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Abstract: <p>We exactly evauate the partition function (index) of N=4 supersymmetric quiver quantum mechanics in the Higgs phase by using the
localization techniques. We show that the path integral is localized at the fixed points, which are obtained by solving the BRST equations, and
D-term and F-term conditions. We turn on background gauge fields of R-symmetries for the chiral multiplets corresponding to the arrows between
quiver nodes, but the partition function does not depend on these R-charges. We give explicit examples of the quiver theory including a non-coprime
dimension vector. The partition functions completely agree with the mathematical formulae of the Poincare polynomials and the wall crossing for
the quiver moduli spaces. We also discuss exact computation of the expectation values of supersymmetric (Q-closed) Wilson loops in the quiver
theory.</p>
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1. Introduction

Motivation

1d N=4 quiver quantum mechanics describes the low energy dynamics of

multi-centered BPS particles (black holes) in 4d N=2 SUGRA. Denef (2002)

(1) (1) ? B

S 7 V2

U(1) x U(1) gauge theory 2 charged BPS particles with

with k chiral multiplets
in bi-fundamental rep.

Phases of the central charges vy, (vo

Fl parameter: (|

¢ =msin(a, — o)
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The distance of two particles is given by

(71-72)

m sin(oy — o)

Assume k& > ()

Two BPS particles are bounded if ( > ()

Otherwise, these particles are not bounded.

Wall crossing phenomenon

In this case, the marginal stability wall is located at (=0
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For example,

Our result

~3 [ R 16 1
i _ I = ¢

2.3

Agree with Reineke’s formula

, the others =0

Our result agrees with the wall crossing formula if we set /2 = —y

Pirsa: 14110152 Page 5/43



2. N=4 U(N) supersymmetric quantum mechanics (SQM)

4D N=1 U(N) SYM 1D N=4 U(N) SYM

Dimensional reduction

R-symmetry: SU(Q)J X U( l)h’

(i) Vector multiplet
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We introduce the “BRST charge” as

Q) L Q).

;
()

1% \/2( 14 1%

And also, after the Wick rotation, we redefine the fields by

Z=X,-iX,. Z2=X+iXy, 0=X; A

Yr =D HZ_Z]_ (for bosons)

A = V2i)\s, V2ila, 1 \‘,(,\1 F A,

\ () \) (for fermions)
(A1 — Ap),

BRST transformations for vector multiplet

LA, X
-t Az, IN: = —i(D,Z + |0, Z]),
i),

1.
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We introduce the “BRST charge” as

) L O,

".
)
14 \/2(b (4

And also, after the Wick rotation, we redefine the fields by

Z =X, —iX,, Z =X, +iXy, o=Xj
Yp = D - 1[Z, Z],

\/23,\3. )

(for bosons)

(for fermions)

~i(D,Z + |0, Z)).
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(ii) Chiral multiplet

(for bosons)

(for fermions)
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Including the chiral multiplet, this theory has the following twisted

R-transformations U/ (1)’ x U(1)%

g

q — ¢ q. U — et"R ).

}';‘ — (i{”‘,r -r‘f),r,‘})'l“ \ — {H(U_; ‘;‘H“)\_“.
After gauging the R-symmetries, the BRST transformations become

(D-q+ oq + iréq).

~-1(Drq — o — ireq),

(Drxc +oxe +ile +71€é)xe), ~ = 1Yr,
(DrXc — Xco — i€+ 1€)\e),

€ :constant background gauge field for U ( )f,

~

€ :constant background gauge field for [/(1)’,
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Including the chiral multiplet, this theory has the following twisted

R-transformations U/ (1), x U(1)%

g

q — ¢ q. U — et"fR ).

}.:‘ g 1(& g+ r‘f)“})"“ \ - 3 ¢ (0 g+ ;‘{}“)\ ~,
After gauging the R-symmetries, the BRST transformations become

(D-q+ oq + iréq).

-i1(Drq — Go — iréq).

(Drxc +oxe +ile +71€é)xe), ~ = 1Yr,
(DrXc — Xco —ile+1€)\e),

€ :constant background gauge field for [/ ( )f,

~

€ :constant background gauge field for (/(1),
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3. Quiver quantum mechanics (QQM)

A quiver diagram
[/(Ny) x U(N,) gauge theory

with l"l chiral multiplets

in the bi-fundamental representation (L], [J)

BRST transformations for vector multiplet at node v

QNow = (0 Zy + |V, Z,| + i€ Z,),
QeA: WO, 2, i‘|’r._Z,] e,

QN (Oroy + [Py, 0,]),
J‘((‘).—\ %1 i ‘(I’[" \ ‘.(‘l)' (L)l\ L.V "I}“,ll'

¢, =0, + 1A, isQclosed: Q. P, =0
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BRST transformations for the chiral multiplet along the arrow @ @ v — w

Qo = 11y, QU (Drqa + Puga — quPo
Fi€aGa),

(G Vs ! e e = qu®o + Puda
€00 ).

Q.Y

[ L0

: R-charge for

Pirsa: 14110152 Page 13/43



Pirsa: 14110152

The action can be written by the following Q-exact form:

Sy e dr Z [r {f,—(),f, ' \;._,./:_._,.]
'gf' 2(;)4 / ”r," lelﬁa ’ (x.)r-Fr 2';\.'.1.1/{'.'.u 2!\:I.”;{.”‘|‘

‘

Fo = (Asvs Azoe 1y XRv)

;( Z HaYa Z Ga'a ka) : D-term constraint

a.v'=—>e (L. el

Lolla — (aliw C, Golyv — ZwGa : F-term constraint

To decouple the center-of-mass part, we impose

O(N)=> , N( =0 King (1994), Denef (2002)
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4. Localization and Exact partition function of QQM

)

We compactify the time directionas 7~ 7 + [

FI :fermionic fields
Let us denote

B! :bosonic fields except for P

Generically, the Q-exact action takes the following form:

S I(L)/d'r'[‘l'g;_,f’(}f’] 2it'() / dr Try;p'.

t.t" :coupling constants

/i' : D, F-term constraints
Partition function (and vev of Q-closed operator) are independent of the couplings.

Localization
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4. Localization and Exact partition function of QQM

We compactify the time directionas 7 ~ 7 + [J

FI . fermionic fields
Let us denote

B! :bosonic fields except for P

Generically, the Q-exact action takes the following form:

S l()/ffr'[‘l"g;_,]:’()f’] 2it'() / dr Try;p'.

t.t" :coupling constants

/I' : D, F-term constraints
Partition function (and vev of Q-closed operator) are independent of the couplings.

Localization
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Bosonic part of the action

Sp =1 / drTr|QF;|* —t' / drTr(Y? 4 2iY p)

t /rlr'l‘1‘|(2}_/|2 —t / drTrYy 2 — ¢t /(/T'l‘l';fz

In the partition function, we have

()t’ [ drTrp?

t' = —oc 0 it #0
——
l it =70

By taking  — 0Q , the field configuration is localized at the BRST fixed

QF =0
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4. Localization and Exact partition function of QQM

We compactify the time directionas 7 ~ 7 + 3

FI . fermionic fields
Let us denote

B! :bosonic fields except for P

Generically, the Q-exact action takes the following form:

S I(L)/1/7"[‘1";;;_,]:’(3]:’] 2it'() / dr Try;p'.

t.t" :coupling constants

/I' : D, F-term constraints
Partition function (and vev of Q-closed operator) are independent of the couplings.

Localization
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1-loop determinant

A(D)

But we have to take into account the D, F-term constraints

Let us denote P*  as a finite set of the fixed points on the D, F-term constraints.

Localization formula for partition function

7 = > Resp—g- [Agn (P)A(D)]

$*efixed points

Ay (P") i 1-loop det. for ghost
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Gauge fixing
After the redefinitions, the theory seems to have (L (/N.(C) gauge symmetry

with a complexified gauge field b =0+1A

Vacuum moduli space

pu=H0) N ast0)
GL(N,C)

Using the GL(N,C) rotation, we take the diagonal gauge condition

(I)‘t)”'_(lin‘g‘ - [) (I) — (llr]‘f_'j(()l . 't ()\)

We still have some gauge degrees of freedom. We impose the D-term constraints
after the gauge fixing.
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Action for FP ghosts for each node

Sgh !./(Ir_'l‘]'lf':.((')r(‘:. Dy, el))l

1-loop det for ghosts

X D]

A o(6) H (fﬁ)’u)—-\- H ﬁ (2::;# e

n=1 1] n X

)

jo | Ilsmll = (O, Oyj)

i—",‘

”a'.g)
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Partition function of QQM

After the gauge fixing, BRST eq. says
(2( II.I‘ — _(I)T(l)f' — (]
This means the constant modes of ¢ survive in the path integral.

1-loop det. for vector multiplet

60, B! ! ,, .
de S 7T o sinh r): u’!]

AV (6) = Agno(0) | B 2

,\(J.‘Ili P J R . s
\<|1~| e 21 - y sinh 2((): Y4 1e)

1-loop det. for chiral multiplet

60, BI
de 3

sinh 5 (¢!

Total partition function

A1 B 1 £ |
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Comments

* Since the integrand of partition function depends only on the relative variables

T T v w .. . . " .
@, — @y or @, — @y one trivial integration is left, which leads to

the divergence. This comes from the c.0.m motion. So, we will decouple it.

*  We should not choose all poles in the denominators of partition function.

These poles correspond to BRST fixed points, but we have to choose poles
which satisfy the F-term and D-term constraints
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Comments

* Since the integrand of partition function depends only on the relative variables

v v AT L .. . . . .
@, — @y or @ — @y one trivial integration is left, which leads to

the divergence. This comes from the c.0.m motion. So, we will decouple it.

*  We should not choose all poles in the denominators of partition function.

These poles correspond to BRST fixed points, but we have to choose poles
which satisfy the F-term and D-term constraints
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* The integrand of partition function has infinitely many poles.

These poles are related to the large gauge transformation

.)_‘ ‘f'
2miu S
4 : (w; € Z)

S Cordova, Shao (2014)

But since the integrand of partition function is invariant under

this large gauge transformation, the partition function trivially

diverge if we take into account all of the poles.

To avoid this, we only pick up one of the poles in the sinh function.
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5. Examples

Abelian 2 nodes with k arrows

}].
(1) (L)
(Z.¢)  da (Z,0)

BRST equations say

7 ,{ =0 No F-term constraint

(¢p — b + 1€4)q, = 0

Go = (0,--+,0,q,,0,---,0)

O— O+ 16, =0

Totally, k fixed points.
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5. Examples

Abelian 2 nodes with k arrows

ki
(1) (1)
(Z.0) a (/(,)

BRST equations say

7 ,{ =0 No F-term constraint

(¢p — b+ 1€4)q, = 0

Go = (0,--+,0,q,,0,---,0)

O — (3+Jr; = ()

Totally, k fixed points.
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5. Examples

Abelian 2 nodes with k arrows

}].
(Z.¢)  da (Z,0)

BRST equations say

7 ,{ =0 No F-term constraint

(¢p — b + 1€4)q, = 0

Go = (0,--+,0,q,,0,---,0)

O — O+ fr; = ()

Totally, k fixed points.
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At the fixed point, the D-term constraints become

al* = G S
0 with Q4G =0
—l@|” = ¢

f (1 >0 ,wechooseapoleat O — @ + 1€; = 0

Butif (; < (0 ,the D-term constraint cannot be satisfied!

Wall crossing phenomenon
After the residue integrations, the partition function becomes

fﬁ.'f! ¢ k/2 _
= for ¢ >0

z

t1/2 _ -1/2

dependence has disappeared!
Hori, Kim, Yi (2014)

CpP*+-1

formula by setting
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with k arrows

I
l (N

r ([{jf e |
(Z,9) (Z,0i)

(i=1,

At first, we assume [ is diagonal. No F-term constraint

BRST fixed point for q:[ (for example)

* 0 0
q. = | 0 0 0
0 0

If a; = a; ,wefind @i = @; .Butthiscase does not contribute to

the partition function because of the numerator of 1-loop det of vector multiplet.

Using the Weyl permutation, we have A'CN fixed points.
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At the fixed point, the D-term constraints become

N
> gk, 1? =G
1=1

|'J ‘)

2 N |12
~|qa, ~lqz, | ~1qq |

The solution is
| 2 N - T
‘({r1|| |qn3‘ ‘(lu \-| \/('-1/\
After the residue integral, we obtain the following partition function:

[T, (1)
T2, (1 =) TS (1= #)

[his result agrees with the Poincare polynomial of Grassmannian (r'!'(A\'. /‘)

zh == iNKk-N)

2 In this calculation, we could choose the poles from vector multiplets. But these
fixed points do not satisfy the F-term and D-term constraints.
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At the fixed point, the D-term constraints become

N
> gk, 1? =G
1=1

|'J ‘)

2 N |12
~|qa, -lqg, | —|qa |?

The solution is
| 2 N - T
‘qr1|| |qn3‘ ‘qu\-| \/('-1/\
After the residue integral, we obtain the following partition function:

[T_.(1 )
l—[f\ |(l - “)1_‘[;; I\(l )

This result agrees with the Poincare polynomial of Grassmannian (r'f'(l\'. /\)

. AN N
Zh == iNKk-N)

2 In this calculation, we could choose the poles from vector multiplets. But these
fixed points do not satisfy the F-term and D-term constraints.
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U(2) x U(3) withkarrows

(l
{lf.}’

8
) —
(]) — . ([) —
o)

We cannot choose poles from vector multiplet because of F-term and D-term
constraints. So, we only consider the fixed points for chiral multiplets.

BRST eq. for chiral multiplet is
(s — Pj + ifu)q:-’}-, =0

There are 5 integration variables, but one of those is c.o.m. So, we choose
4 poles in the partition function.
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A possible set

a b c d
— 11012, 9215 Ga3 F 0

From the numerator of 1-loop det. for vector multiplet, we find

a# b, a# candc #d
This type satisfies the D-term constraints if 2(,

There are other 5 similar contributions

a b a b
C (1 ’ & (/ ’

Total number of fixed points of this type is

L 5 L, 3
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This type does not satisfy the D-term constraints.

P1 — P = —1€,

b1 — o = —i€y

. . . Inconsistent
P2 — P1 = 1€

Do — Py = —1l€y

But according to the Reineke’s formula, the Euler number of the Higgs branch
moduli space of this theory is

A. I 9 -
\3." — (!\(A - I )(:‘;A‘ - ')A' { 1)
)

|
We need another (.!.'(A' - 1)(k — 2) fixed points.
)
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This type does not satisfy the D-term constraints.

Inconsistent

But according to the Reineke’s formula, the Euler number of the Higgs branch
moduli space of this theory is

ke [
2

a = —k(k—1)(3k* =5k +1)

\: 6

I
We need another 5 k(k —1)(k —2) fixed points.
)

Page 36/43



Pirsa: 14110152

To find them, we go back to the original expression of partition function.

sinh 5 (¢, j + i€) ‘,hillll (i

H b, r/u ' H Hll}l} 500 —0y) = sinh £ (¢,
oI ;1 2mi

Oir + i€+ ¢€,))

O "I'ra}
At first, we pick up the following three poles

s . Do — oy + 1€, =0
D — P + 1€q = () - : “
" . : or Mo — o + 1€, = ()
D1 — Q2 + 1€, = 0 - - #

P1 — {'T’-“ + 26, = 0 Oy — O3 + 16, = ()

where a # b # ¢.

Then, after integrating over ¢, @2, @3

sinh 5 (o1 — ¢2)

This gives anew pole @1 = @9

, we find the following factor in the integrand:
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The total number of fixed points of this type is

| .
g 2Rk = DK

This completely agrees with the number of the missing fixed points!

Our partition function for k=1,...,5

zZlo=0.

2,3

S 14t° 4+ 1617 4+ 208° + 2

F20H0 4 1681 4 14412 4+ 18 o T 4 410 4

gree with the P

; formula)
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"(2) x U(2)  withkarrows

0=—0

[(#)
(/U;

In this case, there is a pole of vector multiplet which we can pick up because
the corresponding fixed point satisfies the F-term and D-term constraints.

At first, we assume 2 = Z = ()

We should choose 3 poles from chiral multiplets.

Possible fixed points

where a # b and a # ¢
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Moreover, we can take the following 3 poles:

D1 — o + 1€ =0 vector

D — (-;l + l-(” = ()
chiral

Do — (D2 - !-(” = ()

-~ (0 =z =
[((} U)’ 4

F-term constraint 7, q,IZ = () s satisfied if flfl'l-i -

D-term constraints are
l

> 5121% + gt |* = G + 6 1“=C2
29=

] 2 a |2 - ~|4 a |2
5 S12|" + g2 =G =9 ~ 411 G2
(- !

where we have introduce §
2C1 + 2C» = 0 does not be modified.
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Moreover, we can take the following 3 poles:

D1 — o + 1€ =0 vector
P1 — P11 + l-(” = ()
chiral

Do — (2 - I-(” = ()

~ (0 =z F
/J((} (})' z

F-term constraint 7, q,;Z = () issatisfied if f/fl'l-i -

D-term constraints are

where we have introduce §
2C1 + 2(o = 0 does not be modified.
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Solution of the constraints
5 0(C +9)
2C+ 0
(“ ‘_’ o Eg(g + (i) y 2 _ .‘2(.’
ml =715 20 + 0

|2]* = 2¢

After the residue integrations, we find the partition function for £
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6. Summary

We have derived the exact partition functions of N=4 QQM by the localization.

We have shown several examples of QQM, which include the non-Abelian
quiverssuchas (/(2) x U(3) and U(2) x U(2)

We found that our results are consistent with the Poincare polynomials
of Higgs branch moduli space or wall crossing formulas.
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