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Abstract: <p>A quantum isolated horizon can be modeled by an SU(2) Chern-Simons theory on a punctured 2-sphere. We show how a local
2-dimensiona conformal symmetry arises at each puncture inducing an infinite set of new observables localized at the horizon which satisfy a
Kac-Moody algebra. By means of the isolated horizon boundary conditions, we represent the gravitational fluxes degrees of freedom in terms of the
zero modes of the Kac-Moody algebra defined on the boundary of a punctured disk. In this way, our construction encodes a precise notion of
CFT/gravity correspondence. The higher modes in the algebra represent new non-geometric charges which can be represented in terms of free
matter field degrees of freedom. When computing the CFT partition function of the system, these new states induce an extra degeneracy factor,
representing the density of horizon states at a given energy level, which reproduces the Bekenstein's holographic bound for an imaginary
Barbero-Immirzi parameter.</p>
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= Call for a quantum treatment of the gravitational dof

Weak holographic principle:
The entropy in the 1stlaw is the log of the number of states of the black hole
that can affect the exterior

\ g 3
[Bekenstem: Sorkin; Smolin: Jacobson: Rovelli... |

= The horizon carries some kind of information with a density of
approximately 1 bit per unit area

|Whecler]

What these bits of information represent depends on the
deep structure of space-time
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BH Entropy in LQG

The single intertwiner BH model

Local definition of HH: [solated Horizons

2%
F(-‘l‘l — T.\_‘.

LQG techniques:

Quantum BH dof described by a Chern-Simons .
theory on a punctured 2-sphere H e A = 5§° « R null iypersurface with vanishing expunsion

. (@ transversal future pointing null vector fleld

Smaolin 9¢
i ]“] “\ "‘. i with vanishing expansion within A
IA=hickar Bagy GRICHRL, Nrasnow' W

|Engle. Newi. Peser, DP 1) * All fleld equations hold at &

" \
- e o N R ) =

* Areaconstraint 2 \irlds + 1) S T
el "

Al Gy . 0] dim|Invij, (™)

vie can model the IH by a single SU(2) intertwiner

et luymer]i e . W
(BH entropy d.of. = polymer-like excitations \/_
\ of the gravitational fleld -

e ——————————
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BH Entropy in LQG

The single intertwiner BH model

Local definition of RH: l=olated Homzons

2
F(A) = -

LQG techniques:

Quantum BH dof described by a Chern-Simons 2
theory on a punctured 2-sphere H e A = 5% x R null iypersurface with vanishing expansion

. (@ transversal future painting null vector fleld
with vanishing expansion within A

"0"‘|'|l‘| *'-:
[Ashiekar, Baez, Corichi, Krasnow 99)
[Engle. Nowi, Perez, DI 1] * All field equations held at A

- 1
* Areaconstraint 2 \Addpt 1)

N

g ol Al 1 1 A
im0 L dim|luvij, R

e can model the TH by a single SU(2) intertwiner

#Adn (7.m)
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BH entropy d.of, = D)
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“The nature of BH entropy is intimately related to the nature of BH temperature.

We cannot understand the one wathout the other.” [Bill Unruh, Loops13]

#* Local observer perspective + Unruh temp. by hand |Ghosh, Perez 11; Frodden, Ghosh, Perez 11]

# Analytic continuation to )

¢ |Frodden, Geiller, Nou, Perez 12])
#* KMS-state of a quantum ITH: 7, ,, 27(1—1/k) < ~ =1 [Dr13] (seealso [Bianchi 12])
A ' B N quantum halr argued to be asscclated to
- S 112 AL a new horizon microscopic observable
ra

(call for a GFT description in erder to
make sense of it)
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“The nature of BH entropy is intimately related to the nature of BH temperature.
We cannot understand the one wathout the other.” [Bill Unruh Loopsl3]

#* Local observer perspective + Unruh temp. by hand |[Ghosh, Perez 11; Frodden, Ghosh, Perez 11]

* Analytic continuation to 7 — ¢ [Frodden, Geiller, Noui, Perez 12]

* KMS-state of a quantum IH: 7, 27(1—=1/k) < ~ =1 [DI13] (see also [Bianchi 12])
< -
o A I \ quantum halr argued to be assccliated to
- : 1 (2 Ry a new horizon microscopic observable

y (call for a GFT description in order to

make sense of it)

o _q2 9 (1 !"Z) Boltzmann ent. = Entanglement ent. S .
] ven

O tr{oln 2)

R — ————eay [Sorkin 86)

Correlations of

S=k log W
Intertwiner structure | . . ...:um geometry dof
W = number of horizon encoding across the horizon
quantum shapes’ —— ——

(1217 13)

(see also |Perez 14 for a micro-canonical argument for such equivalence)
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“The nature of BH entropy is intimately related to the nature of BH temperature,
We cannot understand the one without the other.” [Bill Unruh. Loupsl3]
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Carlip's proposal

2+1 gravity acquires new degrees of freedom in presence of a boundary
(broken gauge invariance)

> In the Chern-Simons formulation, these are described by WZW theory

> new, dynamical “would-be gauge” d.o.f can account for the BH entropy

Attempl to describe the microphysics of BH in terms of
a “dual” 2-dim Conformal Field Theory

Poweriul method Howevaer, several open questions:
Cardy formula: * what is the microscopic nature of the d.o.f?
* where do the d.o.fl. live?

1k extension to higher dimensions?

" Universality problem:

(hidden) CFT symmetry underlying different microscopic approaches to BH entropy?
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BH Entropy in LQG

A

42

SLQC’ "}‘l!.‘\r

Main open questions:

= Can inclusion of matter d.o.f. on the TH give the Bekenstein-Hawking formula?
(see e 8. proposal of [Ghosh, Noul, Perez 13))

= Arethere CFT d.o.f. lurking somewhere?
(does LQG belongs to Carlip’s "universality class'®)

= Are the previous two questions related?

~ Can we learn something about the full theory?
(see the example of AAS/CFT)
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BIl Entropy in LQG

S LQG — l (2’ -+ pt N

F&

Main open questions:
> Can inclusion of matter d.o.f. on the IH give the Bekenstein-Hawking formula®?
{see e g. proposal of [Ghosh, Noul, Péerez 13])

> Are there CFT d.o.f. lurking somewhere?
(does LQG belongs to Carlip’s "universality class™?)

> Are the previous two questions related?

Can we learn something about the full theory?
(see the example of AdS/CFT)
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Kac-Moody Algebra

IH doundary conditions ~ SU(2) CS theory with punctures on the horlzon 2-sphere

3
-

N [ trlAAdA 4 SAAANA]
A= JDxR o 3

+ A /’Irf_.';l.\"'d.\ AT AN

Polsson brackets:

2

A € SU(2) particledo.t. Gopt

. = {AL (). AL (1)} = 8 tan—0(x = ¥).

S° € su(2) momentum conjugate to A “ b\ I

ANt =Ly, S'm l.\.L : {§'.4) = =7'A.  {§'.§7} = i/, S
5\ L

% need of regularization
)
Fia(A(x)) = S'6%(x — p) [Witten 9]
w J: v [Guadagming, Martelling, Mintchey 89)
[Ashtekar, 1
[Freadel. 1 ouapre (4]

INoul, Merez (M)

ez, Krasnov (0]

|Balachandran. Bimonte, Gupla, Stem 92

|Ranados vn)

The algebra of gnuge constraints leads 1o a set of charges at Lthe boundaries
whose Poisson bracket algebra is a classical Xae Moody algebra.

(equivalent to the charges obtained by & reduction of the Chern-Simons theory o a boundary W2ZW theory)
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Kac-Moody Algebra

IH dboundary conditions  ~  SU(2) CS theory with punctures on the horlzon 2-sphere
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F A [lr[r;[.\"'d.\ [ .\"'.-l.\]]

s Polsson brackets:
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Ny A o A = ’-‘ "
S* € su(2) momentum conjugate to A 1AL (2). Ayl } = 6yt

BOCN L. S w22, Lo (S

a need of regularization
EOM. Fl.(A(x)): et (e ) [Witten 89]
- f' |Guadagmng, Nartelling, Mintches 5|
|Ashtckar, Bacz, Krasnow (0]
[Freadel, 1 ouapre (M)

Nowtd, Perez (4]

IBalachandran. Bimante, Gupta, Stern 92)

|Ranados 9a)

The algebra of gnuge constraints leads to a set of changes at the boundaries
whose Poisson bracket algebra is a classical Kae Moody algebra,

(equivalent to the charges obtained by a reduction of the Chern-Simons theory to a boundary WZW theory)

Pirsa: 14110158 Page 20/68



The presence of the two boundaries 3D and 3H induces the presence of two
families of observables, each localized on one boundary

‘”-\.“n ap = ’ﬁ.r.\ﬂ'_l ; r"'l:f”l.’” = ()

N
LT

$
i r‘"””” o 'l.\lllrf ) {_' ”” apn = 1]

-y

N

4+ 2 sels of test functions:

@ {mod 2n) 15 an angular soordinate on the two boundaries

"

. k o :
+ KacMoody generators: q(£'"') = = f tr[d™ A=A ], B=D.H
DI

commutation relations of the quantum operators associnted with these observables:

Kao-Moody algobra I

Pl iy o fs ar Voo -
[ql\“ u-.:.‘] — |_rk‘1',\- + Al =r ‘\ ;ﬂ.\' Y ud))

The currents ¢ ' correspond to the modes of the holomorphic field (=)

conformalmap = = ¢"', w =1, + i)
»

light-cone coordinate in Euclidean spaoce

conformal primary field of weight 1
the holomorphic Chern-Simons

; 1 N =N=1 o gauge connection can be ldentified
SAAL) . Y T T gt with an affine current satisfying
N ;——' the Kac-Moody algebra
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The presence of the two boundaries 3D and 3H induces the presence of two
families of observables, each localized on one boundary

cu-u“” oy . ¢ -t NO__» P '“"fnl- “ (i
a I \E)lon
+ Zsetsof test functions: ., v Wt
& Ny =770 E5(Dlap =0
@ (moed 2n) s an angular ssordinate on the two boundaries

_'f u{dEMA-EMANA]. B=D.H
Dl

4+ Kac Moody generators: q(&'"') =

commutation relations of the quantum operators associated with these observables:

KaoMoody algoebra I

eagd ey . <A N .
[q'\" q‘.:.‘] = 1 l_rkq,\'.. A + ‘\ s“,\ WY u“:)

The currents ¢ correspond to the modes of the holomaorphic fleld A'(2)

conformal map I = c.ow = 1, + if)
v

light-cone coordinate in Fuclidean space

conformal primary field of weight 1
the holomorphic Chern-Simons
‘ v Lo gauge connection can be identified
A=) DY e bl ok with an affine current satisfying
3 \—" s Moody algebra
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HIGHEST WEIGHT REPRESENTATION

+ Cartan-Weyl basis (of the associated Lie algebra g):

Carts - - Y .
sub‘:\lg::\m v bl SI<T1T (r=rankoig) slep operators o 1”' E l = O

(maximal set of commuting Hermilian generators) {correspanding to the set of positive roots «)

+ g=su(2).r- . an~1:

H=H'=7 E'=E'=7"=1

SLI2) Kac-Moody generators on oH

”'\‘ = e 1N HT.I) ‘ ,‘:;- = e + N H‘_ ) 1 !“.\,‘ = di(e

. % < gl indy YITL K] SV i
hermiticity conditions Hy = H'\ . 1‘.‘\-' LIPS 5 '\
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HIGHEST WEIGHT REPRESENTATION

+ Cartan-Weyl basis (of the associated Lie algebra g):

arts . - “on .
hug-;g:;\:a I!'.l ‘_<_ ! S I {r=rankoi g) slep operators J s, “'f’. E l = o BT

{maximal set of commuting Hermilian generators) (correspanding to the set of positive Toots «)

+ g=su(2).r-lL.a~1:

H=H'=7, E‘'=E"=

SU2) Kac-Moody generators on

H\' = (¢ N H'."'=) A [-J’;_ = e 1NO_+ Y

. e o "y
hermiticity conditions HY o B g T
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+ Given the highest weight state of a vacuum unitary irreducible representation of su(2),
namely the ™ vacuum state™ e}

fl|‘|‘”“l“_j) ~ ”’l:r’
AS e,y =0 it N >0
E*lviy=0 if N>0

all the other states of a unitary irreducible highest weight representation of the associated Kac-Moody
algebra can be buill from it by repeated application of the negative root operators

-

~( ) — (Y=
ORI R Dbt v;)

e . . (i1 .
I'he vacuum states form a representation of the finite dimensional algebra 0= {q:, ) } isomorphic to su(2)

Then the whole irreducible representation of the Kac-Moody algebra is characterized by
this vacuum representation of su(2) together with the value of &
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+ Given the highest weight state of a vacuum unitary irreducible representation of su(2),
namely the * vacuum state™ |¢ )}

f |I|“m[f",‘) - ’I:*f',)
H{ o) =0 if N >0
E’*lviy=0 if N >0

all the other states of a unitary irreducible highest weight representation of the associated Kac-Moody
algebra can be buill from it by repeated application of the negative root operators

-

ABY—= - (Y=t
En,” - EN, lv)

- il L
The vacuum states form a representation of the finite dimensional algebra 0= {qvl']J L, } isomorphic to su(2)

Ihen the whole irreducible representation of the Kac-Moody algebra is characterized by
this vacuum representation of su(2) together with the value of &
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Virasoro Algebra

Kac-Moody Virasoro
algabra algebra
Sugawara ]
construction

1 S
Holomorphie stress-enorgy tensor (SET:  I'(2) = F+2) E(f} 4 Hz)

SET Laurent
expansion:
* An arbirrary holomorphic primary feld &(2) of weight h has a mode expansion o)

» f{2) U -(‘:"\l,u_l’l'w
&l

| %
Virasoro generators: N ‘ /
{ "l. " S ] 1 ——t

the L ;s perform diffeos of the boundaries aD, 8H and they fulflll the Viragoro algebra

s

:j'\‘- L \.'] l'-\. "= -\.“I- NeM T %‘\'{-\.-‘ —~ l]'i.\'-".'n'_ll . \ M = Z

ascentral charge: e, L] =0¥N € Z, for su(2)
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. 1 i R =
+ Energy operator: Lo = "T(ﬁ'u’fn +2 Z q_,uq,'\r)
(k+2) AI>0

I.I X L 0 + L" generator of dilations in the 2-plane — time translation in the eylinder

n single primary Beld gy

Irrepe of Lthe conformal group

*= Fiolds in a CFT oan be grouped into familics [g) (primary field = highest weight)
pri ¢ fleld = highest weight

an infinite set of secondary fiolds
(descendanta)

In any given highest welght representation the spectrum of LU is
bounded from below and there 1s only one highest welght swate |, ) 8.1

Llll"i} :’Arl".t)- i«\'|".:} =0 N>0

confermal dunengion

All the other states in tho given highest weight representation (¢, A
can be conatructed by repeated applicationof L.y, N > 0eon v,

unitary representations:
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r ~t ~% ‘ ~1 ~%
+ Energy operator: L ) (Goa6 +2 D a2 ida)

(k+2 AT=0

1[ X L“ 4 L‘() generator of dilations in the z-plane — time translation in the cylinder

a single primarcy field ¢,

/ Irreps of the conformal group

> Fields in a CFT can be grouped into families [4+;) (primary fleld = highest weight)

\ an infinite set of secondary fields
(descendants)

In any given highest weight representation the spectrum of LU is
bounded from below and there is only one highest welght state |, ) 8.1,

Lolv;) = Ajlvi), Lylv;) =0 N =0
conformal dirmenston

All the other states in the given highest weight representation (c, A))
can be constructed by repeated applicationof L_x. N = 0D on v,

- . 35
unitary representations: ¢ = 1, A;' = 0 C = 2 — 3 v
v A large &
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VERTEX OPERATORS

The highest weight state |t,) can be obtained from an ‘absolute’ vacuum () by application of a vertex operator
Il‘.l) - “?!]”f'
regularity of 'f'[:'l|(l} at = = 0 implies [ 0y =0, N >

L_y,La. Ly |0) = 0 the vacuum staze ts SL(2.C) mvariant
A

global conformal group

™~ The vertex operator |, can be interpreted ng a Wilson line [Balachandran, Bimonte, Gupta, Stern 92

1
k=1 g(th = lim / trjdltr, A = frgA A A /.1'
! DIt

op T

[a(0). g(£""")] = ~2g([0r0. 8] '_f.n[;”"'.-l]..'u

HIHVI0N = fs(V]0})
= H"{(V0)=0 N>o0
S N(VIoNy=0 N >0

l‘l' Y t.‘,t;ujlﬂl

The Wilson line along e creazes an highest weight state of T1 charge |3 halanomy = DrmAary fa)

PrIMArY el
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via the Sugurawa construction, the action of primary fields V', on the vacuum |0} generates
highest weight states for the representation of both Kas-Moody and Virasors algebras

+ Inthe case of the affine algebra:

0 De
l";:'(.'\(.l'\) = - T—.“"""(.r -p) — .‘['” A=~ T."“

CS boundary condition Stokes th.
The zero modes §, — constitutes an SU(2) Lie algebra

The full infinite set of ¢y s provides a so-called ‘flinization’ of this finite dim subalgobra

]

Go 1) =7 v} with ¢§"|e,} = 0 (N >0)

$u(2) generators in the spin- representation

>~ Jdentfying the operator S’ at the source p with the LQG flux c-pf-r:n.'.,nrj'{l,'|

(:'.vl'n modes = gravitational d.o.f

higher modes = now d.o.f. (matter)

Highest weight states <= Spin network states

Energy operator speotrum:

Loft;) =
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via the Sugarawa construction, the action of primary flelds V', on the vacuum |0) generates
highest weight states for the representation of both Kac-Moody and Virasora algebras

+ In the case of the affine algebra:

o , R . - s
F{:i.*“.l'\) = - '3 ~ P - { Al m =8 e ! . /’ b o
k Jou k =7 Jon

CS boundary condition Stokea th.

The zera modes ¢, = constitutes an SU(2) Lie algebra

The full infinite set of ¢\"'"'s provides a so-called ‘nilinization’ of this finite dim subalgebra

Go log) =7 v, with ¢ lv,) = 0 (N > 0)

$U(2) generators in the apin-f representation

>~ ldentifying the operator S§' at the source p with the LQG flux (lP!‘I‘.'\.'.-DI‘J'”;]

Highest welght states <>  Spin network sta ( ZeT0 modes = gravitationald.o.f
kigher modes = new <Lo.f (matter)

Energy operator spectrum:

1

I ! L | ] . .
L"{PJ) o k + n_)’-lll‘rill"‘,i) = ;,T'll(} + 1)!'.‘1)

Pirsa: 14110158 Page 32/68



Free Field Representation

> The primary fleld | 'Jcrem.mg the highest weight state [, ) has an interpretation in terms of the Wilson line

The Wakimoto free affine extension of the monomial
fleld representation d representation of the su(2) finite Lie algebra

generalization of the vertex representation fork>1  'we  natural environment for spin network states

Afline extension:

su(2) generators in the oot o) = zero modes of appropriate free
Chevalley basis (1, .. [} e vosonic flalds (affine generators)

correct SU(2) Kac-Meody OPE at level k

Sugawara SET In terms SET of a free-bosonic flald with a non-zero background
of these currents charge _ /2. 3(plus the ghost felds term)

Liouville theory??  |Carlip 14]

also the central charge ¢ = - = - can be recovered by summing up all the contributions
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CFT Partition Function
+ Backtothecylinder,ontothetorus: = — W = iz -+ —  ientify 2 periods

atorus on the complex w-plane '™ ' 4

CFT properties depend only on
wy

o £ meter: T = —-

Hamiltonian (time transiation) e AT uy

}] = Ln + Lo — .

2

Momentum (space translation) = i/t",

f’ = l'-(j.u - Lu}
ZJ'(T) = tr l".-".“r“'“_ -—:-'i ’('_::ITU'"H )

via appropriate boundary conditions, " keop only holomorphic part to avoid over counting
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CFT Partition Function
+ Back to the cylinder, on to the torus: ¥ = w="1t E +r = identify 2 periods

y I v 4
B e P CFT properties depend only on

uy

wa the modular parameter: 7 = —

. wy

Hamiltonian (Lime translation)
- - A “
H= Lo+ Lo — I's

Momentum (space translation) T =ife »

}‘) = f(Lu - j-ll}

. 2mir(Lo=—=) —2mit(Lo—5
Z,(7) = tr 2™ Lo—51) W (ln=17)
via appropriate boundary conditions, r;\""' » ) keeponly holomorphic part to avoid over counting

= due to modular invariance: T —* 1/r notion of inverse temperature § associated to
same torus the periodicity of the rotational symmetry

|Dr 13

gystem on A circle of circumference < systam on a circle of circumfarence
L with inverse temperature § B with inverse temperature L

(symmetry group furmal fron y restrioted Lorentz group
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CFT Partition Function

4+ Back to the cylinder, on to the torus: s —

A torus on the complex w-plane "™ ¥ 4

w=ilg +T — ientify 2 periods

CFT properties depend only on

o
Hamiltonian (time transiation) -
P

12

Il = Ly -+ I;u -

Momentum (Space transiation)

the modular parametar:

f’ - -’(Lu - j-ll)

Z.(7) = tr ¢*7 17 o= 57) o =2mi7(Lo—57)

via appropriate boundary conditions, ¢\ —» (0

= due to modular invariance:

system on a circle of circumfarence
L with inverse temperature p

Reep only holomorphic part to avoid over counting

notion of inverse temperature B associated to
the periodicity of the rotational symmetry
[Or13)

gystam on a circle of circumference
P with inverse temperature L

restricted Lorents group
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CFT Partition Function
4+ Back to the gylinder, on to the torus: > = w=1t ge+r — identify 2 periods

: T 4
S tarus on the complex w-plane CFT properties dependl only on
s
ws the modular parameter: 7 = —
L

Hamiltonian (time translation)
_ 7 ” P
!‘] = Lu | Lu e ——

12

? W
Momentum (space translation) \ =1/€ »

I’ = f(Ln - Lu!I
- P LT O SR 8 =21t L=+
Z,(r) = tr 2o i) =271 (L5
via appropriute boundary conditions, ¢\”'" —» ()  keeponly holomorphic part to avoid over counting

> due to modular invariance: T — 1fr notion of inverse temperature B associated to
same torus the periodicity of the rotational symmetry
DI 13)

gystem on A circle of circumference i system on a circle of circumfarence 1
L with inverse temperature § B with inverse temperature L

MObius group
(symmetry group af confurmal gromelry a restrictod Lorentz group
on the Rlemann sphere)
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CF'T Partition Function

4+ Back to the cylinder, on to the torus: T . [ Rl— -jt B + r — identify 2 periods
a torus on the complex w-plane imw A
CFT properties depend only on
'
- T = —
Hamiltonian (time translation) 2 the modular parameter w0y
i . - ¢
H = Ly + L
o+ Lo 19
Momentum (space translation) > _ N = 7 /(,,
> T r - Rew " n) b
— f([;u - 14“}
Zr‘ (T) — tr {,'.!7”._{ Lo— 35 }(_\—2#:.7[ Lo—35)
via appropriate boundary conditions, qf\f" " 0 keep only helomorphic part to avoid over counting
> due to modular invariance: T » 1/7 - notion of inverse temperature [ asscciated to
same torus the pericdicity of the rotational symmaetry
[P 13])
system on a circle of circumference = system on a circle of circumference |
L with inverse temperature 3 B with inverse temperature L
Mobius group
~

(symmetry group of conformal gecmetry
on the Rlamann sphera)
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restricted Lorentz group
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NI characters of the Kao-Moody representations I'a

= Z=TDE X @)
Pl g =0

account for exira Lie
algebra gymametry

0 ]
\‘.(-‘) = II‘,‘J.[:;'""'-'Q t“"”“l

= )_'.-. wﬁ.-_ﬁl.:.‘ e (L " 2’”‘)‘!-‘1»_‘In.-’..._'_‘...:!m

TToes (V= g™y

ZamCl

Crondhilirdd, Kent, Olive 86

semy-cinszionl lnet

~U— N\u

N &

Z = [[ C (24, + 173 e2x0

ja::l 1p=0
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N k/2 r—ch&m:'.auo{:he Kao-Moody representations §'a
Ml 1)
modular Invarianoce e 2= I I E \;.(7)
Iy
r=12,=0

account for extra Lie
algabra gymmetry

¥ L]
\‘I(.‘} = 11,4 [t;""“'-i t“"”“]

Y= gm0 Y pos b d T 1k 112
T AL \ (=)Sa+oelh+d 12" ey (4‘. L -_)‘”.)rl-_‘.‘-_lrn +(2)+1)m

(TN i Zhth e
=i =™}

Y

(-

Coodilardd, Kent, Olive 86)

semd-clnssivnl limit

N k/j2

Z =TI D (2dp + )€™ =i

p=13,=0
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modular invariance

account for exira Lie
algabra aymmmesry

« )
X3 (7) = tr, i ghe =31 ¢t o]

]-l; (1= f'.,'.'.T]"i" S

semy-claszaonl lmet

U :. ..\n

N &/

Z =TI 32 @iy + 1) 250

p=l7,=0

— )ik o=ty j+ 14 (k+ :-'I!H)f!';' 20 ( 2y 1) m

Crondlidardd, Kemt, Olive 86)

ingeneral. trj¢™"| = » p{1)q™" characterize the number of states #{}) that occur at & given level 5

Holographic bound

plip) = t'xp(u‘.._.-"-ll"‘ with

oA
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N k2 characters of the Kao-Moody representations §'s

modular invariance = = H {’:r (7)

account for exira Lie
algebra gymmetry

[ ]
X3 (7) = tr, i [qho 1 ¥ tle]

FAVEL - by i ) [} ¥ E
R g ) £ 14 (kb Zyyl
e (U= ™"

seny-ciasmonl Lt

Y g

Comdilind, Kent, Oliveg 86)

k/2

N kf2 '
p=l 3,=0

in general, trig’ '] = T #L1)q™" characterize the number of states #(/) that ocour at a given level A,

Holographic bound

plip) = exp (a,/463.) with
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N k2 /— characters of the Kac-Moody representations 's

modular invariance — 2= H Z {_’:r(ﬂ
Pl g =0

account for exira Lie
algebra symmesry

§ ]
() = tr gl ¢2nehe]

-'—:'A'V'L',"A (= }.’.- l'-li~.'ll-_.‘ L=t (i' L 3“”_?""‘&‘-‘If_l_._:..'.:'.‘ 1)m

l-l':*'l“ 7;;;‘” [Pt

semi-clnsmionl lmit
N k2

Z= T D (2dp+ )70 2

p=13,=0

i

Crolibardd, Kent, Olive K|

1 L) oy /
in general, trig™"| = Z #0207 characterize the number of stazes #(4) that ocour at a given level .,
]

Holographic bound

plip) = exp (a, /4 ) with
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SU(2) BF variables for IH

[DP, Sahlmann to appear)

R‘]il’il.di;‘ = / a.\'“l:' A (‘i-_.-.)'f\-,
BT )
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SU(2) BF variables for IH

»-‘ﬂiiil.a'i_-\

’\:‘l. Ik,

3 [, 4
[ g
3,4

[DP, Sahlmann 1o appear)

] i‘“‘ 8A) & T, () for the pull back of flelds on the horlzon A = linear comdinations of SU(2) gauge
1o O 8 Ay

S \ P

“ “
LLFY

|Engle, Now, Perer, DI 1)

¢ 'S "
()} = ~wdeq 881 (

F'(A) =

TH boundary conditions

d g

transformations and diffeomorphismes preserving the preforred folintion of &

{A (2). & ()} = w3, 678 (. )

—

T,

and the Ashiakark
becomes !

a »
——(] - )X
Qyy

=y,
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SU(2) BF variables for IH

[DP, Sahlmann o appear)

w128y, 4,) : { 15'“)_:' A dx 3K,
JA X

. . 1
[ '\'Ll}:‘ A Oy .-‘, -
Jar I Jiu

AR(SANET &= (3%.84) € T(D) for the pull back of felds on the horizgon O = linear combinations of SU(2) gauge
s e transformations and diffeomnorphisms preserving the preferred foliation of 4

K, = “\.‘ “—' {AL (). & (1)} = xde,u a3 (e, y
iN

\

1Engle, Nowt, Perez, DP 1) = -
; L fay
with - oo [
(o).l (1)) = ~&xideq A28 (e o)

and the Ashiekar rbero boundary connection
becomes commutalive

FU(A) = ——— (1 = 87

TH boundary conditions: LLFST
daé' = =T
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Bus we know how to deal with non-commutative holonomies tn 2+1 LQO [New. Peree. DI 11):
after introdusing a esllular decomposition 1« of the horizon 2-sphere

I .‘_'
0 S 'l ] -t - ]
"‘-r - I a ) '1"\u - I “ - a fu Ca 1%
1 with e = 3(0=1)
LY

FL(A)=0, da¢’ =0  Vpeul,
F!"(‘i) =0, dyé' = ‘":'_::. Vpeuli,

IH quantum states:

blowing up of point punctures to finite Joops due 1o the extended
nature of the phase space variables used for quantization In LG Q D
Ve

[Freidel, Louapre (M) w

INou, Perez 04 O/g- .

= guneralized spinnelwork states

We can use techniques developed for the quantization of 2+ 1 gravity with CC |DI* 1)

CN] =lim 3 [N, W, ()] =Tim 3 [N, 1, (A)] =0

plt,

and in order to have an ancmaly-free constraint algebra

i

-1+l ={21+1) "‘..“ : g
=110 1 TN | e, for péc
={=) |2+ 1), (-) ———— ;
i atl M q-q" -
||Jl ) E

i
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But we know how to deal with non-commutative holonomsiea tn 2+1 LQO [New. Peree. DI 11):

after ntredusing m osllular decompositson |« of the horizon 2 sphere
-).7 i"
] s - - e o
"LJ - I a n 'il\‘l - I “ ™~ a fu L I
-t
Qi with e = 3£ 1)
Ixd s a
] it T, "
T, "l ,= L
LLEYT]

A

Fi(A)=0, dré' =0  ¥peul,
Fi(A)=0, daé' = -5, Vpeul,

IH quantum states:

blowing up of point punstures to finite Joops due 1o the extended

natune of the phase space variables used for quantization in LG D) @
[

/

)

< Freidel. Lovapre (4]
=—» guneralized spinnetwork states [Freice ol "
INou, Perva 04

We can use techniques developed for the quantization of 2+1 gravity with CC |DI* 14}

C[N] =l 3 tr [N, W, ()] =lim 3 er [N, 10, (A)] =0

and in order to have an ancmaly-free constraint algebra
LT R
ot o .
e Bt [ & =t . Jor peul;

RN (P wee qei O
i g=-4 1 [ ' I-n[ e
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Buz we know how to deal with non-commutative holonomies tn 2+1 LQO [New. Peree. DI 11):

after ntrodusing n oellular decomposstson 1.« of e honizon 2 sphere

i
:]“- o
with (e m 5(3£1)
Qyp

AL =T + 4K

1 Il =4 -
"‘n - "111 A Wely ™ In =

F}'.(,-I.) 30, dac' =0 Vpéul,

Fiy(A)=0, dgé* = -, V¥peul,

]
»

IH quantum states:

blowing up of point punsiures to finite Joops due 1o the extended

natune of the phase space variables used for quantization in LG C)’VO
%

/

D=

|Freidel, Lovapre (4]

—» guneralized spinnelwork states ’ ;
INou, Peres 04

We can use techniques developed for the quantization of 2+1 gravity with CC |DI* 14):

ﬂX]ﬂ%hgﬁﬂXJﬂJdﬂﬂmhgﬁﬂMJnLn%u

and in order to have an anomaly-free constraint algebra

4 — g~ (2ae1) ‘ Rl . .
= (=)¥[25+ 1), = (=) —l!—-—-—- where = '__.“ ) i e
! o4 1 i T I‘n[ peL
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But we know how to deal with non-commutative holonomies in 2+1 LQO [New. Perce. DP 11):
after ntrodusing a osllular decompositson 1« of e horizon 2 sphere
. " ypoe ~ . -
A, wT, + 0K, =T, - -
with = = O(31)
Dy

A+, =T, =

“

Vpiéul,

1-‘,',(.-1) =0, dac' =0

Fi(A)=0, dqé' = -, VYpeul,

IH quantum states:

blowing up of point punstunres to finite Joops due to the extended
nature of the phase space variables used for quantization in LQG Q /@
y

of

. Freddel, Lovapre (M)
—>» guneralized spin nelwork states | e e el it b
INou, Perva 4] S
™

We can usa techniques developed for the quantization of 2+ 1 gravity with CC |DI* 1)

C[N] = lim ) H[.\',.H"J_,H]-lim} > [N (A)] =0
o, o

and in order to have an ancomaly-free constraint algebra

'

.‘,"r‘““ -'-'_“"” whoroe q=- [ o L S [|’1 Pe “”’J
g=q " 1 { e |'|]l ] € i

= (=)V[27+1)y = (-)
|
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But we know how to deal with non-commutative holonomies tn 2«1 LQO [New. Peree. DI 11):

after ntrodusing n osllular decompositson 1« of the horzon 2 sphere
O 42
) all g Al 4 - “ 4
"‘-J - I a n 1"\“ - I o . a 'u -').T
S with (e = (32 1)

z s I Aoy

[}'_(\) a0, dact=10 Vpiéul,
Fi(A) =0, daé' = =X, ¥peul,
IH quantum states:

blowing up of point puncturea to finite Joops due 1o the extended
BATUNe 0f the phase space variables used for quantization in LG Q @

/*

Freidel, Lovapre (4]
=3 goneralized spin -nelwork states [Freick 1‘ ok [...I,' -
I, Perez (4] d
e

We can use techniques developed for the quantization of 2+1 gravity with CC [DI* 14);

C[N] = lim s l|[.\',.“',.I.-l}]-lim’ Y [N (A)] =0

ptf,

and m order to have an ancmaly-freo constraint algebra

arel
= (=)¥[25 + 1), = (-)2

- I
1 U q

whore ij= -
1 ¢ ;

LT R
!--l-;-l) [ e e , for p el

for p € ul,
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+ Physical scalar product for the IH boundary theory : (s, &) .. = (P[A, l]u &
projecior operator into Lthe TH physical Hilbert space

PIAA] = lim [T 8(W,(A) TT (. (An

o e >l

im 3 T1 (24, + 1), x,, (WA [T () (25, = 1], x,, (W(A))
P o0, pd,

[Witten 89] argument: 1f M 18 obtatned from sho connected sum of two three manifolds M,
and M joined along n two sphere 8% and containing N unlinked and unknotted aireles G

M =SS!

N
(WalWy) = ZOLET] € = dim Ao,
t=]
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4 Physical scalar product. for the H boundary theory : (s, s}, = (P[A, A]s, &%)

prajecior operator into the TH physical Hilbert space

PlAA] = i JT S(W(0) T 8w (A0

peud, peud,

bm 3 TT (=) ([2),+ 1), x,, (We(A)) T (=) [25, + 1], x, (W (AD)
I [T SLE ,__.,,v.

[Witten 9] argument: 1f M 15 obtatned from tho connected sum of two three mantfolds M,
and M: joined along a two sphere 8 and contaning N unlinked and unknotted airoles G

M=S!'xS!

-

%
(a0} = Z(ALT] € = dim s
t=1
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+ Physical scalar product for the [H boundary theory : (s, &), = (P[A, _.'1].«_ 8"} where
projectior operator into the TH physical Hilbert space

PlAA] = tm T a(w,(0) T 8w, (A)

Pt v,

im ¥ TT (=)* (25, + 1), x,, (WA TT (=Y (22 = 1], n,, (Wa(AD)

v ==i)
P M, poud,

[Witten 9] argument: 1f M 15 obtatned from tho connected sum of two three mantfolds M,
and M. joined along a two sphere §8* and containing N unlinked and unknotted airoles G

M= S x S

-

N
(Wally ) = z:.u:]'l('.: = dim Ay
t=]

equivalance between Chern-Sumons

S lov (LY w
and BF formulations eV 15 ) withy

pc = (P,

~ [0 2k, + 1), = [ 2 2k, + 1),

i
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+ Physical scalar product for the [H boundary theory : (s, &), = (P[Il]u s')  whero

projeciar operator into Lthe TH physical Hilbert space

PlAA] = Lm T 6(W(A) T 6005040

o =)

poot, Pt

im ¥ TT ()25, + 1), 1, (W (AD [T (=220, = 1], 1, (W(AD)

o e pousl peut,
[Witten 89] argument: if M 15 obsained from tho connected surm of two throee muntfolds M,
and M, joined along a two sphere 8% and contuning N unlinked and unknotted airoles C;
M=Stxs
N J
(Wal¥) = Z(ALT] € = dim A,

=]

equivalance between Chern-Simons

- ."‘. : vl.4) ;
and BF formulations N O\ with

A ={P0,
L1

~ JI6=0 2k, + 1), = [T % 2k, + 1),
'

Ll
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Regularization procedure introduces a new boundary at each puncture
Infinite set of charges satisfying a Kne-Moody algebra (diffeos on the cirele)
Due to central extension would-be-gauge d.o.f. become physical

IH boundary conditions -+ CFT/gravity correspondence

AN

Local conformal symmetry
at each puncture on the horizon

dynamies induced by LO

particles self interastions

-

e

—

Y =i

ultimately related Lo

1he hortzon thermality holographic degenera

Extra (matter) dof.

w
pOIOr In 10 Agreeman

with Bekenstein Hawking formuls

[Frlden, Geiller. Now, Peres 1

e 13l
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>~ Regularization procedure introduces a new boundary at each puncture dynamics induced by 1O

particles self interactions

'

Infinite set of charges satisfying a Kno-Moody algebra (diffeos on the circle)

—
- -

=~ Duea to central extension would-be-gauge d.0.f. become physical

IH boundary conditions -+ CFT/gravity correspondence

Local conformal symmetry
at each puncture on the horizon

T ——

o —
- ——

Extra (matter) do.f.

ultinately related o
1he horizon thermallty

holographic deganory
with fekenste:

tor in £ 1n agreament

g formula

e

[Frliden, Geiller, N, Peres 1

1o s
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About the full theory:

If we see each spin network intertwiner as a micro-BH, then this new
regularization can provide an alternative way to couple matter dof in LQG

«—~ Unified CFT description of gravity and matter at the Planck scale
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About the full theory:

If we see each spin network intertwiner as a micro-BH, then this new
regularization can provide an alternative way to couple matter dof in LQG

«—» Unified CFT description of gravity and matter at the Planck scale

+  Fundamental conformal invariance (as an alternative to lack of new physics at LHC)??

SM valid up to the Planck scale [Froggatt, Nielsen 95]:
top quark and Higgs masses predicted from the "Multiple Point Principle” assumption,
i.e. the Standard Model effective Higgs potential should have two degenerate minima (vacua),
one of which should be at the Planck scale, where it vanishes!

Scenario supported by the recent NNLO calculation of
(Degrassi, Di Vita, Elias-Miré, Espinosa, Giudice, Isidori, Strumia 13].

(see alse [t Hooft 14])
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About the full theory:

If we see each spin network intertwiner as a micro-BH, then this new
regularization can provide an alternative way to couple matter dof in LQG

> Unified CFT description of gravity and matter at the Planck scale

“  Fundamental conformal invariance (as an alternative to lack of new physics at LHC)??

SM valid up to the Planck scale [Froggatt, Nielsen 95]:
top quark and Higgs masses predicted from the "Multiple Point Principle” assumption,
i.e. the Standard Model effective Higgs potential should have two degenerate minima (vacua),
one of which should be at the Planck scale, where it vanishes!

Scenario supported by the recent NNLO calculation of
[Degrassi, Di Vita, Elias-Miré, Espinosa, Giudice, Isidori, Strumia 13].

(see alse [t Hooft 14])
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About the full theory:

If we see each spin network intertwiner as a micro-BH, then this new
regularization can provide an alternative way to couple matter dof in LQG

> Unified CFT description of gravity and matter at the Planck scale

“  Fundamental conformal invariance (as an alternative to lack of new physics at LHC)??

SM valid up to the Planck scale [Froggatt, Nielsen 95]:
top quark and Higgs masses predicted from the "Multiple Point Principle” assumption,
i.e. the Standard Model effective Higgs potential should have two degenerate minima (vacua),
one of which should be at the Planck scale, where it vanishes!

Scenario supported by the recent NNLO calculation of
[Degrassi, Di Vita, Elias-Miré, Espinosa, Giudice, Isidori, Strumia 13).

(see alse [t Hooft 14])
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CFT Partition Function

+ Backtothecylinder.ontothetorus: = —» 1 = if; 4+ —>  identify 2 periods

hn e
Lo .
@ torus an the complex w-plang 1 CFT properties depend only on
s
uw t Mer: 7 = -
Hamiltonian (time translation) 2 i ity b 7 uy

}I - Lu -} L" - .

12

Momentum (space translation) 0= p

P = i("_‘“ - Lo)
Zi'(T) = {r f'.-"-."-{j"'_ ::_1 I( =2mir{Ly— '.:—l )

via appropriate boundary conditions, q\"'" » 1) keeponly holomorphic part to avoid over counting
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CFT Partition Function

+ Backtothecylinder.ontothetorus: = — 1 = il + T —  Kentily 2 periods

a torus on the complex w-plane '™ "' 4

CFT properties depend only on

"

u them aT: T = -

Hamiltonian (time translation) = Tt uwy
. ) : P

H = Lu + L" 2

12

Momentum (space translation) o=l p

f’ = f(Lu e Lu’

- S SRS
If“(T) = tl'f'— TNy __||'> "l’ll _..)
viaappropriate boundary conditions, ¢i”"' ~» ()  keep only holomorphic part to avoid over counting

= due to modular invariance: T - 1/r - notion of inverse temperature f associated to
SIme torus the periodicity of the rotational symmetry

|Dr 13]

gystem on A circle of circumference systam on a circle of circumference
L with inverse temperature P with inverse temperature L

MObius group
(gymunstry group of conformal geometry - restricted Lorents group
on the Rlemann sphare)
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