Title: The Incompleteness of HRT

Date: Dec 11, 2014 01:00 PM

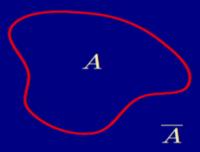
URL: http://www.pirsa.org/14120038

Abstract: In AdS/CFT, the HRT prescription relates the entanglement entropy of a region of a CFT to the area of an extremal surface in the dual AdS spacetime. But there exists a class of spacetimes in which the HRT prescription is ill-defined. These spacetimes consist of planar AdS wormholes containing an inflating region. I will introduce these so-called AdS-dS-wormholes, discuss how the HRT prescription fails in them, and suggest possible modifications to remedy the problem.

Pirsa: 14120038 Page 1/30

- 1 Holographic Entanglement Entropy
- 2 AdS-dS-Wormholes
- 3 Completion of HRT
- 4 Complex Entangling Surfaces

Sebastian Fischetti Incompleteness of HRT



Pirsa: 14120038

Entanglement Entropy

Holographic Entanglement Entropy

•00

 \blacksquare Entanglement entropy of region A:

$$\rho_A \equiv \operatorname{Tr}_{\overline{A}} \rho; \quad S(A) = -\operatorname{Tr}_A(\rho_A \ln \rho_A)$$

- \blacksquare S(A) measures entanglement between A and \overline{A} (nonlocal)
- Very useful (e.g. quantum information, confinement/deconfinement, RG, BH thermo), but hard to calculate
- Life is easier in AdS/CFT field theoretic quantities (like S(A)) related to geometric objects in AdS

Sebastian Fischetti Incompleteness of HRT

Pirsa: 14120038 Page 5/30

(H)HRT and Maximin

■ Hubeny-Rangamani-Takayanagi proposal (extension of Ryu-Takayanagi):

$$S(A) = \frac{\text{Area}(\Xi)}{4G_N};$$

 Ξ is minimal-area extremal surface anchored to ∂A

- \blacksquare Ξ must be homologous to A [Headrick & Takayanagi]
- Maximin prescription [Wall]:
 - Foliate spacetime into achronal slices Σ containing ∂A
 - Calculate area $\min(A, \Sigma)$ on each Σ
 - Then

$$S(A) = \frac{1}{4G_N} \max_{\Sigma} \min(A, \Sigma)$$

■ Maximin prescription reproduces HHRT

Sebastian Fischetti Incompleteness of HRT

(H)HRT and Maximin

■ Hubeny-Rangamani-Takayanagi proposal (extension of Ryu-Takayanagi):

$$S(A) = \frac{\text{Area}(\Xi)}{4G_N};$$

 Ξ is minimal-area extremal surface anchored to ∂A

- \blacksquare Ξ must be homologous to A [Headrick & Takayanagi]
- Maximin prescription [Wall]:
 - Foliate spacetime into achronal slices Σ containing ∂A
 - Calculate area $\min(A, \Sigma)$ on each Σ
 - Then

$$S(A) = \frac{1}{4G_N} \max_{\Sigma} \min(A, \Sigma)$$

■ Maximin prescription reproduces HHRT

Sebastian Fischetti Incompleteness of HRT

(H)HRT and Maximin

■ Hubeny-Rangamani-Takayanagi proposal (extension of Ryu-Takayanagi):

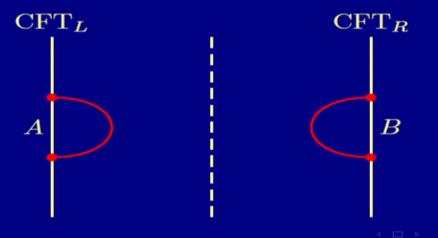
$$S(A) = \frac{\text{Area}(\Xi)}{4G_N};$$

 Ξ is minimal-area extremal surface anchored to ∂A

- \blacksquare Ξ must be homologous to A [Headrick & Takayanagi]
- Maximin prescription [Wall]:
 - Foliate spacetime into achronal slices Σ containing ∂A
 - Calculate area $min(A, \Sigma)$ on each Σ
 - Then

$$S(A) = \frac{1}{4G_N} \max_{\Sigma} \min(A, \Sigma)$$

■ Maximin prescription reproduces HHRT

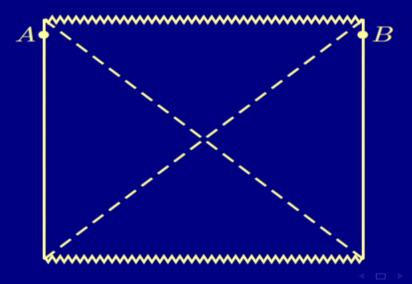

Sebastian Fischetti Incompleteness of HRT

An Example: Hartman-Maldacena

■ Mutual information of regions A, B on the opposite boundaries of planar Schwarzschild-AdS:

$$I(A,B) = S(A) + S(B) - S(A \cup B)$$

■ If $S(A \cup B)$ comes from disconnected pieces, then I(A, B) = 0



Sebastian Fischetti Incompleteness of HRT

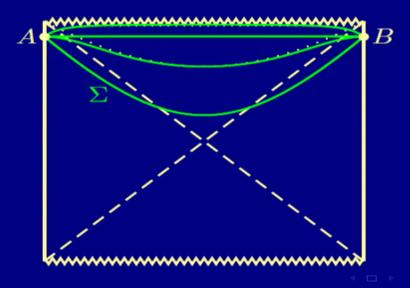
 \blacksquare Mutual information of regions A, B on the opposite boundaries of planar Schwarzschild-AdS:

$$I(A,B) = S(A) + S(B) - S(A \cup B)$$

■ If $S(A \cup B)$ comes from disconnected pieces, then I(A, B) = 0

Sebastian Fischetti Incompleteness of HRT

Holographic Entanglement Entropy


000

An Example: Hartman-Maldacena

 \blacksquare Mutual information of regions A, B on the opposite boundaries of planar Schwarzschild-AdS:

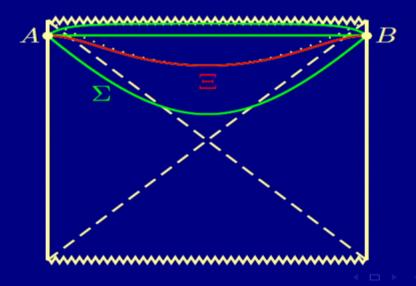
$$I(A,B) = S(A) + S(B) - S(A \cup B)$$

■ If $S(A \cup B)$ comes from disconnected pieces, then I(A, B) = 0

Sebastian Fischetti Incompleteness of HRT

Holographic Entanglement Entropy

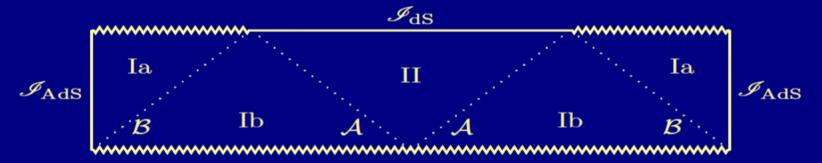
000


Holographic Entanglement Entropy

000

 \blacksquare Mutual information of regions A, B on the opposite boundaries of planar Schwarzschild-AdS:

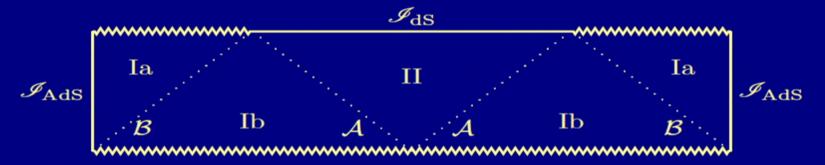
$$I(A,B) = S(A) + S(B) - S(A \cup B)$$


■ If $S(A \cup B)$ comes from disconnected pieces, then I(A, B) = 0

Sebastian Fischetti Incompleteness of HRT

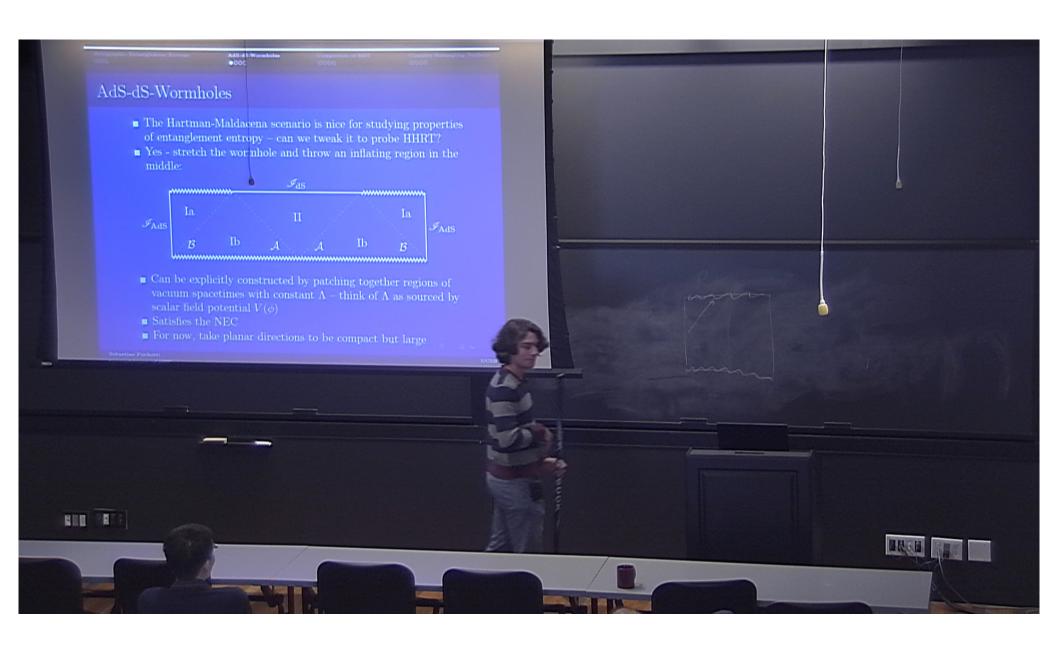
AdS-dS-Wormholes

- The Hartman-Maldacena scenario is nice for studying properties of entanglement entropy can we tweak it to probe HHRT?
- Yes stretch the wormhole and throw an inflating region in the middle:



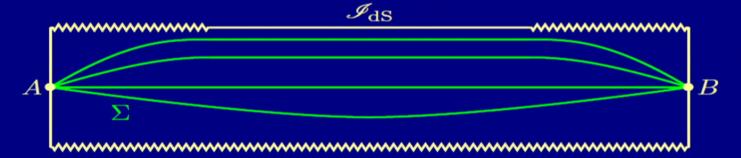
- Can be explicitly constructed by patching together regions of vacuum spacetimes with constant Λ think of Λ as sourced by scalar field potential $V(\phi)$
- Satisfies the NEC
- For now, take planar directions to be compact but large

Sebastian Fischetti Incompleteness of HRT


AdS-dS-Wormholes

- The Hartman-Maldacena scenario is nice for studying properties of entanglement entropy - can we tweak it to probe HHRT?
- Yes stretch the wormhole and throw an inflating region in the middle:

- Can be explicitly constructed by patching together regions of vacuum spacetimes with constant Λ – think of Λ as sourced by scalar field potential $V(\phi)$
- Satisfies the NEC
- For now, take planar directions to be compact but large


Sebastian Fischetti Incompleteness of HRT

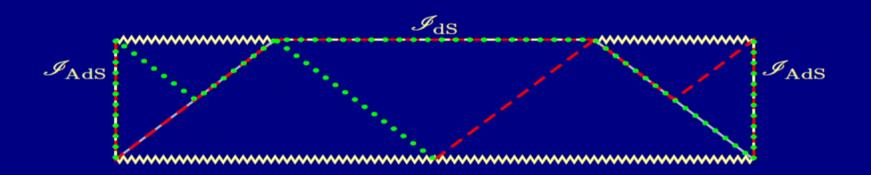
Pirsa: 14120038 Page 15/30

No Wormhole-Traversing Extremal Surfaces

- What happens to the mutual information between localized regions A, B?
- Use maximin prescription:

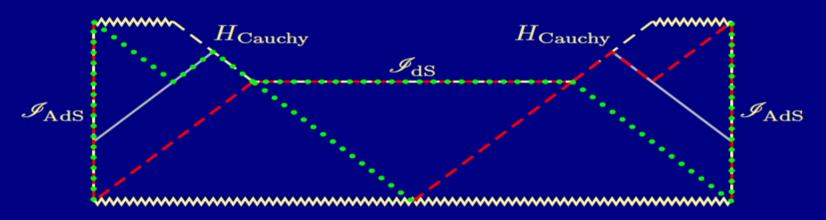
Sebastian Fischetti Incompleteness of HRT

- \blacksquare What if A, B are taken to be the entire CFTs?
- Planar total entropy surfaces are easy to identify they're located where $\theta_L = 0 = \theta_R$


Sebastian Fischetti Incompleteness of HRT

- \blacksquare What if A, B are taken to be the entire CFTs?
- Planar total entropy surfaces are easy to identify they're located where $\theta_L = 0 = \theta_R$

◆ロト ◆団ト ◆巨ト ◆巨ト 車庫 めなび


Sebastian Fischetti Incompleteness of HRT

- \blacksquare What if A, B are taken to be the entire CFTs?
- Planar total entropy surfaces are easy to identify they're located where $\theta_L = 0 = \theta_R$

Sebastian Fischetti Incompleteness of HRT

- \blacksquare What if A, B are taken to be the entire CFTs?
- Planar total entropy surfaces are easy to identify they're located where $\theta_L = 0 = \theta_R$

- In general, $\theta_L = 0 = \theta_R$ nowhere in the spacetime
- In such cases, HHRT/maximin entropy of either boundary is ill-defined

Sebastian Fischetti Incompleteness of HRT

Takeaway Message

The HHRT and maximin prescriptions cannot calculate the entropy of one boundary of an AdS-dS-wormhole.

So usual picture needs some modification

- Does dual description need more than two CFTs? E.g.:
 - Superselection sectors [Marolf & Wall]
 - Extra degrees of freedom associated with dS region [Freivogel, Hubeny, Maloney, Myers, Rangamani, Shenker]
- Maybe, but not obviously; in [Freivogel et al.] there's a Euclidean section and something like HHRT might hold [Lewkowykz & Maldacena], but would need to investigate further
- Here, let's focus on possible modifications of HHRT/maximin themselves

<ロト < 回 > < 巨 > < 巨 > を | 三 | り へ で)

Sebastian Fischetti Incompleteness of HRT

Takeaway Message

The HHRT and maximin prescriptions cannot calculate the entropy of one boundary of an AdS-dS-wormhole.

So usual picture needs some modification

- Does dual description need more than two CFTs? E.g.:
 - Superselection sectors [Marolf & Wall]
 - Extra degrees of freedom associated with dS region [Freivogel, Hubeny, Maloney, Myers, Rangamani, Shenker]
- Maybe, but not obviously; in [Freivogel et al.] there's a Euclidean section and something like HHRT might hold [Lewkowykz & Maldacena], but would need to investigate further
- Here, let's focus on possible modifications of HHRT/maximin themselves

Sebastian Fischetti Incompleteness of HRT

Regulated Wormholes

■ Regulate \mathcal{I}_{dS} by cutting off inflation after a finite time τ

Sebastian Fischetti Incompleteness of HRT

What about maximin?

- Maximin can be extended to maximin in a similar way, but with no need for regulators
- Total entropy surface: on each achronal slice Σ , the minimal surface has area min (A, Σ) less than $A_{\text{bifurcation}}$, so can consider

$$A_{TE}^{\mathrm{lub}} = \underset{\Sigma}{\mathrm{lub}} \min(A, \Sigma) \le A_{\mathrm{bifurcation}}$$

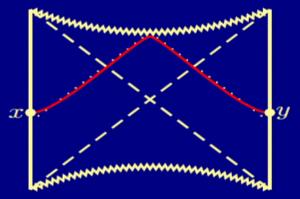
 \blacksquare maximin says to use A_{TE}^{lub} to compute entanglement entropy

Sebastian Fischetti Incompleteness of HRT

Pirsa: 14120038 Page 25/30

Comments on HHRT/maximin

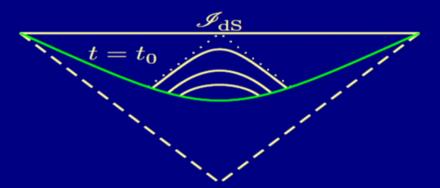
- Limiting procedure of HHRT is conceptually simple, but unclear if it's well-defined
- \blacksquare $\overline{\rm HHRT}$ is continuous as regulator is removed, whereas HHRT is not
 - E.g. add a Schwarzschild-AdS region with horizon area $A_{\text{new}} > A_{TE}^{\infty}$
 - HHRT also ensures consistency with CFT density of states set by total energy
- Limiting procedure of maximin is well-defined, but unclear whether it always agrees with HHRT
- Dual CFT state is pure: $S(CFT_1 \cup CFT_2) = 0$
- I(A, B) = 0 for localized A, B but $I(CFT_1, CFT_2) \neq 0$; information is as delocalized as possible
 - Similar to e.g. extremal Reissner-Nordström-AdS [Andrade, SF, Marolf, Ross, Rozali]


Sebastian Fischetti Incompleteness of HRT

Complex Extremal Surfaces?

- AdS-dS-wormholes are a good testing ground for further modifications of HHRT - is there anything else we can try?
 - Familiar story: geodesic approximation to two-point correlators of heavy fields

$$\langle \phi(x)\phi(y)\rangle \sim e^{-mL(x,y)}$$


■ Often, complex geodesics are required, e.g. correlator between opposite boundaries of Schwarzschild-AdS [Fidkowski, Hubeny, Kleban, Shenker]:

Sebastian Fischetti Incompleteness of HRT

Complex Geodesics in dS_3

- HHRT also comes from saddle point approximation! [Lewkowycz & Maldacena]
- Including complex surfaces in AdS-dS-wormholes is especially tempting...

* ㅁ ▷ ★ 룹 ▷ ★ 분 | 후 | 후 이 약 약

Sebastian Fischetti Incompleteness of HRT

Comments on Complex Extremal Surfaces

- Whether complex extremal surfaces should contribute to HHRT (and if so, how) is unclear
- But it's plausible that they do (and critical for the geodesic approximation to the two-point correlator)
- Unambiguously identifying complex surfaces requires an analytic spacetime – it'd be great to have an analytic model of an AdS-dS-wormhole to explore

Sebastian Fischetti Incompleteness of HRT

Conclusions/Future Directions

- We constructed AdS-dS-wormholes to test HHRT/maximin both prescriptions give ill-defined answers when computing the entropy of an entire boundary CFT
- Conformally completed prescriptions:
 - HHRT regulates \mathcal{I}_{dS} and takes the limit as the regulator is removed
 - minimax replaces the maximization with a least upper bound over all achronal slices Σ
 - Both behave nicely (and corresponding entangling surfaces can be thought of as living in \overline{M}) and CFT states are entangled in most delocalized way possible
 - We don't know if they're equivalent or how well-defined HHRT is will need to check

Sebastian Fischetti Incompleteness of HRT