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Abstract: <p>We propose a hew way to search for (hidden) cool molecular hydrogen H2 in the Galaxy through diffractive and refractive effects:
Stars twinkle because their light crosses the atmosphere. The same phenomenon is expected on a longer time scale when the light of a remote star
crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. Our simulations and test observations show

that in favorable cases, the light of a background star can be subject to stochastic fluctuations on the order of a few percent at a characteristic time
scale of afew minutes.</p>

<p>We searched for scintillation caused by molecular gas within visible dark nebulae as well as by hypothetical halo clumpuscules of cool
molecular hydrogen (H2-He) with the ESO-NTT telescope. Within a few thousands of densely sampled light-curves, we found one candidate that
shows variabilities compatible with a strong scintillation effect through a turbulent structure of the B68 nebula. Furthermore, since no candidate has
been found toward the SMC, we were also able to establish upper limits on the contribution of gas clumpuscules to the Galactic halo mass.</p>

<p>I will discuss the perspectives of synchronized observations with two large distant telescopes, to observe the time decorrelation between the
light curves, an undisputable signature of the scintillation process. | will then show that a few nights of observation using the so-called A«
movie-mode A» of LSST should allow one to significantly constrain the last unknown baryonic contribution to the Galactic mass.</p>
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Search for galactic turbulent gas

— visible or Hitilits7 -

through interstellar scintillation

A&A 412, 105-120 (2003):
Does Transparent Hidden Matter Generate Optical Scintillation?

A&A 525, A108 (2011):
Results from a test with the NTT-SOFI detector

A&A 552, A93 (2013) :
Simulation of Optical Interstellar Scintillation

Marc MONIEZ, IN2P3, CNRS JU . 9 december 2014
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Not an easy seminar...

e Hidden matter problematics are known by
cosmologists and particle physicists
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Not an easy seminar...

Hidden matter problematics are known by
cosmologists and particle physicists

variable objects and light-curves are known by
astronomers

scintillation process is known by Radio-
astronomers

Fractal objects are known by mathematicians
Fresnel diffraction is known by opticians
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The Milky Way rotation curve

An evidence for hidden matter
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The gravity of the visible matter in the Galaxy is not enough to explain the high orbital
speeds of stars in the Galaxy. For example, the Sun is mowving asbout 80 kim/sec too fast,
The part of the rotation curve contributed by the visible marter only is the bottom curve.,
The discrepancy bemwesn the two cuarves is evidence for a dark mattexr halo.
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A brief history of the baryons...
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Before the first CMB measurements
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Todays’ cosmic abondance
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Todays’ cosmic abondance of Baryons
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Todays’ cosmic abondance of Baryons
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Todays’ cosmic abondance of Baryons
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® Primordial nucleo-synthesis => €2, = 0.04

e Planck results: €, h?>=0.0224 => Q, = 0.048
e The fraction of baryons in matter is f, = 17 %
* Mainly made of H + 25% He in mass
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Todays’ cosmic abondance of Baryons
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® Primordial nucleo-synthesis => €2, = 0.04

e Planck results: €, h?>=0.0224 => Q, = 0.048
* The fraction of baryons in matter is f, = 17 %
e Mainly made of H + 25% He in mass

Cluster baryonic pie
(Ettori et al. 2009)

Most of the baryonic mass in clusters
is in hot, X-ray-emitting gas
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Todays’ cosmic abondance of Baryons
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® Primordial nucleo-synthesis => €2, = 0.04

e Planck results: Q2 h?>=0.0224 => Q, = 0.048
e The fraction of baryons in matter is f, = 17 %
e Mainly made of H + 25% He in mass

Cluster baryonic pie
(Ettori et al. 2009)

Most of the baryonic mass in clusters
is in hot, X-ray-emitting gas

. Stars 7%

Unknown 18 %

Page 16/101




More unknown baryons at smaller scales?

Cosmic Baryonic Fraction: f, = icf’ =0.17
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More unknown baryons at smaller scales?
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More unknown baryons at smaller scales?
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More unknown baryons at smaller scales?

Cosmic Baryonic Fraction: fh

M, mass of structure (M
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Very unsatisfactory isn’t it?
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Where are these baryons?

e Notin MACHOs =>
microlensing results

Luminous
source
Moving massive
object M, =

GRAVITATIONAL MICROLENSING EFFECT
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Where are these baryons?

e Compact Objects? ===> NO (microlensing)
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Where are these baryons?

e Compact Objects? ===> NO (microlensing)
e Gas?
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Where are these baryons?

e Compact Objects? ===> NO (microlensing)
e Gas?
— Atomic H well known (21cm hyperfine emission)
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Where are these baryons?

e Compact Objects? ===> NO (microlensing)
e Gas?
— Atomic H well known (21cm hyperfine emission)

— Poorly known contribution: molecular H, (+25% He)
e Cold (10K) => no emission. Very transparent medium.
e In fractal structure covering 1% of the sky.
Clumpuscules ~10 AU (Pfenniger & Combes 1994)
e In the thick disc or/and in the halo
e Thermal stability with a liquid/solid hydrogen core

e Detection of molecular clouds with quasars (Jenkins et al. 2003, Richter et al.
2003) and indication of the fractal structure with clumpuscules from CO
lines in the galactic plane (Heithausen, 2004).
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H, contribution is hard to evaluate
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H, contribution is hard to evaluate

e H, symmetrical molecule => electric dipolar
transitions forbidden

v'"No emission in cold medium
v"No absorption at A >110 nm
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H, contribution is hard to evaluate

e H, symmetrical molecule => electric dipolar
transitions forbidden
v'"No emission in cold medium } 'No resonant

v'"No absorption at A >110 nm process
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H, contribution is hard to evaluate

e H, symmetrical molecule => electric dipolar
transitions forbidden
v"No emission in cold medium } 'No resonant |

v'No absorption at A >110 nm process

e Usually H, 1s estimated from CO tracer or
from dust. Depend on metallicity hypothesis...
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Orders of magnitude

e Assume a spherical
1sothermal halo
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Orders of magnitude

Assume a spherical
1sothermal halo

Made of H, clouds
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Orders of magnitude

Assume a spherical
1sothermal halo

Made of H, clouds

Average column-
density toward LMC
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These clumpuscules refract light

L =
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%

These clumpuscules refract light

e Elementary process involved: polarizability o

— far from resonance
=> classical forced oscillator formalism

— close to initial propagation direction
=> collective effect even with low molecular
density ~ 102 cm™ (<1/A\?)
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e

These clumpuscules refract light

e Elementary process involved: polarizability o

— far from resonance
=> classical forced oscillator formalism

— close to initial propagation direction
=> collective effect even with low molecular
density ~ 102 cm™ (<1/A\?)

e Supplement of phase ¢ when crossing H, medium

=> typically 80,000 x2st (for 1% of the sky) @ A=500nm

= Column density fluctuations (turbulences) in the
medium as small as 10-¢ are sufficient to produce
detectable wavefront distorsions
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Scintillation through a strongly
diffusive screen
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Scintillation through a strongly
diffusive screen
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Scintillation through a strongly
diffusive screen
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Scintillation through a strongly
diffusive screen
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Scintillation through a diffusive screen

After refraction, propagation of distorted wave surface

is driven by Fresnel diffraction that produces speckle
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Demonstrator

A CAUTION

DO NOT STARE INTO BEAM

™ i y LASER IN USE

coherent
light Diffusive Interferences

medium -> speckle
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Contrast i1s severely limited by the source size
=> spatial coherence
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Contrast i1s severely limited by the source size
=> spatial coherence ol E A |
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Contrast is severely limited by the source size
=> spatial coherence e S AN |

intensity
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Contrast 1s severely limited by the source size
=> spatial coherence A N

e Depression width ~ Rg
=> Info on source size
e Contrast ~ R,/ Rg

e Also depends on AA (time
coherence), but not critically:
A)&/K<O.l => AR[«‘/R]«‘<0 .05
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This is a real storm cloud!

- * Kolmogorov turbulence -> realistic
\ - Other power laws have been studied

log10(P(k))
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Speckle image after crossing screen (simulation)

Point source Point source - zoom Extended source
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Distance scales | @

4 distance scales characterize the speckle pattern
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Distance scales | m

4 distance scales characterize the speckle pattern

* Diffusion radius R ;.
* separation such that: o[¢p(r+R ;;)-¢(r)] = 1 radian
* Characterizes the turbulence
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R ;¢ ¢ Statistical characterization of a
stochastic screen

R s = size of domain where S
A¢ = 1 radian "
or equivalently (@ A = 500 nm)
AN, = 1.8 x10'8 molecules/cm?

V

.

e This corresponds to
- AN,/ N, ~10°

for disk/halo clumpuscule
- AN,/ N;~ 104

for Bok globule (NTT search) —

Phase supplement along this line
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Distance scales

4 distance scales characterize the speckle pattern

* Diffusion radius R ;.

* separation such that: o[¢p(r+R ;;)-¢(r)] = 1 radian
* Characterizes the turbulence i } %’*
Refraction radius R_; y L —
S —]
I.If_i; \ ’ _—
L
b é;_
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Distance scales

4 distance scales characterize the speckle pattern
* Diffusion radius R ;.
* separation such that: o[¢p(r+R ;;)-¢(r)] = 1 radian

* Characterizes the turbulence i |4 g?\
- - é <
*Refraction radius R, y .,ﬂ;:g‘). _
. . . . . . . C$ ]
* size of the region from which most of the scattered signal, | | "E § e
seen by a single point observer, originates ~ z,A/R ' 3
=
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Distance scales

4 distance scales characterize the speckle pattern
* Diffusion radius R ;.

* separation such that: o[¢p(r+R ;;)-¢(r)] = 1 radian

* Characterizes the turbulence i } a?\
Refraction radius R, y fj_ -
* size of the region from which most of the scattered signal, . "'5'; _—
seen by a single point observer, originates ~ z,A/R ' § i

- Larger scale structures of the diffusive gas can play a role if
focusing/defocusing configurations happen
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Distance scales

4 distance scales characterize the speckle pattern

* Diffusion radius R ;.
* separation such that: o[¢p(r+R ;;)-¢(r)] = 1 radian

* Characterizes the turbulence i } ?
- - é b=
*Refraction radius R h -{'L;:g'), ~
. . . X . . . EEY —
» size of the region from which most of the scattered signal, | | 'g 3 =
seen by a single point observer, originates ~ z,A/R ' SE—
=4

- Larger scale structures of the diffusive gas can play a role i
focusing/defocusing configurations happen

- Projected source size Rg
speckle from a pointlike source

is convoluted by the source
projected profile. -> impacts the
contrast of the illumination pattern
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Distance scales

4 distance scales characterize the speckle pattern
* Diffusion radius R ;.
* separation such that: o[¢p(r+R;)-¢(r)] = | radian
* Characterizes the turbulence

_lncdent Plgre Bow

*Refraction radius R

|3
» size of the region from which most of the scattered signal, | | %
seen by a single point observer, originates ~ z,A/R 13

focusing/defocusing configurations happen

- Projected source size Rg
speckle from a pointlike source

is convoluted by the source
projected profile. -> impacts the
contrast of the illumination pattern
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Time scale (observable)

If R, ., 1s the largest scale :
' - -1
o ref ) A <0 Rdrff Vir
fref(D) = 5 =~ 5'2’"‘"“’”, lpm‘ [ 1 kpc] ’ lOOOkm‘ [lOOkm/s]
Where

Zp 1s the distance to the cloud
V., 1s the relative speed of the cloud
with respect to the line of sight

-> V. is also the speed of the

illumination pattern in front of
the telescope
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Time scale (observable)

If R, ., 1s the largest scale :

. ref . A Rdiff
ref(A) = 5 = ~ 3.2 ’""""“[ lpm‘ [ 1 kpc‘ ’ 1000 km
Where

Zp 18 the distance to the cloud
V., 1s the relative speed of the cloud
with respect to the line of sight

-> V. is also the speed of the

illumination pattern in front of
the telescope
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Time scale (observable)

If R, 1s the largest scale :

Rref . A Rd:ff
fref() = 5 = ~ 3.2 ’"'"“’“[ lpm‘ [ 1 kpc‘ ’ 1000 km
Where

Zp 18 the distance to the cloud
V., 1s the relative speed of the cloud
with respect to the line of sight

-> V. is also the speed of the

illumination pattern in front of
the telescope
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Modulation Index it wty
(observable) &

Theves (rveies. )

Essentially depends on Rg and R ¢
-> not on the details of the power spectrum of the fluctuations
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Modulation Index
(observable)

Essentially depends on Rg and R ¢
-> not on the details of the power spectrum of the fluctuations

Scintillation@A = 1 um
of Sun@ 10kpc (V~20)
through a cloud@ 160pc
with R ;;=1000km
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Signature of scintillation

e Stochastic light-curve (not random)
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Signature of scintillation

e Stochastic light-curve (not random)
— Autocorrelation (power spectrum)
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Signature of scintillation

e Stochastic light-curve (not random)
— Autocorrelation (power spectrum)
— Characteristic time (few minutes)
— Modulation index can be as high as 5%

e decreases with increasing star radius

e depends on cloud structure
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Signature of scintillation

e Stochastic light-curve (not random)
— Autocorrelation (power spectrum)
— Characteristic time (few minutes)
— Modulation index can be as high as 5%

e decreases with increasing star radius

e depends on cloud structure

e Signatures of a propagation effect

— Chromaticity (optical wavelengths)
e Long time-scale variations (few min.) ~ achromatic A~1/°

e Short time-scale variations (sub-min.) varies with A%~
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Signature of scintillation

e Stochastic light-curve (not random)
— Autocorrelation (power spectrum)
— Characteristic time (few minutes)
— Modulation index can be as high as 5%

e decreases with increasing star radius

e depends on cloud structure

e Signatures of a propagation effect

— Chromaticity (optical wavelengths)
e Long time-scale variations (few min.) ~ achromatic A~1/°
e Short time-scale variations (sub-min.) varies with A%~
— Correlation between light-curves measured
by 2 telescopes decreases with their distance
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Signature of scintillation

e Stochastic light-curve (not random)
— Autocorrelation (power spectrum) <) )
— Characteristic time (few minutes)

— Modulation index can be as high as 5%
e decreases with increasing star radius

e depends on cloud structure

e Signatures of a propagation effect

— Chromaticity (optical wavelengths)
e Long time-scale variations (few min.) ~ achromatic A~1/°

e Short time-scale variations (sub-min.) varies with A%

— Correlation between light-curves measured
by 2 telescopes decreases with their distance
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INIumination from a 0.5xR_,,, star@1Kpc
through a diffusor@160pc with R ;,= 1000km
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Series of light curves sampled by
telescopes 2000 km far from each other
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%

Fore and backgrounds

- High altitude cirruses
*Would induce easy-to-detect collective effects
on neighbour stars, whereas scintillation by a 10AU object
affects only one star.

Pirsa: 14120008 Page 72/101



®

Fore and backgrounds

- High altitude cirruses
*Would induce easy-to-detect collective effects
on neighbour stars, whereas scintillation by a 10AU object
affects only one star.

- « nearby » gas (at ~ 10pc)

*Scintillation would also occur on the biggest stars
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®

Fore and backgrounds

- High altitude cirruses
*Would induce easy-to-detect collective effects
on neighbour stars, whereas scintillation by a 10AU object
affects only one star.

- « nearby » gas (at ~ 10pc)

*Scintillation would also occur on the biggest stars

 Intrinsic variability

*Rare at this time scale and only with special stars (UV Ceti, flaring
Wolf-Rayet)
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Atmosphere, atmosphere?

e Blurs PSF, but doesn’t
affect the intensity collected
by a large telescope

e ~ 5cm size speckle due to
turbulent layers at ~ 10km

e Observable during total
solar eclipses: « shadow
bands »

Eye aperti_-.x_re

_“. : ) i
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Maximum fraction of LMC/SMC
scintillating stars

— -2
t(m > mthreshold)_ 10 X f(rrlthreshold)

At maxintum, 1% of the sky W
is covered by turbulent gas here

e m 1S the modulation 1index

* f is the fraction of gas
turbulent enough to have
m > IMhreshold
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e Blending (crowded field)=> differential photometry

irsa: 14120008

Expected difficulties, cures
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Expected difficulties, cures

e Blending (crowded field)=> differential photometry

e Delicate analysis
— Detect and Subtract collective effects

— Search for a not well defined signal
* VIRGO robust filtering techniques (short duration signal)
e Autocorrelation function (long duration signal)

e Time power spectrum, essential tool for the inversion problem
(as 1n radio-astronomy)
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Expected difficulties, cures

e Blending (crowded field)=> differential photometry

e Delicate analysis
— Detect and Subtract collective effects

— Search for a not well defined signal
* VIRGO robust filtering techniques (short duration signal)
e Autocorrelation function (long duration signal)
e Time power spectrum, essential tool for the inversion problem
(as in radio-astronomy)
e If interesting event => complementary observations
(large telescope photometry, spectroscopy,
synchronized telescopes...)
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Requirements to detect scintillation towards LMC

* Assuming R, = 1000km (fits 10 AU clumpuscules)
« Expect 5% modulation@500nm if r, < r s (10°/deg?)

v Smaller than AS type in LMC
v’ Characteristic time ~ few min.
v" Photometric precision required

Telescope > 2 meters
v Dead-time < few sec. — Fast readout Camera

v" B and R partially correlated =>2 cameras desirable ?
v" Optical depth probably small => Wide field
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Test towards Bok globule B638, Circinus,
cb131, and SMC

RS LERte © ESO-NTT telescope
oiad N § : * 3.6m

2 nights
 Infrared

® monitor 1000’s stars
through gas/dust
* allows 10s exposures with
small dead-time

* Search for fluctuating

stars
« other than known artifacts
cat a few % level
* with light curves of 1000’s
samples
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Test towards Bok globule B638, Circinus,
cb131, and SMC
* ESO-NTT telescope

* 3.6m
2 nights

e Infrared

* monitor 1000’s stars
through gas/dust
* allows 10s exposures with
small dead-time

* Search for fluctuating

stars
« other than known artifacts
s at afew % level
* with light curves of 1000's
samples
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Test towards Bok globule B68 and SMC
NTT IR (2 nights)
Mainly a test for background estimates and feasibility

e B68 (& ¢bl131, Circinus nebula)
— dust + existing gas at z, ~ 160 pc

iV

— Column density NIl ~ 2.6 x 10°?°cm~
— Signal if AN/N, ~ 107 per 1000 km
— 1114 stars monitored at z, ~ 7 kpc

— 50% are behind the nebula, 50 %
make a control sample

— 2000 exposures of 10s in 2 nights
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Test towards Bok globule B68 and SMC
NTT IR (2 nights)

Mainly a test for background estimates and feasibility

e B68 (& ¢bl131, Circinus nebula)
— dust + existing gas at z, ~ 160 pc
— Column density NIl ~ 2.6 x 10°?°cm—-2
— Signal if AN/N, ~ 107 per 1000 km
— 1114 stars monitored at z, ~ 7 kpc

— 50% are behind the nebula, 50 %
make a control sample

— 2000 exposures of 10s in 2 nights
e SMC

7 — blind search for invisible gas

— 980 stars monitored at z, ~ 64 kpc

— 1000 exposures of 10s in 2 nights

e Search for few % variability
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Results toward B63:

A star scintillating through visible gas?
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upper limits on scintillation optical depth

First fundamental result : no overwhelming unexpected background

Results from faisibility studies:

&

Upper limits on scintillation probability => constrain the turbulent gas abundance

Pirsa: 14120008
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Results from faisibility studies: @
upper limits on scintillation optical depth

First fundamental result : no overwhelming unexpected background
Upper limits on scintillation probability => constrain the turbulent gas abundance

stars behind visible gas
(B68 and other nebulae)

1 b

Optical Depth
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Results from faisibility studies: @
upper limits on scintillation optical depth

First fundamental result : no overwhelming unexpected background
Upper limits on scintillation probability => constrain the turbulent gas abundance

stars behind visible gas
(B68 and other nebulae)

1 b

Optical Depth

B68 ;
Less than 10% of the
area is covered by

gas with R ;< 60km

4 6 10 20 40 60 100

: R, (km)
b . il
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Results from faisibility studies:
upper limits on scintillation optical depth

First fundamental result : no overwhelming unexpected background
Upper limits on scintillation probability => constrain the turbulent gas abundance

stars behind visible gas blind search with stars behind
(B68 and other nebulae) invisible gas (SMOC)
: ' : ) “‘\.\- ' ' ) ) i -':‘ -
g’- 0.6 :‘y\\-\\" — - 1 - ; :
T o f&* Circinus g " g
g‘ [ g el E
0.2} E s | P | =
015 | E il | if halo only -
. 088 £ made of clumps =
0.1 B68 E “‘; fT(R,,)dR,, N l%jf a
0.06 Less than 10 % of the | *®: v N
0.04 area is covered by S g pie : é'
gas with Ry< 60km [iokcccr”  TUTWUWRER 40
0.02 h A A L ] 10 20 50 100 200 500 1000
L) 6 10 20 40 60 100 200

400
. R, (km) ‘ ‘ R, ~ 18 km corresponds to A, (km) .
‘ ‘ densiest clump (N™ ~107cm™)
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short term plans

synchronized observations
through > 4m class telescopes
to probe the strongest signature

> fluctuations are not
correlated at large distance

- Obtain synchronous observations
from 2 very distant telescopes

-> GEMINI telescopes?

- And/or « standard » telescope
observations with complementary
observations on candidates
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Scintillation with LLSST (15s exp.) or your telescope

For given R, the modulation m = o/<I> depends on the sources’
magnitude through the apparent stellar radius (here MS star)

e Source@7Kpc (gal. plane) in Kg e Source@55Kpc (LMC) in V
e Screen@ 160pc : B68- visible gas e Screen@ | Kpc : halo- QG GLEETWEES

NTT-SOFI precision
for T, A = 50s

exp
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Scintillation with LLSST (15s exp.) or your telescope

For given R ;. the modulation m = o/<I> depends on the sources’
magnitude through the apparent stellar radius (here MS star)

e Source@7Kpc (gal. plane) in Kg e Source@55Kpc (LMC) in V
e Screen@ 160pc : B68- visible gas e Screen@ | Kpc : halo- QG LHIEETWEE

WHT-LIRIS precision
for T = 50s

exp
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Scintillation with LLSST (15s exp.) or your telescope

For given R, the modulation m = o/<I> depends on the sources’
magnitude through the apparent stellar radius (here MS star)

e Source@7Kpc (gal. plane) in Kg e Source@55Kpc (LMC) in V
e Screen@ 160pc : B68- visible gas e Screen@ | Kpc : halo- QG LHIEETWEE
A1
v GEMINI precision
) In Kg for T,,,= 50s
I
(= Fees
0,1 ’..\ - Rdff',_.’
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LSST : Large Synoptic Survey Telescope

Optical telescope of 8.4 m diameter
In Chile (Cerro Pachon)
With wide field camera (3.5°) of 3.2 Gpixg

/
‘.

6 filters ugrizy

Large Synoptic Survey Telescope

Exposures 15s, readout 2s

Total field monitored 20 000 deg?
Repeted every ~ 4 nights

10 years survey

Galaxies: r;,,=27 after coaddition
Weak Lensing upto z ~ 3
SNIauptoz~ 1

BAO: 3.10" galaxies un to z ~ 3

Galaxies et galaxy clusters

Transients. ..

Pirsa: 14120008 Page 95/101



Scintillation with LSST ﬁ

Need for long series (hours)
of short exposures (15s)
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Scintillation with LSST @

Need for long series (hours)
of short exposures (15s)
from the same wide field
to precisely (< 1%) monitor faint stars (M > 20-21)

Movie mode 1 passband (the one with highest photon flux)

sub-minute -> during commissioning? deep drilling?
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Scintillation with LSST @

Need for long series (hours)
of short exposures (15s)
from the same wide field
to precisely (< 1%) monitor faint stars (M > 20-21)

Movie mode 1 passband (the one with highest photon flux)
sub-minute -> during commissioning? deep drilling?
>> Other communities should be interested in this mode (transits, flares...)
— Targets (remember: detectable scintillating stars have V > 20):
e stars from the Galactic plane behind visible nebulae
stars from LMC/SMC behind invisible gas
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For the (very) long term future...

A network of distant telescopes
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For the (very) long term future...

A network of distant telescopes

e Would allow to distinguish scintillation from
intrinsic variabilities

irsa: 14120008 Page 100/101




Conclusions - perspectives

e Searching turbulent gas through scintillation .
is technically possible right now

e To discover scintillation effects, we need: -=

e Technique sensitive to clumpuscules with
structuration inducing column relative density ¢
fluctuations =107 (10'”"molecules/cm?) per few 1000km ,

e Long term (halo studies): GAIA, LSST

Biblio : A&A 412, 105-120 (2003): A&A 525.A108 (2011): A&A 552.A93 (2013)
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)
/

> 2m class telescope(s)

Wide field camera (visible) with fast readout
Start with 10-100 nights with microlensing-like networks

Preferably synchronized observations through 4m class
telescopes to probe the best signature
-> fluctuations are not correlated at large distance
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