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Abstract: <p>Quantum Adiabatic Optimization proposes to solve discrete optimization problems by mapping them onto quantum spin systems in
such away that the optimal solution corresponds to the ground state of the quantum system. The standard method of preparing these ground statesis
using the adiabatic theorem, which tells us that quantum systems tend to remain in the ground state of a time-dependent Hamiltonian which
transforms sufficiently slowly. In thistalk I'll show that alternative strategies using non-adiabatic effects can in some cases be dramatically faster for
instances which are hard for the traditional adiabatic method.</p>

<p>I| will also discuss Simulated Quantum Annealing (SQA), which isaclassical simulation of adiabatic optimization at non-zero temperature based
on Path-Integral Quantum Monte Carlo. SQA iswidely used in practice to study adiabatic optimization, but relatively little is known about the rate
of convergence of the markov chain that underlies the algorithm. By focusing on a family of instances which adiabatic optimization solves in
polynomial time, but require exponential time to solve using classical (thermal) simulated annealing, | will present numerical evidence as well as a
work-in-progress proof that SQA can be exponentially faster than classical simulated annealing.</p>
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Quantum Adiabatic Optimization (QAO) solves diflicult combinatorial op-
timization problems by encoding them into quantum spin systems!

e Clombinatorial optimization problems involve minimizing (or maximizing) a
function f on a discrete domain like the set of n-bit strings {0, 1}".

e Many important problems in computer science are of this form e.g. boolean
satisfaction, the traveling salesman problem, graph partitioning, ete.

e Optimization algorithms are considered efficient if they minimize the funetion
in O(poly(n)) time, and inefficient if they require exponential time.

e Many optimization problems are NP-Complete, so we strongly suspect that (in
the worst case) they are computationally hard for both classical and quantum

computers,
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Boolean satisfaction (SAT) is the problem of finding bit strings that satisfy
logical formulas built out of AND, OR, and NOT'

e 2-SAT example: (b OR by ) AND ( NOT by OR by)

e A clause like by OR by is satisfied as long as by and by aren’t both false.

o [[we let the +1 ecigenstate of o stand for true, and —1 cigenstate stand for
false, then the formula is satistied only if (1 —ai)( | —0;5)+| | +05)( | —03) =0,

e DBy turning the logical formula into an equation, we've re-cast the problem of

finding a satisfying assignment into the problem of finding the ground state of
a 2-local Hamiltonian!
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Overview of QAO

e Minimize a function f: {0, 1}" — R by mapping it onto a quantum systen:

Hp = Z f(z)]z)(z|

& {“.l }u

o [f w is the unique string that minimizes f, then |w) is the ground state of Hp.

e PProduce the ground state of Hp using a time-dependent transverse field:
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How slowly do we need to change the QAO Hamiltonian to find the optimal state
lw) with high probability?

e Success Probability: P(T) = [(w|y(t = T))|°.

e Run-time primarily depends on gy, the minimum enerey gap between the
oround state and first excited state,

- oly(n) .
e Adiabatic theorem: T > O (Lm———m) = P(T) =~ 1.

nin
e Hard instances for QAO are those with exponentially small gyin.

.

Can we increase P(T') for hard instances, when T' < O(g,.;. ) 7
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Searching for hard random instances: we generated over 200,000 instances
of MAX 2-SAT at n = 20 bits to find an ensemble of 137 hard instances.

=il

10~ 10~ 10~
P100)

Distribution of QAQO success probabilities with T = 100,
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Discovery: hard instances have peaks in P(7T') at smaller values of T'
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Success probability as a function of total evolution time T for an in-
stance with P(100) =5 x 107,
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The lowest 3 energy levels for this instance as a function of s = t/T

shows an avoided crossing near s = 0.66 which gives g, = 10
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The three lowest energy levels for this instance shown together with
the instantancous expectation of the energy for 7' = 10 and T" = 100.
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The overlap of the rapidly evolved system (7" = 10) with the first two
instantancous energy cigenstates of H{(t).
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The overlap of the rapidly evolved system (7" = 10) with the first two
instantancous energy cigenstates of H{(t).
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Comparing P(T},.) with 2(100). Note that the value of T, depends

on the instance.
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The distribution of the times T}, at which the success probabilities of
our hard instances are maximized in the interval [0, 40].
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Comparing (10) with (100). The success probability is increased
for all of our hard instances!
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Going lower by aiming higher!

e Can we exploit this effect directly by preparing the system in a random first
excited state of the uniform transverse field?

erage . ess Probability

e Average success probability near 1/20, which saturates the upper bound given
by conservation of probability!
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Tunneling to a different topic!

Simulated Quantum
Annealing

Different Strategies
for QAO
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Simulated Anncaling

Quantum Anncaling

Simulated Quantum
Anncaling

e
<Jo
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Path-Integral Quantum Monte Carlo method underlies SQA

/

o Trotterize the QAO Hamiltonian: exp (A + B) & (exp (Tl) eXp (!—))I'

o Quantum-to-Classical mapping with “imaginary-time direction”

—(H —,.’fE('(Z]

C _ (

QA = —3H '
[ "..«‘-1 TI. (.——:fH Zr

Input:  DVI - 1820x1080p@58 S4Hz
Output:  SDI - 1920x1080I@6E0Hz
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Path-Integral Quantum Monte Carlo method underlies SQA

o Trotterize the QAO Hamiltonian: exp (A + B) & (exp (Tl) eXp (’;—))I

o Quantum-to-Classical mapping with “imaginary-time direction”

(‘—;"“),H (—,.’fE('(Z)
OA = ——57 < 7(2)= ——
/ ‘u‘-l TI. (.~—:fH ZZGSZ( __‘))E('[L)
: H H
(\\_I)(H + H,) ~ H{\I]) (T) exXp ( Lr)
L
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Sample from 7 using a Markov Chain!

e Local moves (bit flips) that satisty detailed balance:

=]
N\.

P(z.7') = min {1.

e Run-time of the algorithim <= Markov Chain mixing time
e Bounding the mixing time can be a challenging problem!

e Spectral analysis; 7 = O (; log L)

A(P) 775 mnin
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Hamming Weight with a Spike

2] ¢ |z| # n/4
n |zl =n/4
e SA takes exponential time to find the minimum at z = 00...00

12

e QA has gmin = O(n172), and finds the minimum in time O(n)

e How does H(_Q;\ fare?

Page 26/33



Numerical results: SQA finds the minimum in polynomial time!
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e Number of sweeps needed to mix scales like O(n®) with 2 ~

e Probability of stepping on the spike is O(exp(—=)), therefore L = O(n) trotter
slices are required for tunneling, otherwise the mixing time is exponential.

e Critical slowdown as s — 1 can be understood in terms of the zero-temperature

phase transition for the classical 1D Ising model,
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Numerical results: SQA finds the minimum in polynomial time!
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e Number of sweeps needed to mix scales like O(n®) with 2 ~

1\

e Probability of stepping on the spike is O(exp(—=—)), therefore L = O(n) trotter

slices are required for tunneling, otherwise the mixing time is exponential.

e Critical slowdown as s — 1 can be understood in terms of the zero-temperature

phase transition for the classical 1D Ising model,
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Proof idea: “time spent on the spike decomposition”

b(z) = # of z in z with

zi| =n/4

lI.L' }1_'_] L
Br={ze€Q: < blz) < ¥} , L>»k=1,....,m>n
m m

e Decompose PP into Pp,, which moves within each By, and a block
chain P that moves between the By,

e Show rapid mixing within each block by a Rayleigh quotient com-
parison to the Hamming weight without the spike.

e T'he block chain is a birth-and-death chain, need to show that
there are no bottlenecks.
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Conclusion

e Non-adiabatic effects can significantly increase the success prob-
abilities for QAO on hard instances of MAX 2-SAT at n = 20 bits.

e Open question: How well do these strategies work at larger n,
where typical random instances are expected to be hard for QAO?

e Simulated Quantum Annealing can inherit some of the advantages
of Quantum Annealing, and can be exponentially faster than Sim-
ulated Annealing.

e Open question: Can Quantum Annealing generally be simu-
lated on a classical computer with polynomial overhead?
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