The entanglement
entropy of the CFT
across B is equal to
the area of the
minimal bulk

-

surface pB .
A(B)

e |e: S = 1C
TN
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Review: linearized EFE’s from
entanglement 1st law

e Consider a family of states in the CFT
[W(A) = (1 — A)[0) + A[W).

e At linear order in A, these saturate the inequality,

, 2R
 Mapping this to the bulk gives roughly one equation for
each bulk spacetime point, that can be inverted to give the
linearized Einstein equations for the dual to the excited

state. [Lashkari, McDermott, van Raamsdonk] [Faulkner, Guica, Hartman, Myers, van

2 .2
27r/ dd:I:R ! 0{Too) = OSEE .
V51

Raamsdonk]
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« Explicitly
d)

d? —1 . 1 )
(Too(xo)) = 27, o 1]{1210 (R,IA‘SEE(Rs -’170)) S hf(()() -

e This result does not rely on the excited CFT state
being parametrically close to the vacuum state.
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(Tuw) from holography

 One can compute the boundary stress tensor using
holographic renormalization. This can be tedious.

e Short-cut [Faukner et al.]: LOOK at the relative entropy for
a small ball

l?:’nl[{_)()A<H7n_od> — l?:’f?’?,R_,,()ASEE .

e Translating this to holography gives an expression
for the boundary stress tensor as a function of the
bulk metric.
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Suppose we perturb the bulk geometry away from AdS
by h., which is parametrically small.

Because the original surface was extremal, the shape
of the surface is unchanged from the half-sphere to
leading order in hap -

The leading variation in the holographic EE comes from
evaluating that shape on the perturbed area functional:

1

e SG;\;R S| <R

d—1 . —d( P2, i) _ %0\ ..
d xz" (R — x'x? )h;; .

The shape of the surface changes at order hA2. This
does rely on analyzing a state near the vacuum.
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e There exists a d-1 form Xx[has] With the properties

/ X — A<H7nod>a /_ X — ASE'E 3
J I3 J I3

and moreover, dx = f(xo, R)OEY [h]\/gs .

* By the Stokes theorem,

0= ASE[} - A(-H'r:'zr)d) — /~ X — / X = / X — / (1X
3 V&1 a3 2
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e Considering this on every ball on a spatial slice at
fixed time t=0 gives 0F}, = 0 . One can show that
actually this gives vanishing of all components of
the linearized Einstein tensor.

 Adding the leading 1/N correction to the Ryu-
Takayanagi formula [Faulkner, Lewkowycz, Maldacenal], the
same derivation yields the linearized Einstein
equations coupled to the bulk stress tensor [swingle,

van Raamsdonk].
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Beyond the linearized EFE's

 We use the same technique to translate the positivity
of relative entropy in the CFT to holography. There is
an obvious problem. A Stokes theorem argument
relies on having the same profile for the minimal
surface in the vacuum and excited state.

« To maintain analytic control for a generic excited
CFT state, we take the radius of the entangling
domain to be small, so that the Ryu-Takayanagi
surface only penetrates the asymptotically AdS
region of the bulk.
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Now consider ball-shaped entangling domains in
the boundary CFT with radius R bounded above so
that the bulk metric fluctuation are parametrically
small.

Suppose there is one energy scale in the CFT set
by # sothat (T).) ~ p?,(O) ~ u® and consider the
dimensionless combination € = R .

Then, nonlinear gravity couplings that would
change the profile of the Ryu-Takayanagi minimal
surface and invalidate the Stokes theorem
technique start at order <.
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By truncating at that order we can study the
positivity of the relative entropy A{(H,,0a4) — ASEr = 0
holographically while keeping the bulk profile for
the extremal surface fixed.

« But at order €22 < €2? | the vev of the relevant
operator sources a sub-leading contribution to /ab |
This leads to a strict inequality above.
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Bulk Energy Condition from
Relative Entropy

e So for an arbitrary CFT state with classical
holographic dual, we can take the d-1 form x[h]
and evaluate it on the bulk metric fluctuation in the
interior of minimal surfaces for ball-like entangling
domains, whose radii satisfy R (7T,,,) < 1.

/ X — A<H'I'r'),()(l>: / X e ASTP;P: ’
J B v B

dx = f(xo, R)OE[h]\/gs .

irsa: 14120054 Page 31/38



 The Stokes theorem now implies that

ASEI‘E — A(-H'rnod) f— / X — / X = / (].X S 0.
B B P!

 Meanwhile, the linearized Einstein tensor appearing
IN dx couples to bulk matter in the form of the

classical bulk stress tensor,
(SE'(}

ab

[h] = SWGNCTIU.I) .
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 Plugging in, we find

L 2 " R?2 — (22 — x2)
S'(p] |[)()) = 87T G;\-' R EN/gv = 0
JV ’

where ¢ is the classical bulk energy density.

 Moreover,

. 2
(;)ngv(/)l |[)()) = 871'2(_;‘?\.' / (l -+ + - ) E\/gv = 0.
JV

« Positivity and monotonicity of the relative entropy
for ball shaped entangling domains maps to
(integrated) positivity of the bulk stress tensor.
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Inverting the bulk integral

 We can invert this relation to compute the energy
density £ point-by-point in the bulk using the
relative entropy:

i 1 . '

Or + —] S(pilpo) = 1672G N / Ex/gv

L R JV

" 1 1 , e 2y ' —
_(')}} - Ti’.UR - 1{2j| S(p1lpo) = 167G N ./1: N9y -

« The right-hand side is still non-negative if we
assume positivity of the bulk stress tensor, thus
1 1

|:()}} -+ —1—?-()1{ — 722

] ‘S'(f')llf)()) 2’ ()
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INverse Radon Transform

Let’'s look more closely at the RHS of
. 1 1 . '
|:")f? + ]—?(')R — ﬁ:| S(pilpo) =1 6772(;:\'. B Vg
The surfaces s are totally geodesic in AdS, and this
integral is the Radon transform, whose inverse is

Known.

Given a smooth function f in hyperbolic space, its
Radon transform R f[3] is a function on the space of
totally geodesic manifolds, defined by the integral of f
over >..
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* The dual Radon transform R*R f(z,x) gives back a
function in hyperbolic space in the following way:
Pick a point in hyperbolic space and integrate R f[X]
over all >'s passing through it.

e f can be extracted by applying a differential
operator to R*R[f [Helgason]. EX. for d odd,

_ (—4m)@d=D/27(d /2]
N VT
QA=A +1-(d—2NA+2-(d—3))...(A+(d—2)-1).

J

QAYR"RS

There is a similar formula for d even.

« S0 we get the point-by-point bulk stress tensor from
the relative entropy on spheres in the CFT.
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Summary

We showed that positivity and monotonicity of
relative entropy on small spherical entangling
regions in CFT'’s is holographically related to
positivity of the bulk stress tensor in the linearized
near-AdS region of its dual.

This can be inverted to obtain the bulk stress
tensor in the near-AdS region.
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Related Questions

e Can we derive the nonlinear EFE’s from CFT
entropy + the Ryu-Takayanagi formula?

« Can we connect a bulk energy condition to the

properties of the relative entropy for non-spherical
domains?
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