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Abstract: <p>In thistalk, | will review the main ideas underlying stochastic inflation, by introducing the formalism in two independent ways. First |
will start from the intuitive picture stemming from the equations of motion of the system. | will then introduce a more rigorous approach based on
the in-in formalism, and show how the usual set of Langevin equations can emerge from a path integral formulation. With this understanding, | will
then formulate a new, recursive method which alows to solve consistently both in slow-roll parameters and in quantum corrections. | will then

discuss examples of how this method can be applied to derive corrected predictions for cosmological observables in the case of hybrid inflation,
multi-field inflation, and inflation on modulated potentials.</p>
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Stochastic Inflation Formalism
| l(‘lll'istic‘(lll}' and some intuition;

Motivating a recursive method;

Microphysics justification

e CPT (in-in) formalism & rederivation of the Langevin eqgns

e [Perturbative expansion
Applications
e Hybrid Inflation

Multi-fields

Modulated potentials
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SLOW-ROLL INFLATION

The Llluwi—v\}unu'niinl (‘\}":H‘lHi(H] of (:(f) is driven by the slow

roll of a scalar field  down the slope of a flat potential.

G+3Hp+V,=0

5
2

o @ 2
2 _3M5[2*l}

Assume.

QO ==
{ 5 e H ~ cst ; & .
@ <€ 3Hp — quasi-de Sitter:

I
p~V ~ cst a(t) ~e ¢

— Physical lengths grow quasi-exponentially
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Split: b = @ + O
< ~\

Classical  Small quantum

Background (fixed) l perturbations

homogeneous => acceleration « I |—~~—» Structure

Quantum fluctuations: d¢ are created on small scales, are stretched by
the inflating space beyond the Hubble radius where they freeze out
(when k/all ~ 1), get squeezed and undergo classicalisation. (they later

re-enter the Hubble, and seed the fluctuations of the CMB and the LLS of the Universe)

Is this split accurate/good?
Idea: we are interested in the classical tluwn‘_\,‘f, beyond the HHubble

radius, since these are the range of scales that are observable in the
CMB. : _
=> Write an effective classical theory for these modes,

by coarse-graining, or averaging, over scales ~ H
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«Problem»: Modes smaller than the coarse-
graining scale, that is quantum-fluctuating

modes, are constantly escaping the coarse-

grained region and sourcing the classical theory.

From this perspective, they act as a noise for the

classical theory

Stochastic inflation describes how to perform
this averaging, and how quantum fluctuation
give rise to a classical noise term in the effective

coarse-grained classical equation.
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WHY DOES THIS EVEN
MATTER?

Shouldn’t the constant contribution of incoming quantum modes into the

coarse grained theory be negligible anyway?

- Matters a lot, e.g. when the classical trajectory in field space is

constrained to small fields values, quantum dispersion may dominates

- Also, in eternal inflation, quantum corrections must dominate over

the classical trajectory

In general,
allows to constantly «renormalise» the background trajectory,
i.e. re-sums the incoming quantum modes in the background.

so e.g. H(t) assumes it physical values at all ¢

= Powerful non-perturbative method
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How DOES IT WORK?

(HEURISTICALLY)

Consider a set of 2 quantum fields {tlb, \If} (generalization to larger

numbers easy)
Split each one into long and short wavelengths at a coarse graining

scale using a window function

P =

- , - correspond to k > H(t)a(t),
@, X correcspond to H(t)a(t) > k > 0,
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How DOES IT WORK

(HEURISTICALLY) CONTINUED...

Expand @, %~ in creation/ annihilation opts on a time-dept
background:

RER * dik [ R
b~ (x,t) = / -[,( 3 Wk, t) ]r.')k:'rkt' the-x ’k"-l

‘ } (_5); 17) k’
27 )"

z:ik : ; : ‘ i
W (%, 1) = / e Wi (K, t) [e,-khk(- e (;‘l’(hkr’k"‘]

k—ll

4! '”(A;. t) is the tin1('~dv[u'|1-c.11’1“1_t- window
only the sub-Hubble modes.
Simplest choice: Wg(k,t) = @(k/eaH — 1)

function filtering

Also, only choice to make @, Y= appear as white noise to ¢, X

= @, X become Markovian processes (memoryless)
BUT: not very physical...

Winitzki & Vilenkin, 2000; Matarrese ¢t al. 2004
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How DOES IT WORK

(HEURISTICALLY) CONTINUED...

Plug this expansion back in the KG equations

) r ’ 1 2 LI 4 ) Foport g \ .
—Llp +mge + V ... ¢(0 X) 4 O@. + mads + Ve (0, X))o + Vgu {IL,..“.\,I'Q'_-_-.]

rpert ¢ o L Fpert [ y 1 2 S pert [+ - >
¥ _:I--lI-\[- (¢2: X)POw 4 > \ .ila-l"I'( @, X )OS, - V _I-InIr o (P, X )s
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How DOES IT WORK

(HEURISTICALLY) CONTINUED...

Plug this expansion back in the KG equations
subtract the linearized quantum fields EoM. Left with:
2 r " c ¥
—Dp +mge + V..o (p, xX) = 85,
| I

Fpert =, ' f/H rpeort o y 02 Fport " b j 2
TV PP (?, X ](r-) = U~ > V .:1"1“1, ':‘F 3 X )(J 5 V .:l‘\l’ w (s X ) WS

Where: ‘ | i J
654, = SHES + £ — &3

With:

Bk fs ) 3 , e il ¢  x At _ik-x
/ 2n I'II H (trr:flf}'(_i:) [r_:k!!kf = Dty € ] 5

3 3 ;
€3 = s ” ‘7‘ f —ikK-3¢ :0, Tt ik-x
>4 [ 22 " \ca(OH (1) Pk ke D ey € | -
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Stochastic equations of motion:

~ 2 ; - « o] L @
D\,., I f.ff(!,\r:v\ ] i re R & \,_: ';IIEI * El SJ
LR —————— — =

y i r r ¢ \ 12 P ¢ 2
\‘p“,‘.pq.q;[-r-. X ) 0, r IR 1 1 N (RS Y T l”I‘,q.\p\p(x';.\“?d.-'.__
-

Mode coupling - Slow roll

ok

< > ¥ (M s
terms Vs e X = -.{flx‘:] +f;| —_—

s Y e IR suppressed l
- i s

> | e >
vert oML | i1 X ) l."-__ o ._)‘ ‘ pere s Wb (&2, X '| l"-')":_ .

Mhese form a system of classical Langevin equations, sourced by random
gaussian noise terms (which are completely determined by their 2-pt functions).

They describe a stochastic process.
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A RECURSIVE METHOD?

We now have two coupled systems of 2 equations cach:

the classical stochastic system and the quantum system

In order to solve it consistently, we must solve both fo the same

order of accuracy in the slow-roll parameters and in h

=> We use a recursive approach!
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OUTLINE OF THE
RECURSIVE APPROACH

. Solve for the quantum fields ¢=, x> mode functions to zeroth
order in slow-roll, that is, as if they were free, massless fields in dS
space. Get the zeroth order noise:

: IT? sin(eallr) y e

Yk, 1)) = S— 3(t — ')

P Y
NS (.x‘f]“\ >
X ] 4% flef'

2. Use this noise to find the classical fields @, X to leading order in

slow-roll and their corresponding PDFs. i.e. we need to solve:

< 1o -
SH2 Y — _ Vg 4 SHEL(N)
(11\" :

. 2 (] \ > P AT
8H2 X — V4 + 3HEy(N)

where we changed the time variable to the e-fold number: N = In(a/a;)
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RECURSIVE APPROACH

CONTINUED...

3. Go back to the linearized mode functions for the quantum fields
and replace all occurrences of the coarse-grained fields by their

gher momentas:

D

average values, variances, and hi
P I, TRRY Lo
} I‘\‘T".;}‘ (\\/"

;i g B
g gy - [ -
> N )"-\ rE)

> %) \'I:,.

solve the corrected linearized equations for @=,%=> , this time
expanding to leading order in slow-roll.
i.e. solve for the full linearized mode functions
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HoOwW DOES IT WORK?

CACTUALLY)
To understand why this is a sensible thing to do and in general why
the stochastic approach of coarse-graining the full quantum EoM
makes sense to derive a classical theory, look at the microphysics of
the process.
['his is very similar to quantum Brownian motion
— use similar it‘l.']]l'lit]ll(‘.‘-i, 1.€.
the in-in (or CPT) Schwinger-Keldysh formalism

As opposed to the in-out formalism where:
- one calculates S-matrix elements,

- for transition m‘npliludes between in and out asymptotic states,

- with nnv—partit'lvs states defined in the co-distant past and future.

In the in-in formalism:

- one calculates expectation values of operators at a fixed time f,,

(EEVs for quantum statistical mechanics)

- with one-pa rticles states defined in the oco-distant past nnl}-'.

Page 15/38



FORMALISM

Len CE)

- H}‘ilit the fields into: - a bath @~ , WP~ (same k-mode exp. as before)

- asystem @ = P v, e, Vo W~

- Split each of the bath & system fields into: part € e & part € C3

1 p { -~ ] . - p
get: ¢, ,9-,@. & similarly for W

- The in state, at —o¢, is taken to be the Bunch-Davis vacuum,
- Evaluate operators at fixed ¢g
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GOE\I: Integrate out the bath degrees of freedom.

- In the same spirit as Wilsonian renormalisation, we want to get a "'}-.[ f

for the system fields once the bath has been integrated out.

- Because assume Bunch-Davis vacuum, the initial density matrix

factorizes: ; . ! ) _
[J{l' = f,'l = [J'_.,:,...,':f.:’l X /J,l,.”h[f,')

can write the reduced evolution operator for the system fields as a

functional l‘vln‘('m‘ntdtinn, soO the effective action can be written as:

i i
P "X ¥ ;
1 "l- 2 \‘7

L R S LSS : S
D / . Dx™ exp (h {.5_.__,,_.__; oy t | Gisalea=s ] }) Flp™T, \+] )
+Xq \

s X is known as the influence functional. In general, it is a non-local,

non-trivial object: -depends on the time history, mixes the forward and

backward histories along the CTP in an irreducible manner.
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INFLUENCE FUNCTIONAL

[t can be written explicitly in the bilinear form when V., 0

F "v_:‘-:-.. \_-i-'

Te's 1 g ¥, F , ' \ .

/ dad (f’{"* / : yRle 1 / D= eh [ d%x l“ 2® SAsdn+@ "Aadsn) (3 r Agerfr
- -~ f -~ -

. o . -

—— - 'f(" [.\'.“ -
= eXpP h. FAIN X ]

where S7 4 is the influence action and we used the vector notation:

\'_f

M) |0 + 3HO, _ T
| a<(t)
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INTEGRATING OUT
THE BATH DOFS

- In flat space, the term linear in ¢-. or ¥. are set to zero to ensure
that ¢x and v, are indeed solutions to the linearized mode eqn.
(c.f. the tadpole method weinberg 74, Boyanovsky ctal. 94- tO ensure we are

expanding around the right background)

- However, because of the time-dependence of Wy (k/eaH), the time

derivative in the 1'\(.-',,,-. operators act on the window function, giving a

non-zero result. This is precisely the effect of the modes leaving the

quantum theory and joining the coarse-grained theory.
"

(else, system & bath are orthogonal in k-space in Wy — 6( =
. ol

- We can perform this Gaussian integral over ¢~ , 10~

=

1) limit)
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INTEGRATING OUT
THE BATH DOFS (CONTINUED)

- Performing the path integral over the bath fields, we obtain:
‘ .;-l vV reo (o) R I1.(x. 2 o (2 2 I 1Y pdde’O "V 1 I1.(:z. )] o
5T, d'wd ' p, () Re [T, ') wq(a L—Z d®wd” ' 8(Ll—1") g dm |1, (2, )] e
+(x &),
NMornkawa

¢ el al.

23 (2) [Pedk(t)] e~ *a® (') [P b (2)] e,

- Where: © dPk
[I,(x, ") _/ :

= =
(2m)3

b — I-‘.{'u(f} + 3H W (t) + Q‘i‘".”(f)(.)']

& defined the guantum and classical fields, rotating to the Keldysh basis:

TR AW
Pq et — Xq X
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INTEGRATING OUT
THE BATH DOFS (CONTINUED)

- Performing the path integral over the bath fields, we obtain:
3 ; A 4,7 £ / AN ¢ 7 2 l 1 1.7 7y ¢ £
55 / d xd" 2 pa(x)Re [I1ys(x, 2")] wq(x’)— ™ / d®wd” ' @(Ll—1") g dm |1, (2, £%)] e
_ o A e e 5 T T+ (x <9,

= 3 P ] NMormkawa
Imaginary Real l Matarrese et al.

|
term E
i

l_«-lrn_?I

r:;lif_) .["r(.f)k(f).l ¢ ik'xu:i(f!] ',f'(_"_j{c(‘rfj_ ¢ the-x’ :

v —d

- Where: b s
[I,(x, ") _/ :

(2m)3 "
b I-‘.{'u(f} + 3H W (t) + Q‘i‘".”(f)(.)']

& defined the guantum and classical fields, rotating to the Keldysh basis:

(5 ) (e i)
Pq ot — Xq e
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FLUCTUATION-DISSIPATION
THEOREM

- LLeading order influence action splits into a real and an imaginary
part -=> they represent dissipation and noise, respectively.
- The kernels Im (11, (x, 2")] are the dissipation kernels. i.e. their non-
symmetric part add a non-local extra term in the classical ficlds EoM,
proportional to ¢. and Xx,. => friction, or dissipation.

Slow-roll = negligible compared to I'l-friction

Not negligible => e¢.2. warm inflation Bercra et al. 2009
- The kernels Re [11; (2, ")) each give an imaginary part to the
effective action. Interpret them as a result of a weighted average over

configurations of stochastic noise terms, representing the «coupling»

btw ¢ and ¢- and x and ¥~ => reintroduce these noises w/ right PDF

Morikawa

- Fluctuation-dissipation thm: they are linked since they come from
the same underlying dofs = real and imaginary part of same kernel!
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- To interpret the imaginary part as noise, introduce two real classical

A
L2

random fields per field in the system &7, €5 and &7, &5, each obeying

tl]L‘ ( ;:]Ll%.‘-»idl\ I‘)Li t Stratonovich, Hubbard

N ,
1 _ | S r
B drd x| &

2] exp (c' / d'wea’ (1) {w, [{L —1m3) e — V.0 (Le, X ]J

txXa [(O — m3) Xe — Viwow (90s Xe)] + 24 [Pe(D)E] + €3] — 2akf + xq [Pu()EY + &F] — Xa€¥ })

- To take the classical limit of the action: rescale “q: Xqg — b'-;-“,;»h\q and
expand in powers of h. EoM in the classical limit are given by:

(1)

L3 '.‘I'.

0Ly ; r)\q

o) ,";':: 1’ :‘." : .

Xq == ()
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We obtain:

(—0O + m3)pe + Va(pe, Xe) = Pe(t)E] + €5 + &7 + 3HET,

(—O 4+ m2)xec + Vo (e, Xe) = pp(t)EY + £¥ 4+ €Y + 3HE S

|

The noise correlations are found by solving the
linearized mode functions:
. 1’\('.4,Q;)A- —_ ()
f A W ‘l,-"'-'}\- = ()

These are indeed two coupled systems

These are the same as in the heuristic approach, provided we perform a
Per IR T

simple redefinition of &5

e e M A R e
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PERTURBATIVE EXPANSION

- Easy to extend this formalism to include non-trivial interacting
potential;

- Introduce a current per branch of the CPPT contour, J©™ and J~ and
define a diagrammatic expansion of V, integrate order by order the
bath ficlds, and derive a similar influence action;

Morikawa, Hu ¢t al., Boyvanovsky

- Quadratic terms in the bath fields are considered as part of the free
IR : - , 4
bath propagator, e.g. @< ° coming from lf,,, A |11 0 0.

—> 'To solve for the noise variance using the full linearized mode function EoM,

we obtain 2 coupled system, which justifies a recursive approach

- For every loop correction, we obtain an extra noise term, dissipation
term (real and imaginary part of the same kernel), and mass-

renormalisation term
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O A
: 2 32 vy 2 1
Example: Vpert = g P“W~ + A1 o

Ly QE,Q_Alﬂg C)‘_AQ'F r\D"Se.: f——-.—— -i”—- o

130_1’1\. &Qpa.'nferrar_'f'[oﬂb Cbrr?—‘d_
+he- bath Pro@é@-ﬂ‘oi‘) eq!
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EXAMPLE 1:
HYBRID INFLATION

Two scalar fields inflation: the inflaton @ and the waterfall field W

Inflation takes place when © is slowly rolling for ® > &,

The energy density is dominated by the mass of U

For ® < P, , the W > I/ symmetry is broken and U develop
a tachyonic instability, which trigger its rapid rolling toward a

true ground state
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DYNAMICS AND STEPS 1-2

- Potential:

] S R, /\ S D
‘;"((I)_I \I;) = ;-'n?,“(l)" - T(\I"" — v“)“ +

Recursive Solution:

- Step 1: Free, massless dS noise:
SOy ; H?3 Hlll((rfff!]

S (L), 61" (x, B)) = s ————=— (0

- .‘St('p 2: Zeroth order stochastic equations:

o d¢ i 2 i ‘12\2
AN ; fH‘
2 (]\

3H? X = —x? 2 =/ 3 ) + 3HE, (N)

3H ) F 3HEy (N) ,
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- Step 2 (continued): Leading order coarse-grained stochastic solutions:

Martin & Vennin 20

1 A28 m< e’ [ Avd \u?
v - r o 1 ekl )
38472 m<2A fpl A< m2 " an?

m2 A2 (3 AL, N m? A2
f.‘ P '--\;i' l .\.‘.11, ( \ ‘\'-H :' ~in ' 2\". ,:\ ."'-'-'l’ /\. PXI) 1 ' { . <

ot | £g (1) e
%)
Z.eroth order Liiﬁ}‘l’l'“ﬂ]‘tﬁl‘l.‘*—-:

/\f"‘

EvVomm

Ty =
¥ ]
Pl

Ay
| > y b ]
Av” (nr‘v“ 2m= i Aus v
; S a0
H\-“J(i]itﬂ.}l!f'- . AV 2 e’
]
3/4
A ( SIS
O, == )
- 27 3

Pirsa: 14120053

Page 29/38



STEP 3

Anearized quantum perturbations on a stochastically shifted background:

Replace coarse-grained quantities with their stochastic mean:

i
!

F l.i—?l“'l- \(llp} . \'f" I‘.,.?“”, \“”- \!

We work in the spatially flat gauge;
< - < : N g & » SELL
The EoM & solution for the canonically normalized field, d¢;

" 5 2-—m2/H? — g?02 /H? + 9¢,
v + |K 2

]

i(vt+A)F 2 o (=T)
eV T3} 7 dee-T'(v)

I3

\

A%
‘F(—7)"2 In(—kT)

e = 9/4 — (w:"z 4 ;/nf )/ H? 4 9&,4
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STEP 3 (CONTINUED...)

yo ? = (1) 1
Similarly, for oy, ~ = T

g + l'f.'.‘E — m2 lr}] e =0,

A0

2
. X
353

H

Solution in terms of Airy functions, but not very enlightening to

write down...
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STEP 4: RESULTS

Under the quasi-static approximation, i.e. the relaxation time for the ¥
distribution is very small, and it swiftly acquires its “stationary” local

dispersion.

] > ] - ¥ g 2 5 ~ {
p- 2 ~ Pot’ 1,4
Fiog Sa S ASY Jmassless Il’"!__

£1% .
A‘n‘lll|.
X Tmnssloss

:I!l.Fl?-.‘Nll'.‘---\

2
|¢-),(f.'||: 1 } |

[ll 'Jr‘(.l-;-‘—'_’ ) O-\ |tll:L:—ihl(‘H.‘-

3.75x1077H

2.50x107° oy

A7 591 %0, ranstinn’ H”

1.26%107°
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. |

free massless

- = = MmMmassive without backreaction

— massive with backreaction

5 9 9 8 ] T 1y 7' 7

l-
-
-
-

AL A 1 A l Lehd Lol I 1 L b A 1 l A R

1iopc10=0 L Praedy s 2
-1.0 ! 3 0.5
(N—N,)/(N.,—N,)
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For the inflaton:
- ,\!nimwnnl‘)lifudv ;
H- ;
Es (N)ELH (N)) S (N

47?2

- Classical perturbations

& :;II';\_,'.'S .".":‘ | 4 2 A
H'ri"));”") :.,._.-‘());3_“’ 3 [{2

g !

.! n"‘ 4 w4l In 2¢ ,—._) |
i.f.f- ‘) .f! ( e ) i

a))

=
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GENERALIZATION TO INFLATION
WITH HEAVY FIELDS

[f multiple fields are present during inflation, it is easy
to generalize this result to capture the effect on the

inflaton

e G2P2W3-type of couplings always make the inflaton

r’!('({ﬁ}‘('l'

== in chaotic-type models, makes the tilt redder
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EXAMPLE 2:
MODULATED POTENTIAL

120 - o T — —— A

s
10

b

L’,((I)) —= L;;((I)) “I'_ .t/\." Sil.l (?
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de AS (--,‘“) 0
s A
3H?2 f2 et oy Uy,

|

| Resonanc L‘]

-

m? o
3H? f

Frequency of the driving force: w ~

‘Fuzziness’ of the coarse-grained field over one period:

V3fH

: : &1
m-/ @q
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CONCLUSION

Reviewed stochastic inflation starting from the
EoM

I}l'()})()HL?Li a recursive d]ﬁ]ﬂl'kld(‘h

Showed how this is motivated from the

microphysics of stochastic inflation

Applied the recursive to derive new results in

hybrid inflation (tilt, dispersion of the

waterfall field...), multi-field inflation,

modulated potentials...
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