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Abstract: <p>Renormalized perturbation theory for QFTs typicaly produces divergent series, even if the coupling constant is small, because the
series coefficients grow factorially at high order. A natural, but historically difficult, challenge has been how to make sense of the asymptotic nature
of perturbative series. In what sense do such series capture the physics of a QFT, even for weak coupling? | will discuss a recent conjecture that
the semiclassical expansion of path integrals for asymptotically free QFTs - that is, perturbation theory - yields well-defined answers once the
implications of resurgence theory are taken into account. Resurgence theory relates expansions around different saddle points of a path integral to
each other, and has the striking practical implication that the high-order divergences of perturbative series encode precise information about the
non-perturbative physics of a theory. These ideas will be discussed in the context of a QCD-like toy model theory, the two-dimensional principal
chiral model, where resurgence theory appears to be capable of dealing with the most difficult types of divergences, the renormalons. Fitting a
conjecture by &€™t Hooft, understanding the origin of renormalon divergences allows us to see the microscopic origin of the mass gap of the theory
in the semiclassical domain.</p>
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The dark side of perturbation theory

In QFTs with small coupling A, observables computable as

0()\)=00+01/\+(32)\2+---

ask an graduate postdoc, computers?
undergrad student faculty P '
But in interesting QFTs like QCD, cn~ n! for large n phivl

Perturbation theory yields divergent series!

If perturbative expansions are divergent,
then why do they work so well?

Why does the divergence happen?

Historically, this caused a lot of confusion...
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The dark side of perturbation theory

In QFTs with small coupling A, observables computable as

O()\)=00+cl/\+(32)\2+---

ask an graduate postdoc,

computers?
undergrad student faculty P

But in interesting QFTs like QCD, cn~ n! for large n pivny

“Divergent series are the invention of the devil, and it is a shame
to base on them any demonstration whatsoever... Yet for the most
part, the results [from using them] are valid... | am looking for the
reason, a most interesting problem.” Niels Henrik Abel 1828

Pirsa: 14120045 Page 4/47



Traditional view on asymptotic series

Pnt "
I
I
I
I
e I
E Pn A" . Poincare
I 1886
n=1 " Stay away -
- " here be dragons!
piaA AL oL
m .

Can argue that ‘mistake’ made is order e-"/A
Exponentially small - so is it uninteresting?
e'A is precisely scale of non-perturbative effects in e.g. QCD

In asymptotically-free theories, at least, non-perturbative
effects drive the most interesting part of the physics!

A more systematic approach is called for...
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Perturbation theory as a semiclassical expansion
<O[/\]> = Z[)\]_'l / (][U] e~ S(WUiA)»  regularized

path integral
For small A temptlng to use saddle-point appro><|mat|on

Z;),,)\” +Z —Se /’\Zp( AP

n=>0 k=0

Usually all of these series are sick, suffer from divergences!

Traditional view is that semiclassical expansions have an
inherent and irreducible ‘vagueness’ of order e-1/A

Modern approach, based on resurgence theory:

transseries’ expansions are faithful and unambiguous
(but subtle) representations of observables.

Pirsa: 14120045 Page 6/47



Perturbation theory as a semiclassical expansion
<O[/\]> = Z[)\]_'l /(][U] e~ S(WUiA) ) regularized

path integral

For small A temptlng to use saddle-point apprommahon

Zp,,)\” +Z —Se /’\Zp( AP

=0 k=0

Usually all of these series are sick, suffer from divergences!

If above "transseries’ is to encode well-defined smooth function
of A, need intricate relations connecting pc,» for different saddles

T . Vainshtein, 1964,
; quantitative relations between Bender+Wu 1969:

perturbative and non-perturbative physics  Lipatov 1977

Resurgence theory is the detailed implementation of this idea

Dingle, Berry 1960+... Ecalle: 1980s Argyres, Dunne, Unsal... QFT
Aniceto, Marino, Schiappa... strings
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How to think about asymptotic series?

original formal O — E:p A" py ~ !
series S )

N_|

‘Borel IN(t) = = Pn n—1
transform’ BlO](t) = Z (n — 'l)!f

n=

BO(t) defines function analytic within
finite radius around t=0

1 [~ |
Borel sum SO(A) = 5 / dt e~ B[O](t)
Jo

SO(A) has same power expansion as O(A)

Should think about SO(A) as a useful representation

of data in formal series with |Pn| < n!c”

But the integral — and hence sum — doesn’t always exist!
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How to think about asymptotic series?

| o
Borel sum:  SO(\) = X / dt e B|O](t)
- Jo

Worki 3] n -4 3
e EQ) =3 (=1)"nla" = BIE()] =
n=>_0

1
1+t

No pole on R+ contour, Borel integral exists, resummation unambiguous
oo

Failing ) = ZU_I)N p A = BIE(V)] = 1 singularity

case: 1—t onR"!
n=(

Singularity on R+ contour, Borel sum does not exist.
This is the typical situation in series coming from QFT
Why is this happening?

And what should we do about it?
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How to treat non-Borel summable series?

Can deform contour, above or below real axis.

t t
t =t.

Amounts to analytic continuation of path integral A — A(1 =€)

Imaginary non-perturbative (NP) ambiguity in
resummation, depending on direction of continuation

S+:O(N) = Re [@()\)] 49 o~ be /A

Form of ambiguity points to the guilty party:

Contribution from NP saddle with action S = ¢, /X Pnge Sermy
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Conspiracies between P and NP data

For such resummation ambiguities to cancel, perturbation
theory must contain quantitative data about NP physics

O(A) =~ ZP?:.P/\” + e” N Z})““,.\,r,,)\” 4 ...

Resurgence theory gives tools to decode the NP data
hidden in an asymptotic P series, and vice-versa.

Example of an implication of resurgence theory (and origin of name!)

(n—1)! PILNPONP P2.NPSY p
)“ ) B : ) ) N :—'— . + - . _|_
Pl = G YT T =) T - D(n-2)

“+ .-

Through the lens of resurgence, we see that P and NP data are not
independent, and must be treated together to get unambiguous results!

So how does all this work in QCD-like theories?
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Borel plane singularities in QCD i

related to the number of diagrams

(1) Combinatorial singularities at order n growing as n!

related to single’ planar diagrams
with n running couplings, scale as n!

Im t
% Re t
A >

(2) Renormalon singularities

P = 251/ I,:"'j()| = ¢ |Bolg* ], = 25‘[ = (3_2"""/”2

By = 11 N/3 so renormalon ambiguity >> ‘instanton’ ambiguity
Not just a formal problem!

Renormalons arise in pQCD calculations relevant for e.g. collider physics
Resulting ignorance parametrized by introducing ‘power corrections’ (A/Q)"
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Borel singularities for QCD and its relatives

Inspiration: In QM, perturbation theory is also asymptotic.

293:'3‘05"?:’]‘ Perturbative ambiguities cancel precisely against
I - u I . . . . . . .
early 1980s ambiguities of instanton-anti-instanton events in QM

't Hooft's dream: QFT renormalons associated to some //
kind of fractional instantons, related to confinement /(
But no such configurations known in QCD on
R4, or in other asymptotically-free theories

Moreover, many asymptotically-free theories don't have
instantons at all, let alone “fractional instantons’!

A ! : : " P . .
58%;“25 Key idea: find smooth compactification which preserves
sat e confinement, while driving theory to weak coupling.

Desired fractional instantons emerge, allow application of
resurgence theory, yield systematic ambiguity cancellations.
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SU(N) Principal Chiral Model

Focus for the rest of the talk:

/ d>xTr 0,U0"U, U e SUN)
\v

S = —
2‘(12 J

Why is it interesting?

Asymptotically free, like QCD
Dynamically generated mass gap, like QCD
Matrix-like large N limit, like QCD
Large N confinement-deconfinement transition, like QCD
Perturbation theory suffers from combinatorial and
renormalon ambiguities, just like QCD Fateev.
Integrable, M = R2 S-matrix known, so easier than QCD Kazakov,

. \ Wiegmann
But m2[SU(N)] = 0, so no instantons, unlike QCD!
Lack of known NP saddles seems like big difference from QCD.

Almost a nice toy model for QCD
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Dealing with strong coupling
‘Coupling is small’ assumption for saddle-point
expansion doesn’t make sense in PCM: < 0

Need a weakly coupled limit, while keeping mass gap etc,
with physics adiabatically connected to original theory

Our approach is to put the theory on M = Rtime x S1(L)
For small enough L, weak coupling guaranteed by asymptotic freedom
But with periodic boundary conditions, looks like a thermal circle!

- @ >

small L large L
F/N2 ~ 1 F/N2 ~0

Resembles confinement/deconfinement transition in 4D YM!
In PCM, large N phase transition, finite N cross-over
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Twisted boundary conditions
PCM has an SU(N).xSU(N)r symmetry
U — QU
Wide variety of sensible spatial boundary conditions:
Ulzy, o+ L) = Pl H Ulzy,xs)e iL~'Hp

Working with a gapped theory - when L >> A1,
choice of BCs doesn’t matter

But at small L, dialing H., Hr parametrizes
a wide family of distinct theories

Claim: unique choice of Hr, Hr such that physics
appears to be adiabatically connected to large L limit

- r g

small L large L
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Twisted boundary conditions

Convenient to trade fields with twisted BCs for background
gauge fields + fields with periodic BCs

A a7 ¥y 3 -~ [ is
0,U — 9,U — 6., ([HV, 0] + {Ha, U}) LA
Oy 4 = Hy + Hp

Essentially ‘chemical potentials’ for spatial SU(N).r currents
JL=ivto,u,  JF=i0,UU
Partition function now depends on Hya
4 — Z(L; Hy, Hy)
What are the desirable ‘adiabaticity conditions’ in terms of Z7?

(A) Afree energy scaling as F/N2 ~ 0 at large N

(B) Insensitivity of theory to changes in BCs
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Adiabaticity conditions

At small L, complete insensitivity to BCs is not possible.
Closest we can come is to pick Hy, Ha such that

d[V-1logZ(L)]
@ OHy
0|V-tlog Z(L)]

— <’];r\r/>11\'-11,\ =0

= (I N1y 1y =0

OH A
Picks out BCs which extremize the free energy F
L‘Z
:2 WI|11\/111A ~ 0

Make sure we stay in ‘confining’ phase

Our task: compute F(L; Ha, Hy) at small L, where theory is
weakly coupled, and look at large N scaling of extrema
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Small L Free Energy

o0

Vicloop(2 = Qy, Qa = 1) = _ > i (|Tr Q™ — 1)

L n=

n=1

One extremum corresponds to Hy=0, Ha=0

(0=Qpr =1x  broken Zy symmetry

7]— 4) iy %
F=_—_"_(N2-1)=0O(N?

This is a deconfined small L limit.
Indeed, this are exactly the thermal BCs, and L = 1/T !

Clearly not what we want...
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Small L Free Energy

OC

- l ] ]
Vi 1o00p(£2) = , —(|'Tr Q"]* =1
| 1<<[>( ) ﬂ_L_ng“.g( ’ )
n=
The only other (non-degenerate, Zn preserving) extremum:
1
. —_ IRV v =0,1for
d =g =e . N odd, even
’.’._’r.'{,-\’ 1)
c N
og 7 = —& % ™ O(N°)
0L /4 = = X — = Y
S L2 §

‘Confinement’ even at small L
Zn-symmetric BCs give desired adiabatic small-volume limit.

Related construction of an adiabatic Unsal, Yaffe:
small L limit known for 4D YM theories  Shifman, Unsal; ...
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Flow of coupling constant in Zn-twisted PCM

g2

l large N
" volume
independence |
Y\ {— Flow for NLA <« 1
\
\ === Flow for NLA > 1
\
Semiclassically \
calculable \\
, regime \\
1 1 O
A (N L)

Scale NL appears due to Zn-symmetric form of Hy
We focus on NLA << 1 to get a weakly-coupled theory

Physics is very rich - mass gap, renormalons present at small N L!
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Perturbation theory at small L

Pick dependence of ground state energy on A as an observable

For small L, 2D PCM describable via a 1D EFT: quantum
mechanics with a Zn-symmetric background gauge field

Are renormalons still present?

In PCM, IBI = N. Renormalon means an

ambiguity in perturbation theory of order
i

~ tie 92N

On R2, integrability calculations of Kazakov, Fateev, Wiegmann give:
__ 8
~ t+1e 9°N

If small-L limit is adiabatic, expect size of renormalon ambiguity
to move by order-1 amount as L goes from large to small.

But result should still involve #/g°N
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Perturbation theory at small L

Pick dependence of ground state energy on A as an observable

For small L, 2D PCM describable via a 1D EFT: quantum
mechanics with a Zn-symmetric background gauge field

Are renormalons still present?

In PCM, IBI = N. Renormalon means an

ambiguity in perturbation theory of order
i

~ tie 9N

On R2, integrability calculations of Kazakov, Fateev, Wiegmann give:

__ 8
~ +ie 92N

If small-L limit is adiabatic, expect size of renormalon ambiguity
to move by order-1 amount as L goes from large to small.

But result should still involve #/g°N
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Perturbation theory at small L
SU(2) Example

a ¢t . . 2 M
[ — ( cosBe'?  isinfe' " ) Hopf

isin fe "2 cos fe P parametrization
S =— dt dx [((),,f)) + cos® 0(0,,41)”
9= JRxS!
+ sin? 0(0, 02 + Q(S,,”_I,)Q]
KK reduction } =
r Imprint of Zn-sym. twist £€=2n/(NL)=m/L

_ L y o,
S = 2 (H [6’ + cos® (7’()I + sin” ()(); -+ {‘511139}
9
Compute perturbative expansion for ground state energy:

E(g°) Z pn(9°)

n=>_0
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Large order structure of perturbation theory

. Stone, R
Large-order behavior can be shown to be e

2 1 \"
Pp~—— =] n'|
L - 167
N

(exact) (Asymptotic)
/ n ymi
208

Pn

50

i 6 N 10

Factorially growing and non-alternating series!
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Non-perturbative ambiguity

Borel transform of leading n! piece is

. oo ) 2
BE(t) ~ polynomial + — Z ( — ) = polynomial — — ————

WI_—”]

N
55(.(12) = / .(z.’/.('.'—!'/”zf}g(l,)
J ()

Singularity on C=R+ at t = 16n/N, Borel sum does not exist!
[ ,

T
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Non-perturbative ambiguity
SiEN) = / (H.(’_’/”I_)BE(/,)
JC4

)¢

327 -
— H_.()SE(,\) | ,‘_)\ o~ 167/

/7

What to make of the red term?
(1) System is stable, ground state energy must be real!
(2) E must be well-defined - no sign-ambiguous parts allowed!

If E is a "resurgent function’, perturbation ambiguities must cancel
against ambiguities of some non-perturbative saddle F

Im (S+E(g?) + [FF|+] =0, up to O (e=157)
plus more intricate relations between P and NP physics at higher orders
But what are the relevant saddle points in the PCM?

Recall m2[SU(N)] =0...
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Uhlenbeck 1985...

Non-topological saddle points

Finite-action "uniton’ solutions of PCM EoMs are known

Based on observation that CPN-1 is a geodesic submanifold of SU(N)
CPN-1 instantons lift to uniton solutions in SU(N) PCM

Stable solutions within CPN-1 submanifold, but not in the full SU(N) manifold!
- ’ |
i N U v
U(z,2)=e™N({1 -2P) P= .,_
vl v

V(z), Z = x1+i x2 is the CPN-1 instanton in homogeneous coordinates
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see also Smilga, Shifman in S
Schwinger model. 1994 Fractons AC, Dorigoni, Dunne, Unsal

Uniton appearance with Zn-twisted BCs depends on size modulus

Unitons fractionalize into N fracton’ constituents on small S?
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Fractons AC, Dorigoni, Dunne, Unsal
SU(2) Example, small L effective theory:

_ L
15': e

)

dt [02 + cos® 07 + sin® 0¢3 + i“’sinz()}
9.

Explicit solutions:
O(t;ty) = 2arcCot {(’_5“—’“)] ¢+ = const
—_ . _ . D - t
O(t;ty) = m— 2arcCot {(% &l '”)] 2= cons
8T . Suuiton
g*N N

N types of minimal-action fractons in SU(N)

Sfl‘él(tt()ll —

N-1 fractons associated to N-1 simple roots of su(N)
The other - called KK fracton - associated to "affine root’
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Unitons, Fractons, and KK fractons in SU(2) ~ S3

fra,c:l"cn
KK FFOLC‘}'DV\
Uniton

9, direction
not &;spla%d

SU(2) Uniton = fracton + KK fracton
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The sum over finite-action confuguratlons

(O(N)) = ZP() A+ Z Zp, WA

n=>0 k=0
How can NP saddles give ambiguous contributions to path integral?

Small-L theory weakly coupled, dilute fracton gas approximation is valid
Contributions entering NP sum:
(1) Arbitrarily widely separated ‘fundamental’ fracton events

Within small-L EFT, individual fractons are just instantons, and
are stable - 1-fracton events have unambiguous amplitudes

(2) Correlated multi-fracton events

Fluctuation sum includes zero modes, perturbative modes,
and quasi-zero modes such as constituent separation

Gives rise to "correlated’ events, some of which are ambiguous!
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Contribution from fracton-anti-fracton events
Fracton size ~ LN = ¢!
Typical uncorrelated fracton separation ~ J, N ¢ +87/A

But sometimes there are events which are closer than this!

O=n O=mn

0=0 0=0

............................................

t =-00 (, ‘ 6 { = +00

For large ti - t2 this is a (quasi) saddle-point of the path integral

t; + t> 1s a zero mode, while t; - t; 1s a quasi-zero mode
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Correlated multi-fracton events
Correlated fracton-fracton events are unambiguous
10 327 —T
Iy ~ e 2oF / drre (B5e7747) =t —t,
JO
I(7)

I, -

quasi-zero mode
integral gets localized

T separation

— ALog[32 n/A)

- R2en

327 16
amplitude: [ff] = (—1()g { S } _ A{) 7(, 285
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Contribution from fracton-fracton events
1 0=2n

F

.......................................................................

For large ty - t2 this is a (quasi) saddle-point of the path integral

t; + to 1s a zero mode, while t; - t; 1s a quasi-zero mode

Quasi-zero fluctuation mode sum gives another scale!

_ 327
Correlated fluctuation size ~ LN log ( /\“ )
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Correlated fracton-anti-fracton events

Correlated fracton-anti-fracton events are ambiguous

25 327 —T |
IrF ~ e %°F / (ZTT(?*( Ix 33T e~ T 1)
0

{ The anti-fracton-fracton interaction is "attractive’!

Fracton-anti-fractons "want’ to get close to annihilate

Since dilute gas approximation means all fractons must
be widely separated, we should expect subtleties....
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Making sense of fracton-anti-fracton events

Quasi-zero-mode integrals dominated by 6(
1=0 region, do not make sense as written
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Making sense of fracton-anti-fracton events

Quasi-zero-mode integrals dominated by
1=0 region, do not make sense as written

This is a feature, not a bug.
B Iny, . . 2 2. .
Zﬁ?ﬁ?&:ﬁ Analytically continue g~ — ¢~ (1 =+ ie¢)
Remember, we had to this for perturbation theory too!

Away from Im[g?]=0, integral dominated by well-separated fractons

\S ! b v
§ < tlog(d4Sp) < gettr <« ge?F

Analytic continuation back to positive g2 is ambiguous!

'> [O7r L

527’( 1() 16w 7T
F.Fil+ = —log . — Y . > 94N 49 —— g% N
[ J J]_l: ( 08 {(I‘ZNI ;) _(}“3;\?( /_(/“’.-'\-'{

b~
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Cancellation of ambiguities

Contribution from P saddle is ambiguous. So are some from NP saddles.

Neither is directly physical, only sum is. Resurgence predicts:

Im [S£&(¢%) + [FF+] =0, up to O (e74°r)

| Preceding result implies that this works in PCM

Systematic demonstration that leading renormalon ambiguities of
perturbation theory cancel against ambiguities in saddle-point sum

lllustrates that exact information about NP physics is
present in perturbation theory, albeit in coded form!

At higher order resurgence implies more intricate relations:

F()\) = ReSPy + Re[FFIReSPr# + Im[FF| L ImSy Pr =
+ Re[FoFa]ReS Py, 7, + O (e~ 051)
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Mass gap at small L

Mass gap = splitting between ground state and 1st excited state

The splitting driven by one-fracton amplitude

DRY, . -
AP «"\_._.T ) % K71

renormalon ~ e 9*°N = ¢ N

Gap between ground state and first excited state is

| | 87T _ &=
AsU(N) PCM ~ o7 e A

NL /X

Same relation in all small-L cases checked so far: PCM, CPN, YM

\"’ .
/2

1
A ~ renormalon

Relation also holds when massless fermions are added,
which changes size of both A and the renormalon ambiguity!
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Mass gap at small L

Mass gap = splitting between ground state and 1st excited state

The splitting driven by one-fracton amplitude

) % 7 “
“ X ST ) X 87T

renormalon ~ e 9°N = ¢ N

Gap between ground state and first excited state is

| | 87 _ s«
Asu(N) PeM ~ 77 <€

NL /X

Same relation in all small-L cases checked so far: PCM, CPN, YM

. . | /2
A ~ renormalon ™
Relation also holds when massless fermions are added,

which changes size of both A and the renormalon ambiguity!
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What we learned so far...

Even when there’s no topology, resurgence predicts existence of

NP saddle points with specific properties, which can then be found.

In semiclassical domain, renormalon ambiguities systematically
cancel against contributions of non-BPS NP saddles

Renormalons closely related to mass gap, as 't Hooft dreamt

All results so far fit conjecture of resurgent nature
of observables in QFTs with weak-coupling limits
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Lots left to do!

Now exploring relations to analytic continuation of path integrals

Lefshetz thimble decomposition of integration ~ Witten 2010

. AC, Dorigoni,
cycles appears to geometrize resurgence Unsal 2014

There are likely to be many practical implications!

Better understanding of QFTs with complex actions

Resurgence theory and Lefshetz thimble
technology play vital role in seeing how instantons % 1%
appear in real-time Feynman path integrals.

Improved understanding of connections Kofo?éev
between strong and weak coupling regimes Unsal 2014

" ' . Aniceto, Russo,
Applications of resurgence in SUSY QFTs Schiappa, 2014
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