Title: Extending the state space of LQG

Date: Dec 10, 2014 03:30 PM

URL: http://pirsa.org/14120011

Abstract: Instead of formulating the state space of a quantum field theory over a single big Hilbert space, it has been proposed by Jerzy Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. I will discuss the physical motivations for this approach and explain how it can be implemented in the context of LQG. While the resulting state space forms a natural extension of the Ashtekar-Lewandowski Hilbert space, it treats position and momentum variables on equal footing. This paves the way for the construction of semi-classical states beyond fixed graph level, and eventually for the derivation of LQC from full LQG.

Pirsa: 14120011 Page 1/30

Why?

- ► LQG treatment of holonomies / flux is very unbalanced

 → serious issue when looking for well-behaved coherent states

 [see also: Koslowski & Sahlmann '11, Dittrich & Geiller '14]
- ▶ working with a stack of small theories is technically comfortable until we try to go beyond fixed graph → at the end we need to put the pieces together [see also: Freidel & Ziprick '11 & '13]
- ► the LQG way (similar to standard QFT): discrete excitations around a vacuum \rightsquigarrow \oplus
- ► alternative: interpret small theories as specialization into specific observables of the continuous theory \rightsquigarrow \otimes [see also: Thiemann & Winkler '01]

Projective State Spaces for LQG / LQC

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

2/22

Pirsa: 14120011 Page 2/30

How?

- ▶ usual construction relies on writing the configuration space as a projective limit → let's write the phase space as a projective limit... [see also: Thiemann '01]
- ► transcription at the quantum level → projective families of density matrices, the projections are given by appropriate partial traces [Kijowski '76, Okołów '09 & '13]
- ▶ physical insight → a given experiment only measures a finite number of observables

Projective State Spaces for LQG / LQC

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

3/22

Pirsa: 14120011 Page 3/30

Contents

Projective Systems of State Spaces
Projective Systems of Phase Spaces
Projective Systems of Quantum State Spaces

Application to Quantum Gravity

Dealing with Constraints

Projective State Spaces for LQG / LQC —Projective Structures arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 4 / 22

Pirsa: 14120011 Page 4/30

Projective Systems of Phase Spaces

$$\eta \preccurlyeq \eta' \preccurlyeq \eta'' \in \mathcal{L}$$

Collection of partial theories:

- ▶ label set \mathcal{L} , \leq
- ▶ $\eta \in \mathcal{L} = a$ selection of d.o.f.'s
- 'small' symplectic manifolds \mathcal{M}_{η}

Ensuring consistency:

- ▶ projections $\pi_{\eta' \to \eta}$ for $\eta \preccurlyeq \eta'$
- compatible with symplectic structures
- ▶ 3-spaces-consistency → projective system

[Projective state spaces: Kijowski '76, Okołów '09 & '13]

Projective State Spaces for LQG / LQC

└─Projective Structures

└ Classical

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Projections & Factorizations

$$\pi: \mathcal{M} \to \widetilde{\mathcal{M}}$$

$$q_1, \ldots, q_n$$
 p_1, \ldots, p_n ;

$$\widetilde{q}_1, \ldots, \widetilde{q}_m$$

 $\widetilde{p}_1, \ldots, \widetilde{p}_m$;

$$\mathcal{M} \approx \widetilde{\mathcal{M}} \times \mathcal{M}$$

$$q_1, \ldots, q_n$$
 $p_1, \ldots, p_n;$

$$\downarrow$$

$$\widetilde{q}_1, \ldots, \widetilde{q}_m, q_{m+1}, \ldots, q_n$$
 $\widetilde{p}_1, \ldots, \widetilde{p}_m, \widetilde{p}_{m+1}, \ldots, \widetilde{p}_n;$

$$\mathcal{C} \approx \widetilde{\mathcal{C}} \times \mathcal{C}$$

$$\neq$$

$$\tau:\mathcal{C}\to\widetilde{\mathcal{C}}$$

$$q_1\,,\,\,\ldots\ldots\,,\,\,q_n$$
 \downarrow
 $\widetilde{q}_1\,,\,\ldots\,,\,\widetilde{q}_m$

Projective State Spaces for LQG / LQC —Projective Structures

└ Classical

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Pirsa: 14120011 Page 7/30

As a classical field theory

$$\mathcal{M}_{\mathcal{I}'} pprox \mathcal{M}_{\mathcal{I}} imes \left(\mathcal{I}^{\perp} \cap \mathcal{I}'
ight)$$

$$\psi,\,t,\,E$$

$$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (\Pi_{\mathcal{I}}\,\psi)\,,\,t,\,E;\ \ (\psi-\Pi_{\mathcal{I}}\psi)$$

$$\mathcal{I} \subset \mathcal{I}' \subset \mathcal{H}$$

Phase space $\mathcal{H} \times \mathbb{R}^2$:

- ► Hilbert space \mathcal{H} with $\Omega_{\mathcal{H}} = 2 \operatorname{Im} \langle \cdot, \cdot \rangle$
- $ightharpoonup \mathbb{R}^2 = \mathsf{time} \ \& \ \mathsf{energy}$

Projective description:

- ▶ labels: finite dimensional vector subspaces \(\mathcal{I} \subseteq \mathcal{H} \)
- $ightharpoonup \mathcal{M}_{\mathcal{I}} = \mathcal{I} \times \mathbb{R}^2$
- $\blacktriangleright \ \pi_{\mathcal{I}' \to \mathcal{I}} = \left. \mathsf{\Pi}_{\mathcal{I}} \right|_{\mathcal{I}'} \times \mathsf{id}_{\mathbb{R}^2}$

Projective State Spaces for LQG / LQC
Projective Structures
Classical

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 7 / 22

Projective Systems of Quantum State Spaces

$$\eta \preccurlyeq \eta' \preccurlyeq \eta'' \in \mathcal{L}$$

Modeled on special case:

- classical factorizations $\mathcal{M}_{\eta'} \approx \mathcal{M}_{\eta' \to \eta} \times \mathcal{M}_{\eta}$
- ► 3-spaces consistency $\mathcal{M}_{\eta'' \to \eta} \approx \mathcal{M}_{\eta'' \to \eta'} \times \mathcal{M}_{\eta' \to \eta}$
- ▶ quantum equivalent → ⊗-factorizations

Projective families $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

- $ightharpoonup
 ho_{\eta}$ density matrix on \mathcal{H}_{η}
- $\blacktriangleright \operatorname{Tr}_{\mathcal{H}_{\eta' \to \eta}} \rho_{\eta'} = \rho_{\eta}$

[Projective state spaces: Kijowski '76, Okołów '09 & '13]

Projective State Spaces for LQG / LQC

└─ Projective Structures

└ Quantum

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Second quantization

$$\widehat{\mathcal{M}}_{\mathcal{I}'}pprox \widehat{\mathcal{M}}_{\mathcal{I}}\otimes \widehat{(\mathcal{I}^{\perp}\cap\mathcal{I}')}$$

$$egin{aligned} \left| \left(n_i
ight)_{i \in I'}
ight
angle \otimes \left| \psi
ight
angle_{\mathcal{T}} \ & \downarrow \ & \left| \left(n_i
ight)_{i \in I}
ight
angle \otimes \left| \psi
ight
angle_{\mathcal{T}} \otimes \left| \left(n_i
ight)_{i \in I' \setminus I}
ight
angle \end{aligned}$$

$$\mathcal{I}\subset\mathcal{I}'\subset\mathcal{H}$$
 $\left(e_{i}
ight)_{i\in I}$ ONB of $\mathcal{I},\left(e_{i}
ight)_{i\in I'}$ of \mathcal{I}'

Usual quantization $\to \widehat{\mathcal{H}} \otimes \mathcal{T}$:

- ▶ Fock space $\widehat{\mathcal{H}}$ built from \mathcal{H}
- $ightharpoonup \mathcal{T} = L_2(\mathbb{R}, d\mu_{\mathbb{R}})$

Alternative \rightarrow projective setup:

$$lacksquare$$
 $\widehat{\mathcal{M}}_{\mathcal{I}}=\widehat{\mathcal{I}}\otimes\mathcal{T}$

$$\blacktriangleright \ \widehat{\mathcal{M}}_{\mathcal{I}'} \approx \widehat{\mathcal{M}}_{\mathcal{I}} \otimes \widehat{(\mathcal{I}^{\perp} \cap \mathcal{I}')}$$

from
$$\widehat{\mathcal{I}\oplus\mathcal{J}}pprox\widehat{\mathcal{I}}\otimes\widehat{\mathcal{J}}$$

Projective State Spaces for LQG / LQC
Projective Structures
Quantum

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 9 / 22

Contents

Projective Systems of State Spaces

Application to Quantum Gravity
Holonomy-Flux Algebra
Loop Quantum Cosmology

Dealing with Constraints

Projective State Spaces for LQG / LQC LQuantum Gravity

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 10 / 22

Pirsa: 14120011 Page 11/30

The factorizations

The state spaces:

- $ightharpoonup T^*(G^n)$
- ▶ one group variable per edge

The factorizations:

- ▶ $G^n \approx G^m \times G^{n-m}$
- ▶ selecting specific edges → prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor
 G^{n-m}

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC

└Quantum Gravity

LQG

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

The factorizations

The state spaces:

- $ightharpoonup T^*(G^n)$
- ▶ one group variable per edge

The factorizations:

- ▶ $G^n \approx G^m \times G^{n-m}$
- ▶ selecting specific edges → prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor
 G^{n-m}

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC

└─Quantum Gravity

LQG

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

The factorizations

The state spaces:

- $ightharpoonup T^*(G^n)$
- ▶ one group variable per edge

The factorizations:

- ▶ $G^n \approx G^m \times G^{n-m}$
- ▶ selecting specific edges → prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor
 G^{n-m}

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC

└─Quantum Gravity

LQG

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Relation to the usual LQG Hilbert space (1)

 $\psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{LQG}$ defines a projective family $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

- choose η' with underlying graph γ' , such that $\eta \preccurlyeq \eta'$ and $\gamma \preccurlyeq \gamma'$

There is an **injective** map from the space of density matrices on \mathcal{H}_{LQG} into the projective state space.

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC LQuantum Gravity

LQG

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Relation to the usual LQG Hilbert space (2)

The map embedding the LQG state space in the projective one is **not surjective**.

We have states with narrow distribution for infinitely many holonomies:

- ▶ first step toward satisfactory coherent states
- but more work needed (restrict the label set...)

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC └ Quantum Gravity LQG

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 14 / 22

Page 16/30 Pirsa: 14120011

Relation to the usual LQG Hilbert space (2)

The map embedding the LQG state space in the projective one is **not surjective**.

We have states with narrow distribution for infinitely many holonomies:

- ▶ first step toward satisfactory coherent states
- but more work needed (restrict the label set...)

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC └ Quantum Gravity LQG

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 14 / 22

Pirsa: 14120011 Page 17/30

Loop Quantum Cosmology

$$n = m/k$$
 $m, n, k \in \mathbb{N}$

Label set $\{n \in \mathbb{N}\}$:

- ▶ with order $n \mid m$
- ▶ less observables than on H_{LQC}

The classical projections are covering maps:

- no factorization as Cartesian product of symplectic manifolds
- ▶ but a ⊗-projective structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]

LQC

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

15/22

Pirsa: 14120011 Page 18/30

Loop Quantum Cosmology

$$L_2\left(\mathcal{U}_1\right) \approx L_2\left(\mathcal{U}_1\right) \otimes \mathbb{C}^k$$

$$\left| p = k q + r \right\rangle_{m}$$

$$\left| q \right\rangle_{n} \otimes \left| r \right\rangle_{m \to n}$$

$$n = m/k$$

$$m, n, k \in \mathbb{N}$$

Label set $\{n \in \mathbb{N}\}$:

- ▶ with order $n \mid m$
- ▶ less observables than on H_{LOC}

The classical projections are covering maps:

- no factorization as Cartesian product of symplectic manifolds
- ▶ but a ⊗-projective structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]

Projective State Spaces for LQG / LQC LQuantum Gravity

Quantum Gravit

LQC

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Contents

Projective Systems of State Spaces

Application to Quantum Gravity

Dealing with Constraints
The Easy Case: Nice Constraints
Regularizing Unfitting Constraints

Projective State Spaces for LQG / LQC LConstraints

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 16 / 22

Pirsa: 14120011 Page 20/30

Nice Constraints

Restrictive requirements:

- lacktriangledown orbits $o \pi_\eta^{ ext{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- ▶ observables

Projective State Spaces for LQG / LQC Constraints
The Easy Case

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 17 / 22

Pirsa: 14120011 Page 21/30

Nice Constraints

Restrictive requirements:

- lacktriangledown orbits $o \pi_\eta^{ ext{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- ▶ observables

Projective State Spaces for LQG / LQC LConstraints

└─The Easy Case

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry

17 / 22

Pirsa: 14120011 Page 22/30

Nice Constraints

Restrictive requirements:

- lacktriangledown orbits $o \pi_\eta^{ ext{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- ▶ observables

Projective State Spaces for LQG / LQC Constraints
The Easy Case

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 17 / 22

Pirsa: 14120011 Page 23/30

Unfitting Constraints

Successive approximations:

- ▶ labeled by $\varepsilon \in \mathcal{E}$
- ▶ nice on smaller and smaller cofinal parts of £

Projections between approximated theories:

- dynamical projective system on a subset of $\mathcal{E} \times \mathcal{L}$
- ► notion of convergence

Projective State Spaces for LQG / LQC \bot Constraints

ldashRegularizing

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Implementation of the Hamiltonian constraint

 ∞

$$E - \langle \psi, H\psi \rangle = 0$$

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ▶ truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- ► quantum → convergence for Fock dynamical states

Projective State Spaces for LQG / LQC \bot Constraints

-Regularizing

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

Implementation of the Hamiltonian constraint

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ▶ truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- ► quantum → convergence for Fock dynamical states

Projective State Spaces for LQG / LQC Constraints
Regularizing

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry 19 / 22

Pirsa: 14120011 Page 26/30

Implementation of the Hamiltonian constraint

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ▶ truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- ► quantum → convergence for Fock dynamical states

Projective State Spaces for LQG / LQC Constraints
Regularizing

arXiv:1411.3589 to 1411.3592 Suzanne Lanéry

19 / 22

Pirsa: 14120011 Page 27/30

Summary

- we can construct projective state spaces for LQG and LQC
- results obtained in fixed graph can be directly imported
- lacktriangle assembling is done with a different interpretation $o \eta$ selects observables, not states
- $lackbox{lack}$ enlarged state space ightarrow states that were not constructible on $\mathcal{H}_{\mathsf{LQG}}$ can be designed
- ▶ needed input for dealing with constraints → regularizing scheme + projections between the approximated theories

Projective State Spaces for LQG / LQC

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

20 / 22

Pirsa: 14120011 Page 28/30

What next?

- ▶ good coherent states: more work needed (because of obstructions in the algebra itself) → cut down the label set... [see also: Giesel & Thiemann '06]
- ► link between LQG and LQC → partly depends on progress in the previous point [see also: Engle '07]
- ▶ solving Gauss and diffeo constraints, ultimately even Hamiltonian constraint → by gluing together finer and finer discretizations?
- ▶ application to QFT → relation between regularization schemes considered here and renormalization techniques?

[see also: Dittrich '12]

Projective State Spaces for LQG / LQC

arXiv:1411.3589 to 1411.3592

Suzanne Lanéry

21/22

Pirsa: 14120011 Page 29/30

Pirsa: 14120011 Page 30/30