Title: Stochastic Inflation Revisited: A Self-Consistent Recursive Approach and Applications

Date: Dec 16, 2014 11:00 AM

URL: http://pirsa.org/14120053

Abstract: In this talk, I will review the main ideas underlying stochastic inflation, by introducing the formalism in two independent ways. First I will start from the intuitive picture stemming from the equations of motion of the system. I will then introduce a more rigorous approach based on the in-in formalism, and show how the usual set of Langevin equations can emerge from a path integral formulation. With this understanding, I will then formulate a new, recursive method which allows to solve consistently both in slow-roll parameters and in quantum corrections. I will then discuss examples of how this method can be applied to derive corrected predictions for cosmological observables in the case of hybrid inflation, multi-field inflation, and inflation on modulated potentials.

Pirsa: 14120053 Page 1/38

OUTLINE

Stochastic Inflation Formalism

- Heuristically and some intuition;
- Motivating a recursive method;

Microphysics justification

- CPT (in-in) formalism & rederivation of the Langevin eqns
- Perturbative expansion

Applications

- Hybrid Inflation
- Multi-fields
- Modulated potentials

Pirsa: 14120053 Page 2/38

SLOW-ROLL INFLATION

The quasi-exponential expansion of a(t) is driven by the slow roll of a scalar field $\hat{\Phi}$ down the slope of a flat potential.

$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0$$

$$H^2 = \frac{1}{3M_{pl}^2} \left[\frac{\dot{\varphi}^2}{2} + V \right]$$

Assume:

$$\begin{array}{ll} \hat{\Phi} \approx \varphi \\ \ddot{\varphi} \ll 3H\dot{\varphi} \\ \rho \approx V \sim cst \end{array} \Rightarrow \begin{array}{ll} H \approx cst \\ a(t) \sim e^{Ht} \end{array} \} \text{ quasi-de Sitter}$$

⇒ Physical lengths grow quasi-exponentially

Quantum fluctuations: $\delta\phi$ are created on small scales, are stretched by the inflating space beyond the Hubble radius where they freeze out (when $k/aH\sim 1$), get squeezed and undergo classicalisation. (they later re-enter the Hubble, and seed the fluctuations of the CMB and the LLS of the Universe)

Is this split accurate/good?

Idea: we are interested in the *classical* theory, beyond the Hubble radius, since these are the range of scales that are observable in the CMB.

 \Rightarrow Write an effective classical theory for these modes, by coarse-graining, or averaging, over scales $\sim H^{-1}$ «Problem»: Modes smaller than the coarsegraining scale, that is quantum-fluctuating modes, are constantly escaping the coarsegrained region and sourcing the classical theory. From this perspective, they act as a *noise* for the classical theory

Stochastic inflation describes how to perform this averaging, and how quantum fluctuation give rise to a classical noise term in the effective coarse-grained classical equation.

Pirsa: 14120053 Page 5/38

WHY DOES THIS EVEN MATTER?

Shouldn't the constant contribution of incoming quantum modes into the coarse grained theory be negligible anyway?

 Matters a lot, e.g. when the classical trajectory in field space is constrained to small fields values, quantum dispersion may dominates

- Also, in eternal inflation, quantum corrections must dominate over the classical trajectory

In general,

allows to constantly «renormalise» the background trajectory, i.e. re-sums the incoming quantum modes in the background. so e.g. H(t) assumes it physical values at all t

⇒ Powerful non-perturbative method

HOW DOES IT WORK?

(HEURISTICALLY)

Consider a set of 2 quantum fields $\left\{\hat{\Phi},\hat{\Psi}\right\}$ (generalization to larger numbers easy)

Split each one into long and short wavelengths at a coarse graining scale using a window function

$$\Phi = \varphi + \phi_{>}, \ \Psi = \chi + \psi_{>},$$

 $\phi_{>}$, $\psi_{>}$ correspond to k > H(t)a(t), φ , χ correspond to H(t)a(t) > k > 0,

HOW DOES IT WORK

(HEURISTICALLY) CONTINUED ...

Expand $\phi_>$, $\psi_>$ in creation/annihilation opts on a time-dept background:

$$\phi_{>}(\mathbf{x},t) = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} W_{H}(k,t) \left[\phi_{\mathbf{k}} \hat{a}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{x}} + \phi_{\mathbf{k}}^{*} \hat{a}_{\mathbf{k}}^{\dagger} e^{i\mathbf{k}\cdot\mathbf{x}} \right] ,$$

$$\psi_{>}(\mathbf{x},t) = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} W_{H}(k,t) \left[\psi_{\mathbf{k}} \hat{b}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{x}} + \psi_{\mathbf{k}}^{*} \hat{b}_{\mathbf{k}}^{\dagger} e^{i\mathbf{k}\cdot\mathbf{x}} \right] ,$$

 $W_H(k,t)$ is the time-dependent window function filtering only the sub-Hubble modes.

Simplest choice: $W_H(k,t) = \theta(k/\epsilon aH - 1)$

Also, only choice to make $\phi_>$, $\psi_>$ appear as white noise to φ , χ $\Rightarrow \varphi$, χ become Markovian processes (memoryless)

BUT: not very physical...

Winitzki & Vilenkin, 2000; Matarrese et al. 2004

HOW DOES IT WORK

(HEURISTICALLY) CONTINUED ...

Plug this expansion back in the KG equations

$$\begin{split} -\Box\varphi + m_{\Phi}^2\varphi + V_{\text{pert},\Phi}(\varphi,\chi) + \left[-\Box\phi_> + m_{\Phi}^2\phi_> + V_{,\Phi\Phi}^{\text{pert}}(\varphi,\chi)\phi_> + V_{,\Phi\Psi}^{\text{pert}}(\varphi,\chi)\psi_> \right] \\ = -V_{,\Phi\Phi\Psi}^{\text{pert}}(\varphi,\chi)\phi_> \psi_> - \frac{1}{2}V_{,\Phi\Phi\Phi}^{\text{pert}}(\varphi,\chi)\phi_>^2 - \frac{1}{2}V_{,\Phi\Psi}^{\text{pert}}(\varphi,\chi)\psi_>^2 + \dots, \end{split}$$

Pirsa: 14120053 Page 9/38

HOW DOES IT WORK

(HEURISTICALLY) CONTINUED ...

Plug this expansion back in the KG equations subtract the linearized quantum fields EoM. Left with:

$$\begin{split} -\Box \varphi + m_{\Phi}^2 \varphi + V_{\text{pert},\Phi}(\varphi,\chi) &= \delta S_{\phi} > \\ -V_{,\Phi\Phi\Psi}^{\text{pert}}(\varphi,\chi) \phi_{>} \psi_{>} - \frac{1}{2} V_{,\Phi\Phi\Phi}^{\text{pert}}(\varphi,\chi) \phi_{>}^2 - \frac{1}{2} V_{,\Phi\Psi\Psi}^{\text{pert}}(\varphi,\chi) \psi_{>}^2 + \dots. \end{split}$$

Where:

$$\delta S_{\phi_{>}} = 3H\xi_{1}^{\phi} + \dot{\xi}_{1}^{\phi} - \xi_{2}^{\phi}$$

With:

$$\begin{split} \xi_1^{\phi} &= -\int \frac{d^3\mathbf{k}}{(2\pi)^3} \dot{W}_H \left(\frac{k}{\epsilon a(t)H(t)} \right) \left[\phi_{\mathbf{k}} \hat{a}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{x}} + \phi_{\mathbf{k}}^* \hat{a}_{\mathbf{k}}^{\dagger} e^{i\mathbf{k}\cdot\mathbf{x}} \right], \\ \xi_2^{\phi} &= \int \frac{d^3\mathbf{k}}{(2\pi)^3} \dot{W}_H \left(\frac{k}{\epsilon a(t)H(t)} \right) \left[\dot{\phi}_{\mathbf{k}} \hat{a}_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{x}} + \dot{\phi}_{\mathbf{k}}^* \hat{a}_{\mathbf{k}}^{\dagger} e^{i\mathbf{k}\cdot\mathbf{x}} \right]. \end{split}$$

Stochastic equations of motion:

These form a system of classical Langevin equations, sourced by random gaussian noise terms (which are completely determined by their 2-pt functions). They describe a stochastic process.

A RECURSIVE METHOD?

We now have two coupled systems of 2 equations each: the classical stochastic system and the quantum system

In order to solve it consistently, we must solve both to the same order of accuracy in the slow-roll parameters and in \hbar

⇒ We use a recursive approach!

Pirsa: 14120053 Page 12/38

OUTLINE OF THE RECURSIVE APPROACH

1. Solve for the quantum fields $\phi_>$, $\chi_>$ mode functions to zeroth order in slow-roll, that is, as if they were free, massless fields in dS space. Get the zeroth order noise:

$$\langle \xi_1^{\phi,\psi}(\mathbf{x},t), \xi_1^{\phi,\psi}(\mathbf{x},t) \rangle = \frac{H^3}{4\pi^2} \frac{\sin(\epsilon a H r)}{\epsilon a H r} \delta(t - t')$$

2. Use this noise to find the classical fields φ , χ to leading order in slow-roll and their corresponding PDFs. *i.e.* we need to solve:

$$3H^2 \frac{\mathrm{d}\varphi}{\mathrm{d}N} = -V_{,\Phi} + 3H\xi_{\phi}(N)$$

$$3H^2 \frac{\mathrm{d}\chi}{\mathrm{d}N} = -V_{,\Psi} + 3H\xi_{\psi}(N)$$

where we changed the time variable to the *e*-fold number: $N \equiv \ln(a/a_i)$

RECURSIVE APPROACH

CONTINUED...

3. Go back to the linearized mode functions for the quantum fields and replace all occurrences of the coarse-grained fields by their average values, variances, and higher momenta:

$$\begin{array}{cccc} \varphi, \chi & \to & \langle \varphi \rangle, \langle \chi \rangle, \\ \varphi^2, \chi^2 & \to & \langle \varphi^2 \rangle, \langle \chi^2 \rangle, \\ \varphi^p \chi^q & \to & \langle \varphi^p \chi^q \rangle, \end{array}$$

solve the corrected linearized equations for $\phi_>, \psi_>$, this time expanding to leading order in slow-roll.

i.e. solve for the full linearized mode functions

HOW DOES IT WORK?

(ACTUALLY)

To understand why this is a sensible thing to do and in general why the stochastic approach of coarse-graining the full quantum EoM makes sense to derive a classical theory, look at the microphysics of the process.

This is very similar to quantum Brownian motion

⇒use similar techniques, i.e.

the in-in (or CPT) Schwinger-Keldysh formalism

As opposed to the in-out formalism where:

- one calculates S-matrix elements,
- for transition amplitudes between in and out asymptotic states,
- with one-particles states defined in the ∞-distant past and future.

In the in-in formalism:

- one calculates expectation values of operators at a fixed time to,
 (EEVs for quantum statistical mechanics)
- with one-particles states defined in the ∞-distant past only.

Pirsa: 14120053 Page 15/38

IN-IN FORMALISM

- Split the fields into: a bath $\phi_>, \psi_>$ (same k-mode exp. as before) a system $\varphi = \Phi \phi_>, \ \chi = \Psi \psi_>$
- -Split each of the bath & system fields into: part ϵ \mathcal{C}^+ & part ϵ \mathcal{C}^- get: $\varphi^+, \varphi^-, \phi^+_>, \phi^-_>$ & similarly for Ψ
- The *in* state, at $-\infty$, is taken to be the Bunch-Davis vacuum,
- Evaluate operators at fixed t_0

Goal: Integrate out the bath degrees of freedom.

- In the same spirit as Wilsonian renormalisation, we want to get a V_{eff} for the system fields once the bath has been integrated out.
- Because assume Bunch-Davis vacuum, the initial density matrix factorizes: $\hat{\rho}(t=t_i) = \hat{\rho}_{sys}(t_i) \times \hat{\rho}_{bath}(t_i)$

can write the reduced evolution operator for the system fields as a functional representation, so the effective action can be written as:

$$\int_{\varphi_{i}^{\pm}}^{\varphi_{f}^{\pm}} \mathcal{D}\varphi^{\pm} \int_{\chi_{i}^{\pm}}^{\chi_{f}^{\pm}} \mathcal{D}\chi^{\pm} \exp\left\{\frac{i}{\hbar} S_{eff}[\varphi^{\pm}, \chi^{\pm}]\right\}$$

$$\equiv \int_{\varphi_{i}^{\pm}}^{\varphi_{f}^{\pm}} \mathcal{D}\varphi^{\pm} \int_{\chi_{i}^{\pm}}^{\chi_{f}^{\pm}} \mathcal{D}\chi^{\pm} \exp\left(\frac{i}{\hbar} \left\{ S_{sys}[\varphi^{+}, \chi^{+}] - S_{sys}[\varphi^{-}, \chi^{-}] \right\} \right) F[\varphi^{\pm}, \chi^{\pm}],$$

 $F[\varphi^{\pm},\chi^{\pm}]$ is known as the *influence functional*. In general, it is a non-local, non-trivial object: -depends on the time history, mixes the forward and backward histories along the CTP in an irreducible manner.

INFLUENCE FUNCTIONAL

It can be written explicitly in the bilinear form when $V_{pert}=0$

$$F\left[\varphi^{\pm},\chi^{\pm}\right] =$$

$$\int_{-\infty}^{\infty} d\phi_{>_f}^{+} d\psi_{>_f}^{+} \int_{-\infty}^{\phi_{>_f}^{+}} \mathcal{D}\phi_{>}^{\pm} \int_{-\infty}^{\psi_{>_f}^{+}} \mathcal{D}\psi_{>}^{\pm} e^{\frac{i}{\hbar} \int d^4x \left[\left(\frac{1}{2}\bar{\phi}_{>}^T\bar{\Lambda}_{\phi}\bar{\phi}_{>} + \bar{\phi}^T\bar{\Lambda}_{\phi}\bar{\phi}_{>}\right) + \left(\frac{1}{2}\bar{\psi}_{>}^T\bar{\Lambda}_{\psi}\bar{\psi}_{>} + \bar{\chi}^T\bar{\Lambda}_{\psi}\bar{\psi}_{>}\right)\right]}$$

$$\equiv \exp\left[\frac{i}{\hbar} S_{IA}[\varphi^{\pm},\chi^{\pm}]\right].$$

where S_{IA} is the influence action and we used the vector notation:

$$\begin{split} \tilde{\phi}_> &= \left(\begin{array}{c} \phi_>^+ \\ \phi_>^- \end{array} \right) \qquad \tilde{\psi}_> = \left(\begin{array}{c} \psi_>^+ \\ \psi_>^- \end{array} \right) \qquad \tilde{\varphi} = \left(\begin{array}{c} \varphi^+ \\ \varphi^- \end{array} \right) \qquad \tilde{\chi} = \left(\begin{array}{c} \chi_-^+ \\ \chi_>^- \end{array} \right) \qquad \tilde{\Lambda}_\psi = \left(\begin{array}{c} \Lambda_\psi & 0 \\ 0 & -\Lambda_\psi \end{array} \right) \qquad \tilde{\Lambda}_\psi = \left(\begin{array}{c} \Lambda_\psi & 0 \\ 0 & -\Lambda_\psi \end{array} \right) \; , \\ \Lambda_\psi &= -a^3(t) \left[\partial_t^2 + 3H\partial_t - \frac{\nabla^2}{a^2(t)} + m_\Psi^2 \right] \; ; \qquad \Lambda_\psi = -a^3(t) \left[\partial_t^2 + 3H\partial_t - \frac{\nabla^2}{a^2(t)} + m_\Psi^2 \right] \; . \end{split}$$

Pirsa: 14120053 Page 18/38

INTEGRATING OUT THE BATH DOFS

- In flat space, the term linear in $\tilde{\phi}_{>}$ or $\tilde{\psi}_{>}$ are set to zero to ensure that ϕ_k and ψ_k are indeed solutions to the linearized mode eqn. (c.f. the tadpole method weinberg 74, Boyanovsky et al. 94- to ensure we are expanding around the right background)
- However, because of the time-dependence of $W_H(k/\epsilon aH)$, the time derivative in the $\Lambda_{\phi,\psi}$ operators act on the window function, giving a non-zero result. This is *precisely* the effect of the modes leaving the quantum theory and joining the coarse-grained theory. (else, system & bath are orthogonal in k-space in $W_H \to \theta(\frac{k}{\epsilon aH}-1)$ limit)
- We can perform this Gaussian integral over $ilde{\phi}_>, ilde{\psi}_>$

INTEGRATING OUT THE BATH DOFS (CONTINUED)

- Performing the path integral over the bath fields, we obtain:

$$S_{IA}^{(1)} = \frac{i}{2\hbar} \int d^4x d^4x' \varphi_q(x) \operatorname{Re} \left[\Pi_\phi(x,x') \right] \varphi_q(x') - \frac{2}{\hbar} \int d^4x d^4x' \theta(t-t') \varphi_q \operatorname{Im} \left[\Pi_\phi(x,x') \right] \varphi_c + (\chi \leftrightarrow \varphi) ,$$

Morikawa, Matarrese et al.

- Where:
$$\Pi_{\phi}(x, x') = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} a^3(t) \left[P_t \phi_{\mathbf{k}}(t) \right] e^{-i\mathbf{k} \cdot \mathbf{x}} a^3(t') \left[P_{t'} \phi_{\mathbf{k}}^*(t') \right] e^{i\mathbf{k} \cdot \mathbf{x}'} ,$$

$$P_t = \left[\ddot{W}_H(t) + 3H \dot{W}_H(t) + 2 \dot{W}_H(t) \partial_t \right] ;$$

& defined the quantum and classical fields, rotating to the Keldysh basis:

$$\left(\begin{array}{c} \varphi_e \\ \varphi_q \end{array} \right) \equiv \left(\begin{array}{c} \frac{\varphi^+ + \varphi^-}{2} \\ \varphi^+ - \varphi^- \end{array} \right) \,, \qquad \left(\begin{array}{c} \chi_e \\ \chi_q \end{array} \right) \equiv \left(\begin{array}{c} \frac{\chi^+ + \chi^-}{2} \\ \chi^+ - \chi^- \end{array} \right) .$$

Pirsa: 14120053 Page 20/38

INTEGRATING OUT THE BATH DOFS (CONTINUED)

- Performing the path integral over the bath fields, we obtain:

$$S_{IA}^{(1)} = \frac{i}{2\hbar} \int d^4x d^4x' \varphi_q(x) \mathrm{Re} \left[\Pi_\phi(x,x') \right] \varphi_q(x') - \frac{2}{\hbar} \int d^4x d^4x' \theta(t-t') \varphi_q \mathrm{Im} \left[\Pi_\phi(x,x') \right] \varphi_c \\ + (\chi \leftrightarrow \varphi) ,$$

$$\mathrm{Imaginary}_{\text{term}}$$

$$\mathrm{Real}_{\text{term}}$$

$$\mathrm{Morikawa}_{\text{Matarrese et al.}}$$

- Where:
$$\Pi_{\phi}(x, x') = \int \frac{d^3\mathbf{k}}{(2\pi)^3} a^3(t) \left[P_t \phi_{\mathbf{k}}(t) \right] e^{-i\mathbf{k} \cdot \mathbf{x}} a^3(t') \left[P_{t'} \phi_{\mathbf{k}}^*(t') \right] e^{i\mathbf{k} \cdot \mathbf{x}'},$$

$$P_t = \left[\ddot{W}_H(t) + 3H \dot{W}_H(t) + 2 \dot{W}_H(t) \partial_t \right];$$

& defined the quantum and classical fields, rotating to the Keldysh basis:

$$\left(\begin{array}{c} \varphi_c \\ \varphi_q \end{array} \right) \equiv \left(\begin{array}{c} \frac{\varphi^+ + \varphi^-}{2} \\ \varphi^+ - \varphi^- \end{array} \right) \, , \qquad \left(\begin{array}{c} \chi_c \\ \chi_q \end{array} \right) \equiv \left(\begin{array}{c} \frac{\chi^+ + \chi^-}{2} \\ \chi^+ - \chi^- \end{array} \right) .$$

FLUCTUATION-DISSIPATION THEOREM

- Leading order influence action splits into a real and an imaginary part -> they represent dissipation and noise, respectively.
- The kernels Im $[\Pi_{\phi,\psi}(x,x')]$ are the dissipation kernels. *i.e.* their non-symmetric part add a non-local extra term in the classical fields EoM, proportional to $\dot{\varphi}_c$ and $\dot{\chi}_c \Rightarrow$ friction, or dissipation.

Slow-roll \Rightarrow negligible compared to H-friction Not negligible $\Rightarrow e.g.$ warm inflation Berera et al. 2009

- The kernels $\operatorname{Re}\left[\Pi_{\phi,\psi}(x,x')\right]$ each give an imaginary part to the effective action. Interpret them as a result of a weighted average over configurations of stochastic noise terms, representing the «coupling» btw φ and ϕ and χ and ψ \Rightarrow reintroduce these noises w/right PDF $_{\text{Morikawa}}$
- Fluctuation-dissipation thm: they are linked since they come from the same underlying dofs ⇒ real and imaginary part of same kernel!

Pirsa: 14120053 Page 22/38

- To interpret the imaginary part as noise, introduce two real classical random fields per field in the system ξ_1^{ϕ} , ξ_2^{ϕ} and ξ_1^{ψ} , ξ_2^{ψ} , each obeying the Gaussian pdf: stratonovich, Hubbard

$$\begin{split} \mathcal{P}\left[\xi_{1}^{\phi,\psi},\xi_{2}^{\phi,\psi}\right] &= \exp\left\{-\frac{1}{2}\int d^{4}x d^{4}x' [\xi_{1}^{\phi,\psi}(x),\xi_{2}^{\phi,\psi}(x)]\mathbf{A}^{-1}(x,x') \begin{bmatrix} \xi_{1}^{\phi,\psi}(x') \\ \xi_{2}^{\phi,\psi}(x') \end{bmatrix} \right\}, \\ \int_{\varphi_{i}^{\pm}}^{\varphi_{f}^{+}} \mathcal{D}\varphi^{\pm} \int_{\chi_{i}^{\pm}}^{\chi_{f}^{+}} \mathcal{D}\chi^{\pm} \exp\left[\frac{i}{\hbar}S_{eff}^{(1)}\right] \\ &= \int \mathcal{D}\varphi^{q,c} \mathcal{D}\chi^{q,c} \int \mathcal{D}\xi_{1} \mathcal{D}\xi_{2} \mathcal{P}\left[\xi_{1},\xi_{2}\right] \exp\left(i\int d^{4}x a^{3}(t) \left\{\varphi_{q}\left[\left(\Box - m_{\Phi}^{2}\right)\varphi_{c} - V_{\text{pert},\Phi}\left(\varphi_{c},\chi_{c}\right)\right] + \chi_{q}\left[\left(\Box - m_{\Psi}^{2}\right)\chi_{c} - V_{\text{pert},\Phi}\left(\varphi_{c},\chi_{c}\right)\right] + \varphi_{q}\left[p_{\phi}(t)\xi_{1}^{\phi} + \xi_{2}^{\phi}\right] - \dot{\varphi}_{q}\xi_{1}^{\phi} + \chi_{q}\left[p_{\psi}(t)\xi_{1}^{\psi} + \xi_{2}^{\psi}\right] - \dot{\chi}_{q}\xi_{1}^{\psi}\right\}\right), \end{split}$$

- To take the classical limit of the action: rescale φ_q , $\chi_q \to h\varphi_q$, $h\chi_q$ and expand in powers of \hbar . EoM in the classical limit are given by:

$$\left. \frac{\delta S_{eff}^{(1)}}{\delta \varphi_q} \right|_{\varphi_q = 0} = 0 \; ; \quad \left. \frac{\delta S_{eff}^{(1)}}{\delta \chi_q} \right|_{\chi_q = 0} = 0.$$

Pirsa: 14120053 Page 23/38

We obtain:

$$(-\Box + m_{\Phi}^{2})\varphi_{c} + \tilde{V}_{,\Phi}(\varphi_{c}, \chi_{c}) = p_{\phi}(t)\xi_{1}^{\phi} + \xi_{2}^{\phi} + \dot{\xi}_{1}^{\phi} + 3H\xi_{1}^{\phi},$$
$$(-\Box + m_{\Psi}^{2})\chi_{c} + \tilde{V}_{,\Psi}(\varphi_{c}, \chi_{c}) = p_{\psi}(t)\xi_{1}^{\psi} + \xi_{2}^{\psi} + \dot{\xi}_{1}^{\psi} + 3H\xi_{1}^{\psi}.$$

The noise correlations are found by solving the linearized mode functions:

$$\begin{aligned}
\Lambda_{\phi}\phi_k &= 0 \\
\Lambda_{\psi}\psi_k &= 0
\end{aligned}$$

These are indeed two coupled systems

These are the same as in the heuristic approach, provided we perform a simple redefinition of $\xi_2^{\phi,\psi}$

$$\xi_2^{\phi} \rightarrow -p_{\phi}(t)\xi_1^{\phi} - \xi_2^{\phi}$$

PERTURBATIVE EXPANSION

- Easy to extend this formalism to include non-trivial interacting potential;
- Introduce a current per branch of the CPT contour, J^+ and J^- and define a diagrammatic expansion of V, integrate order by order the bath fields, and derive a similar influence action;

Morikawa, Hu et al., Boyanovsky

- Quadratic terms in the bath fields are considered as part of the free bath propagator, e.g. $\phi_>^2 \varphi^2$ coming from $V_{pert} \supset \Phi^4$
 - ⇒ To solve for the noise variance using the full linearized mode function EoM, we obtain 2 coupled system, which justifies a recursive approach
- For every loop correction, we obtain an extra noise term, dissipation term (real and imaginary part of the same kernel), and massrenormalisation term

Pirsa: 14120053 Page 25/38

Example:
$$V_{pert} = g^2 \Phi^2 \Psi^2 + \frac{\lambda}{4!} \Phi^4$$

bath self-internations correct
the bath propagator, eg: $2 p^4 \Rightarrow p$

La Higher order noise: eg.
$$\frac{\lambda}{3!}$$
 $\varphi \varphi^3 \Rightarrow \varphi$

or $g \varphi \chi \varphi \psi \Rightarrow \chi$

EXAMPLE 1: HYBRID INFLATION

- ullet Two scalar fields inflation: the inflaton Φ and the waterfall field Ψ
- Inflation takes place when ϕ is slowly rolling for $\Phi > \Phi_c$
- The energy density is dominated by the mass of ψ
- For $\Phi<\Phi_c$, the $\Psi\to-\Psi$ symmetry is broken and ψ develop a tachyonic instability, which trigger its rapid rolling toward a true ground state

Pirsa: 14120053 Page 27/38

DYNAMICS AND STEPS 1-2

- Potential:

$$V(\Phi, \Psi) = \frac{1}{2}m^2\Phi^2 + \frac{\lambda}{4}(\Psi^2 - v^2)^2 + \frac{g^2}{2}\Phi^2\Psi^2$$

Recursive Solution:

- Step 1: Free, massless dS noise:

$$\langle \xi_1^{\phi,\psi}(\mathbf{x},t), \xi_1^{\phi,\psi}(\mathbf{x},t) \rangle = \frac{H^3}{4\pi^2} \frac{\sin(\epsilon a H r)}{\epsilon a H r} \delta(t - t')$$

- Step 2: Zeroth order stochastic equations:

$$\begin{split} 3H^2\frac{\mathrm{d}\varphi}{\mathrm{d}N} &= -m^2\varphi\left(1+\frac{g^2\chi^2}{m^2}\right) + 3H\xi_{\phi}\left(N\right)\,,\\ 3H^2\frac{\mathrm{d}\chi}{\mathrm{d}N} &= -\lambda v^2\chi\left(\frac{\varphi^2-\Phi_{\mathrm{c}}^2}{\Phi_{\mathrm{c}}^2} + \frac{\chi^2}{v^2}\right) + 3H\xi_{\psi}\left(N\right) \end{split}$$

- Step 2 (continued): Leading order coarse-grained stochastic solutions:

Martin & Vennin 2011

$$\left\langle \chi^2 \right\rangle = \frac{1}{384\pi^2} \frac{\lambda^2 v^8}{m^2 M_{pl}^4} \left(\frac{m^2 e^x}{\lambda v^2 x} \right)^{\frac{\lambda v^2}{m^2}} \Gamma \left(\frac{\lambda v^2}{m^2}, \frac{\lambda v^2}{m^2} x \right) ,$$

$$\varphi = \exp \left[-4 \frac{m^2 M_{pl}^2}{\lambda v^4} \left(N - N_{in} \right) \right] \left[\varphi_{in} + 2 \sqrt{\frac{3}{\lambda}} \frac{M_{pl}}{v^2} \int_{N_{in}}^{N} \exp \left(4 \frac{m^2 M_{pl}^2}{\lambda v^4} n \right) \xi_{\phi} \left(n \right) dn \right] ,$$

Zeroth order dispersions:

$$\sigma_{\varphi} = \frac{\lambda v^4}{8\sqrt{6}\pi m M_{pl}^2} \,.$$

$$\sigma_{\chi} \equiv \sqrt{\langle \chi^2 \rangle - \langle \chi \rangle^2} = \frac{\lambda v^4}{8\sqrt{6}\pi m M_{pl}^2} \left(\frac{m^2 e^x}{\lambda v^2 x}\right)^{\frac{\lambda v^2}{2m^2}} \Gamma^{\frac{1}{2}} \left(\frac{\lambda v^2}{m^2}, \frac{\lambda v^2}{m^2} x\right) \,,$$

$$\sigma_{\chi_a} \simeq \left(\frac{\lambda}{2\pi}\right)^{3/4} \left(\frac{v}{3m}\right)^{1/2} \frac{v^3}{8M_{pl}^2} \,.$$

STEP 3

Linearized quantum perturbations on a stochastically shifted background:

- Replace coarse-grained quantities with their stochastic mean:

$$F\left[\varphi^{(0)},\chi^{(0)}\right] \to \left\langle F\left[\varphi^{(0)},\chi^{(0)}\right]\right\rangle$$
.

- We work in the spatially flat gauge;

- The EoM & solution for the canonically normalized field, $\delta\phi_k^{(1)}=a^{-1}v_{\bf k}$

$$v_{\bf k}'' + \left[k^2 - \frac{2 - m^2/H^2 - g^2 \sigma_\chi^2/H^2 + 9\varepsilon_1}{\tau^2}\right] v_{\bf k} = 0$$

$$v_{\mathbf{k}} \to \begin{cases} -e^{i(\nu + \frac{1}{2})\frac{\pi}{2}} \frac{2^{\nu - 1}}{\sqrt{\pi}} \Gamma(\nu) \frac{(-\tau)^{-\nu + 1/2}}{k^{\nu}} & 0 < \nu \le 3/2\\ e^{i\frac{\pi}{2}} (-\tau)^{1/2} \ln(-k\tau) & \nu = 0 \end{cases}$$

$$\nu^2=9/4-(m^2+g\sigma_\chi^2)/H^2+9\varepsilon_1$$

STEP 3 (CONTINUED...)

Similarly, for $\delta \psi_k^{(1)} = a^{-1} u_k$

$$u_{\mathbf{k}}'' + \left[k^2 - m_u^2(\tau)\right] u_{\mathbf{k}} = 0, \quad m_u^2(\tau) \equiv \frac{2 - m_\psi^2 / H^2}{\tau^2}$$

$$= \frac{1}{\tau^2} \left[2 + 15\varepsilon_1 - 3\frac{\lambda \sigma_\chi^2}{H^2} - \frac{12M_{pl}^2}{v^2} \left(\frac{\varphi^{(0)^2}}{\varphi_c^2} - 1\right) \right]$$

Solution in terms of Airy functions, but not very enlightening to write down...

Pirsa: 14120053 Page 31/38

STEP 4: RESULTS

Under the quasi-static approximation, i.e. the relaxation time for the χ distribution is very small, and it swiftly acquires its "stationary" local dispersion.

$$\left.\sigma_\chi^2/\left.\sigma_\chi^2\right|_{\rm massless}\simeq \langle \xi_\psi^2\rangle/\langle \xi_\psi^2\rangle_{\rm massless}=|\delta\psi^{(1)}|^2/|\delta\psi^{(1)}|^2_{\rm massless}$$

Pirsa: 14120053 Page 32/38

Pirsa: 14120053 Page 33/38

For the inflaton:

- Noise amplitude $\left\langle \xi_{\phi}\left(N\right)\xi_{\phi}\left(N'\right)\right\rangle =\frac{H^{4}}{4\pi^{2}}\delta\left(N-N'\right)\left[1+\frac{2}{3}\frac{m^{2}+g\sigma_{\chi}^{2}}{H^{2}}\left(\ln2\epsilon+\gamma-2\right)\right]\,,$

Classical perturbations

$$\langle (\delta \varphi^{(1)})^2 \rangle \approx \frac{3H^4 \varphi_0^2}{8\pi^2 \tilde{m}^2} \left(1 - \frac{\varphi_0^2}{(\varphi_0)_{in}^2} \right) \left(1 + \frac{2}{3} \frac{A}{H^2} \right)$$

$$\Rightarrow \left| \delta \varphi_k^{(1)} \right|^2 \approx \left(\frac{k}{aH} \right)^{\frac{2\tilde{m}^2}{3H^2} - \frac{4}{9} \frac{\tilde{m}^4}{H^4} (\ln 2\epsilon + \gamma - 2)}$$

with:

$$A = \tilde{m}^2 (\ln 2\epsilon + \gamma - 2) \qquad \qquad \tilde{m}^2 = (m^2 + g^2 \sigma_{\chi}^2)$$

GENERALIZATION TO INFLATION WITH HEAVY FIELDS

- If multiple fields are present during inflation, it is easy to generalize this result to capture the effect on the inflaton
- $g^2\Phi^2\Psi^2$ -type of couplings always make the inflaton heavier

=> in chaotic-type models, makes the tilt redder

Pirsa: 14120053 Page 35/38

EXAMPLE 2: MODULATED POTENTIAL

$$V(\Phi) = V_{sr}(\Phi) + \Lambda^4 \sin\left(\frac{\Phi}{f}\right)$$

$$v_k'' + \left\{k^2 - \frac{1}{\tau^2} \left[2 + 9\epsilon_1 - \left[m^2 - \frac{\Lambda^4}{f^2} \cos\left(\frac{\varphi}{f}\right)\right] \frac{1}{H^2} + \frac{4\epsilon_1}{3H^2} \frac{\Lambda^4}{f^2} \cos\left(\frac{\varphi}{f}\right)\right]\right\} v_k = 0$$
Resonance

- Frequency of the driving force: $\omega \sim -\frac{m^2}{3H^2} \frac{\varphi_0}{f}$
- · 'Fuzziness' of the coarse-grained field over one period:

$$\frac{\sqrt{3f}H}{m\sqrt{\phi_0}}\xi$$

CONCLUSION

- Reviewed stochastic inflation starting from the EoM
- Proposed a recursive approach
- Showed how this is motivated from the microphysics of stochastic inflation
- Applied the recursive to derive new results in hybrid inflation (tilt, dispersion of the waterfall field...), multi-field inflation, modulated potentials...

Pirsa: 14120053 Page 38/38