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Abstract: <p>I will describe how to define a proper RG flow in the space of<br>
tensor networks, with applications to the evaluation of classical<br>

partition functions, euclidean path integrals, and overlaps of tensor<br>

network states.</p>
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Tensor Network Renormalization (TNR) .cubi. vidal, io prep)

A new RG based method to contract tensor networks, with
applications towards simulation of quantum and classical
many-body systems
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. bond
Overview: Tensor Networks dimension

Let Aijkl be a four index tensor with i,j,k,l € {1,2,3, ..., x}

i.e. such that the tensoris a Y x X xXx X array of numbers

Diagrammatic notation: Contraction of two tensors:
[ | il ' Im
J
Aijkl «—> | —(A—j ZAijkiAmnoj «—> | A A n
Al J k! lo
i m
[v j Lyn [v [+
Square lattice network (PBC): [[;A A A A »
koo
AijriA AkparA r P S
B klAmnojAkpqgrostp [;A A - A A;]
Ljkimn...
qa |t
(@—@—@—@,
@0—0—@ @
¢ 0 0 O

Pirsa: 14110137 Page 4/52



Overview: Tensor Networks

[v [ (v [+

Task: we want a method for
A A ‘A A n —_— 2 efficient (approxuma?e) numerical
evaluation of this scalar

@—a8—a—@:.

L€ <

;d—4a@—34—4
(4 K, | 4 [ 4

— J

Contraction of D dim tensor network could allow one to:

« compute properties of D dim classical many body systems (where the
tensor network represents a partition function)

« compute properties of (D-1) dim quantum many body systems (where the
tensor network represents the Euclidean path integral)

* plus other applications....
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Overview: RG transformations of tensor networks

Many different strategies could be employed for contracting a tensor network

Today | consider approaches based upon successive use of renormalization
group (RG) transformations:

A =4
[v (v |‘+/f‘p v A(l)
R i @
G B »
: ) ] ) ) ;] RG * RG
T s S — @
] l [ [ . W W Scalar
L4 L4
Z3 r O S ¢ S Coarser network
Initial network
| | || I
T, I T ] — blocking __ __ truncation
—_— il T —_—T —_ —
W W [ I
| |
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Overview: RG transformations of tensor networks
Many different strategies could be employed for contracting a tensor network

Today | consider approaches based upon successive use of renormalization
group (RG) transformations:

log(N) steps
RG flowinthe & \ scalar
space of tensors: A0 = AV 5 4@) 5 ... 5 40) 5 7

Previous RG approaches:

Tensor Renormalization Group (TRG) (Levin, Nave, 2006)
Second Renormalization Group (SRG) (Xie, Jiang, Weng, Xiang, 2008)

Tensor Entanglement Filtering Renormalization (TEFR) (Gu, Wen, 2009)

Higher Order Tensor Renormalization Group (HOTRG) (Xie, Chen, Qin, Zhu,

+ many more... Yang, Xiang, 2012)
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Overview: RG transformations of tensor networks

RG flow in the
space of tensors:

A0 5 A0 5 4@) 5 ... 5 460 55 L.

Tensor Network Renormalization (TNR) (Evenbly, Vidal, 2 prep)
« an approach that generates a | r RG flow in the space of tensors
T ordered phase
~c (Z, symmetry broken)

Consider 2D classical Ising
ferromagnet at temperature T: | T =T,  critical point (correlations

at all length scales)

T>T¢ disordered phase
Encode partition .
function (temp T) as A 0 (0)
a tensor network: I<Tc¢ A

Adisorder

@
T = o0
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Overview: RG transformations of tensor networks

RG flow in the
space of tensors:

A0 5 A 5 4@) 5 ... 5 460 55 L.

Tensor Network Renormalization (TNR) (Evenbly, Vidal, 2 prep)

« an approach that generates a RG flow in the space of tensors

Practical consequences (as a numerical method) at (or near)
criticality: T = TC

computational cost of
iteration ‘s’ of previous =——» COSt ~ exp(s)
tensor RG schemes:

computational cost of —3 COSt ~ jndependent of s
\iteration ‘s’ of TNR:
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Outline: Tensor Network Renormalization

Part |I: Motivation

/Representing partition functions of classical B
many body systems as tensor networks
Representing Euclidean path integrals of
quantum many-body systems as tensor networks

\Scalar products of PEPS )

Part Il: Previous RG schemes

The tensor renormalization group (TRG) approach

Failure of previous schemes to give proper RG flow

Part lll: Tensor Network Renormalization (TNR)

[Formulation, benchmark results, other applications ]
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Encoding many-body physics in tensor networks

tensor network

[v [+ K’ v
[;71 ,.1,4 Y __.71 '"‘*'A:]
4999

L | |
[;A?;_A* __.A . .HAA_Ai+

4

<

scalar
contraction

What is the physical relevance of this procedure?

(1) Computing information about classical many-body systems
(via evaluation of the partition function)
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Encoding partition functions as tensor networks

Square lattice of Ising spins:

1 Ti 10j Op op € {+1,—1}

1

-7!6"‘_1‘0_‘- ._"‘i./"' Encode the of a
M)';z"”;gf”?:‘{pﬁ '“U_f’_ plaquette of spins in a four-index tensor

T

1 . Og 1+ Yr 1 Yu 1 Oy P B . )
L S Ny

\ Ot | Os :Ut-v:o'.r Eg[ | O —_—> A)
rasds Vs ¢

Hamiltonian functional
for Ising ferromagnet:

H({o}) = — Z 0;0;
(L,))
Partition function:

where:
Aijk( — e(cr,-crj+0j0k+aka;+a;0',-)/7‘

7 = Z e—H{o)/T
)
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Encoding partition functions as tensor networks

Square lattice of Ising spins:
Q' gsp \ \/
ok g N\
gt o N e
B = A 7
m%--%-w%_.‘(_w /\ / \ s
Y A
- g W SN N
| I | | !\A (
Hamiltonian functional whare: / \
for Ising ferromagnet: ' GiCi+0i0v+oLa1+010:)/T
Aiﬂ\'l:e( i0j+0jok+0k01+010i)/
H({o}) = _ZU:’O}'
(t,J)
B Partition function given by
N contraction of tensor network
7 = Z e—H{o}/T = tTI‘( X A)
x=1
{o}
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Encoding partition functions as tensor networks

Partition function: Replace a single tensor in the network:
\-";4/ N e
\A/ \A/ \ / \ /
\A/ \A/ \A/——> 7 b / / \A/—-—~> <Y>
N Nal \ K/\
8 Wa\ /\/\
A A
Y

Expectation value of
local observable:

(0);3 = 7
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Encoding many-body physics in tensor networks

tensor network

[ [v [V [

SN
[:1? ﬁ“’q 3 “4 ﬁ‘? < contraction
A—b—a—®,
| | | |
-

[ _
MK 4 K '

(- )

scalar

What is the physical relevance of this procedure?
(1) Computing information about classical many-body systems
(via evaluation of the partition function)

(i) Computing information about quantum many-body systems
(via evaluation of the Euclidean path integral)
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Encoding Euclidean path integrals as tensor networks

Nearest neighbour Hamiltonian for
a 1D quantum system:

H:Zh(r,r-l-l)

Evolution in imaginary time yields
projector onto ground state:

ém[e“ﬂH] = |Yes{Pes]

Goal: express Euclidean path
integral as a tensor network

Aijrgo[e“ﬁH] ——— TN.

Separate into even and odd terms

H = Z h(r,r+1) + Z h(r,r +1)

I even r odd

= Heyen + Hodq

Expand in small time steps

lim [e“’ﬁH] = g~ THe-THp=THp-TH
—» 00

Where it is then seen

e""'rH —_— e""THevene""THOdd -|- O(TZ)
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Encoding Euclidean path integrals as tensor networks

Separate Hamiltonian into even and odd terms:

H = Z h(r,r +1) + Z h(r,r +1) = Heyen + Hodd

I even r odd

Expand path integral in small discrete time steps:
lim [ePH| = e=THe~THe-THe=TH |

e~TH = ¢=THeyven p=THoaa + O(Tz)

Exponentiate even and odd separately :
r=0 1 2 3 4 5 6 7 8 9 10

| | | | | | |
—THeyen { e_th [e—rh I [ e—rh] [e—rh I ( e—r}t]

l | [ | [ | | [
e “THodd { e ‘rh} [e—rh] [e—rh] [ e—rh] [ e—rh]
[ | | | [ T [ I | T
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Encoding Euclidean path integrals as tensor networks

ie_rhi] [ie—fhi| [ie_mi] [ie_mi] ie_mi] [ie_mi

| |
0 (@ (3 (@) (= )

i () () () (&9 (&) (&)
g

r

)
e—rhl [e—rh] e—rh] e—rh] [e—rh] e—rhl
)

v [‘ [le—rhl] [le—rh]] [le—rhlJ [le—rhlJ [l e—'rhl dj
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Encoding Euclidean path integrals as tensor networks

Given 1D quantum ' y ‘
Hamiltonian: l ( o \A \ (
/=
H=Zh(r,r-+—1) - \ / /\{
' .Sg’ \,/ \ \ //\ = [Yas)
Set tensors: 5 < A
A = exp(—th) %g 4 \ / \ /\ <
for sufficiently r N / \ / \ /
small time-step T l /‘ '\ / \ ) /'\
-0 0009
The tensor network is a <€ >
representation of the 1D lattice in space

ground state [gs) of the
quantum system
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Encoding Euclidean path integrals as tensor networks

Given 1D quantum
Hamiltonian: \ / \ / \ /

/

H=Zh(r,r+1) \ / \ / \ ./
" \/\/\/’\ ~ |Pas)

A = exp(—th) / \ / \ /\
for sufficiently \ / \ / \ / &

small time-step T / \ / @ / \
J
sl / \ / \ / A

round state |Ygs) of the

; quantumsszStem / \ / \ / \ /
Expectation value of \ / \ / \ / \

local operator: (A)

(Ygslolpgs) /.\ /‘\ )

Set tensors:

= (YPgsl
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Encoding many-body physics in tensor networks

tensor network

— —

[ [V [ v

(v
—8@—48@ 4

L]
[:A —@— @@ < contraction

] - @
B—@-0,

L L
a0

|
> 4

»n

scalar

What is the physical relevance of this procedure?

(1) Computing information about classical many-body systems
(via evaluation of the partition function)

(i) Computing information about quantum many-body systems
(via evaluation of the Euclidean path integral)

(i) Contracting projected entangled pair states (PEPS)
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Projected entangled pair states (PEPS)

Tensor network ansatz for
2D quantum systems

) -
.‘..‘...‘..‘.... Important part of PEPS algorithms is
‘0..‘.'.'.. in evaluation of scalar products and
'.".." expectation values of local observables
-_::_— _-double
1] = index
Wlp) «

,_ - - =)

OO’.’.’.’.’..
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Outline: Tensor Network Renormalization

Part |I: Motivation

[Representing partition functions of classical B
many body systems as tensor networks
Representing Euclidean path integrals of
quantum many-body systems as tensor networks

\Scalar products of PEPS J

Part Il: Previous RG schemes

The tensor renormalization group (TRG) approach

Failure of previous schemes to give proper RG flow

Part lll: Tensor Network Renormalization (TNR)

[Formulation, benchmark results, other applications ]
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Tensor Renormalization Group (TRG)  (1.in Nave, 2006)

Preliminary: truncated singular value decomposition (SVD)

. reshape SVD Z U
Aukl P A(U)(“) L (U)m mm m(kl)

—
J N :
A —— B :'\ = S__:V'I'\_:
K - -
_ / i
array: mzatl"lxé unitary unitary
AXXXXxX X xX +ve diagonal

® truncate

- W YW =
5 — _ —%\5/ S

absorb 0
singular values indexdim= Y < Y
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Tensor Renormalization Group (TRG)  (1.in Nave, 2006)

Preliminary: truncated singular value decomposition (SVD)

NN /

N/
4A) —— (A) =
/} N /T\

dim ¥ dim ¥ < y?

most accurate decomposition of a four index tensor into a
pair of three index tensors (for a fixed bond dimension X)

i.e. minimises: & = ||A - AU”
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Tensor Renormalization Group (TRG)  (1.in Nave, 2006)
A(O) A(O.S)

truncated
—R &—9— SVD } contract
;_

— 29—

ARG e

initial network coarser network

truncated SVD contract

-4 | 1~
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Tensor Renormalization Group (TRG)  (1cin Nave, 2006)

A0
/‘.
YN .
truncated
—R &—9— SVD
— —8—

4?

-

A(O.S)

SO e

RG flow in the

space of tensors:

A0 5 A1) 5 4@) .

o =3 A(s) —) e

TRG can be very powerful, but has significant flaws:

Conceptual flaw: TRG does not give proper RG flow

Computational flaw: TRG can not be iterated
sustainably when at (or near) criticality
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Tensor Renormalization Group (TRG)  (1cin Nave, 2006)

RG flow in the
space of tensors:

A0 5 A1) 5 4 5 ... 5 406 5 ...

Conceptual flaw: TRG does not give proper RG flow

Consider TRG applied to the classical 2D Ising model:

Expect: The tensors should flow to one of three fixed point
tensors, dependant on whether the temperature is
below, at, or above the critical temperature

Find: Away from criticality, tensors in the same phase flow
to different (temperature dependent) fixed points

At criticality, tensors do NOT flow to a fixed point

Aord?J AL\ Adisorder
® ® ®

T =0 T =T¢ T =o0
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Tensor Renormailization Group (TRG)

RG flow in the
space of tensors:

AL 5 4@, 4@, ... 5 A, ...

Computational flaw: TRG can not be iterated sustainably when at (or near) criticality

— > RG flow at criticality with TRG ————>

10°
(a) s=0 s=1 s=06
O
=, 10 \‘
< \
Y—
5 \
2
SRR
g 107 .*.%
n |
104 ] ® ¢
10% 10" 10210% 10" 10210° 10" 10%210° 10" 102

Bond dimension X
required to maintain fixed ~10 —— ~20 ——> ~40 ——> >100
truncation error (~10-3):

Cost of iteration,O(XS): 1x10° = 3x10® - 1x108 = > 101
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Tensor Renormalization Group (TRG) (1 Nave, 2006)

A0
/\
PV D
truncated
—R &—9— SVD
—¥ 29—

4?

-

A(O.S)

SO e 3

RG flow in the

space of tensors:

A0 5 A1) 5 4) .

o =P A(s) —3 e

TRG can be very powerful, but has significant flaws:

Conceptual flaw: TRG does not give proper RG flow

Computational flaw: TRG can not be iterated

sustainably when at (or near) criticality

What is the origin
of these flaws?
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Fixed points of TRG

Imagine “A” is a special tensor such that each
index can be decomposed as a product of
smaller indices,

‘_IU'H - ‘—1(1'1"': ) J1J2 X kka )(hia)

such that certain pairs of indices are perfectly
correlated:

A 0 0.i:ff: bkﬂlafﬂz

(iin)Uyda Wk (b)) = Yy

These are called corner double line (CDL)
tensors. CDL tensors are fixed points of TRG.
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Fixed points of TRG

Singular value

o —> Contraction —>
decomposition
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Tensor Network Renormalization (TNR) .cubi. vidal, io prep)

Change in RG scheme based on RG scheme based on insertion
formalism: SVD decompositions of projectors into network
X dim >
X dim

y\("/ truncated \/\( ™S /
(A ) —>SVD A — T T2
A .. &

S& &

l apply

projection
Want to choose ‘W’

as to minimize error:

e=|lA-A

\

~

set: W =U

Q
=i
|

=l

Y
a

\I/ ~N
A\
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Tensor Network Renormalization (TNR) .cubi. vidat, io prep)

Change in
formalism:

RG scheme based on
SVD decompositions

RG scheme based on insertion

of projectors into network

o -
x\'\’*“ojko A' \(

Qn ~ ="
|: A )
i

if isometry ‘w’ is optimised to act

as an approximate resolution of
the identity, then these two
procedures are equivalent

Xdlm

/@

\/

—

X dim

/

A/
A

Page 34/52



Pirsa: 14110137

Tensor Network Renormalization (TNR)  .cub. vidal, io

Two key ingredients for TNR:

(1)
insertion of WT
projectors:

~ w
2
) A A
insertion of L qu
unitaries: L
u
A A

<

Can mimic the effect of
truncated SVD

act as exact
resolution of identity

Input:  DVI- 1280x720p@60Hz
Output: 8D - 1920x1080I@60Hz
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Tensor Network Renormalization (TNR) .cubi. vidal, io prep)

‘ ._truncated } 1 contract

TRG

—O svo
—>
—@ O .—
Equivalent scheme
‘ * insert
projectors contract
—l __ r—

= S -
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..vw Y\

Contract Singular value decomposition Contract
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Tensor Network Renormallization (TNR):

short-range correlated short-range correlated

How does
disentangling help?

Consider CDL
tensors...

Key step of TNR algorithm:

Insert unitary disentanglers:
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Tensor Network Renormallization (TNR):

N =8= ﬁﬁ

[ : /7%
w

o—e \

— ~

- ) | 1 [ _1
4 =
Insert exact resolutions

of the identity Insert approximate
resolutions of the identity

+ |If the disentanglers ‘u’ are removed then the
TNR approach becomes equivalent to TRG

* | will not here discuss the numeric algorithm required to
optimize disentanglers ‘u’ and isometries ‘w’

Does TNR fix the flaws of previous RG schemes?
Conceptually: want correct RG fixed points

Computationally: want sustainable RG flow
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Benchmark numerics:

2D classical Ising model on lattice of size: 21% x 212

Error in Free Energy, §f

103

-
o
FEN

-
o
o

-
o
<D

21 22 23 24
Temperature, T

Spontaneous Magnetization, M

o
©

© ©
-,.J

©c o o o o ©
O a4 P A o

o

»

w

— Exact

¥=4
TNR

2 21 22 23
Temperature, T

2.4
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Benchmark numerics: RG flow of Ising model

Conceptual goal: Does TNR give proper structure of fixed points? Yes!

0) 1 )
’_1 _>|_1() S _1( _)’_14)

sub-critical
T=09T,
critical critical (scale-
_ invariant) fixed
r= TC point
super-critical disordered
T=11T, > (trivial) fixed
point

ordered fixed
point
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Summary

We have introduced an RG based method for contracting
tensor networks: Tensor Network Renormalization (TNR)

key idea: use of unitary disentanglers to u‘l‘
properly address all short-ranged
degrees of freedom at each RG step u

key features of TNR:
Proper RG flow (gives correct RG fixed points)

Sustainable RG flow (can iterate without increase in cost)

L

Direct applications to study of 2D classical and 1D quantum
many-body systems, and for contraction of PEPS.

The same ideas can be implemented for higher dimensional
tensors networks forming e.g. a simulation algorithm for 2D

quantum many-body systems.
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Other Applications

00—

DU

?
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. H
H H
H H

Thus far, we have considered RG of
infinite tensor networks (or PBC)

What about TNR applied to tensor
networks with open boundaries?
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Other Applications

open
boundary

Layer of boundary
tensors that connect
boundary degrees of
freedom with coarse-
grained degrees of
freedom in the bulk
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Other Applications
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Other Applications

Path integral of 1D
quantum system
(with PBC)

open
boundary

TNR applied to the semi-
infinite cylinder gives a MERA!
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Other Applications

1Yes)

TNR

open
boundary

TNR allows one to obtain a MERA
approximation to the ground state
directly from the path integral

MERA is emergent from TNR
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Other Applications

open
boundary

open

boundary Finite temp thermal states
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Other Applications: logarithmic transform

C ]
C ]
> L ]
C ]
C ]
C ]

2D Conformal field theory
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A

rescaling
transformation for
local operators

A
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Other Applications: logarithmic transform

Scaling dimensions from partition
function of critical Ising

5 == ) Sow——
Exact

4+1/§ _ J—T

3+1/% —
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Summary

We have introduced an RG based method for contracting
tensor networks: Tensor Network Renormalization (TNR)

key idea: use of unitary disentanglers to u’r
properly address all short-ranged
degrees of freedom at each RG step u

key features of TNR:
Proper RG flow (gives correct RG fixed points)

Sustainable RG flow (can iterate without increase in cost)

L

Direct applications to study of 2D classical and 1D quantum
many-body systems, and for contraction of PEPS.

The same ideas can be implemented for higher dimensional
tensors networks forming e.g. a simulation algorithm for 2D

quantum many-body systems.
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