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Abstract: <span>l will present a new approach to information-theoretic foundations of quantum theory, that does not rely on probability theory,
spectral theory, or Hilbert spaces. The direct nonlinear generalisations of quantum kinematics and dynamics are constructed using quantum
information geometric structures over algebraic states of W*-algebras (quantum relative entropies and Poisson structure). In particular, unitary
evolutions are generalised to nonlinear hamiltonian flows, while Luedersé€™ rules are generalised to constrained relative entropy maximisations.
Orthodox probability theory and quantum mechanics are specia cases of this framework. | will also discuss the epistemic interpretation associated
with this approach (rendering quantum theory as a framework for ontically noncommittal causal inference), as well as the possibility of deriving
emergent space-times directly from quantum models.</span>
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New paradigm:
1) Quantum theoretic kinematics generalises and replaces probability theory;
quantum theoretic dynamics generalises and replaces causal statistical inference;

both are nonlinear, with no Hilbert spaces, no eigenvalues, no measure spaces, and no
probabilities in foundations

2) The foundational role played in quantum mechanics by spectral theory is replaced by the
information geometry of spaces of states on W*-algebras,
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Main insight

e Probabilistic models:
M(X. ) C Li(X. )" = {p: ¥ = R| [, up < >.p = 0}

(y=m? e

e.g. Gaussian models {p(x.(m.s)) = ;7;;(-"'2-3 | (m.s) € © C R x R*}
Banach space duality: Ly(X'. 1) X Lao(X. 1) 2 (p. f) = [ ppf ER
convergence of integration: [, upsup,(f;) = sup;( [ 1pfi)
Spaces of density matrices:
M(H) S T(H)* = {p € B(H) | tru(Vip) < . p > 0}
e.g. Gibbs states {¢=*" | 7 €]0. [}
Banach space duality: 7(H) x B(H) 2 (p.x) = try(px) € C
convergence of integration: try(psup; xi) p; tru(pxi).
Is there a joint generalisation of the above twoWggttings?
Yes. = The notion of a W™-algebra \/:

* an algebra over & or C,

* with * operation s.t. (xy)" = y*x", (x - ¥)* = x

that is also a Banach space,

L d
* with -, -, * continuous in the norm topology,
* such that there exists a Banach space .V, satisfying the Ban

Ne x N 3 (w.x) = w(x) e C,
* with a convergence w(sup; x;) = sup; w(x;)

@ The theory of integration over W™-algebras simultaneously generalisd§
theory and the theory of density matrices
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Kinematics |: Spaces of quantum states

@ The elements of \." are direct generalisation of probabilities and density matrices:
» if A is commutative ==

N 2 Lo (X, 1) and N, 2 Ly (X, 1) for some (X, p1): w(f) = [ ppf
» if Nis "type I" =

N 2 B(H) and N & T(H) for some H: w(x) = try(px).
So they are good candidates for the “general quantum states of information",

Probability theory is just a special case of integration theory on W*-algebras, and

quantum states are just integrals, so “general” quantum theory (beyond QM) does
not need to depend on probabilities.

Basic object of interest: spaces M(\) C N of states over W*-algebras A\, |

Note: we do not assume a priori that:

e all/any elements of M(A) are decomposable into tensor products ¢ = ¢y @
( <= lack of initial correlations)

e M(N) is convex ( <= probabilistic mixing)
e M(N) is smooth ( <= infinitesimal linearity)

e M(N) is normalised ( <= frequentist interpretation)

Pirsa: 14110134 Page 9/21



Pirsa: 14110134

New kinematics: quantum information geometry

® Main principle: Consider expectations as more important than eigenvalues
(== spectral theory replaced by quantum information geometry)
@ Kinematic setting:

(1) elementary objects of concern: subsets M(A) of states on W*-algebras A/

(2) nonlinear geometries of M(N) determined by quantum relative entropy functions
D(-.<) on M(N)

(3) observables defined as arbitrary functions £ : M(N) — E

(4) the commutator of A" induces a Poisson structure {-, -} that acts on smooth
observables on M(N\)

® no Hilbert spaces, no probability theory in foundations (derived as special cases)

@ emergent curved space-times

Page 10/21



Kinematics |l: Quantum entropic (information) geometries

Basic geometric structure: quantum distances D : M(N) x M(N) = [0.x]
S.t. D(;l. a)i=0l < nh=0,

Dy(p.a) = tx(plog p — ploger) [Umegaki'62,Araki‘76]
Dy /2(p @) = 2||\/5 = v/ 3y (Hilbert-Schmidt norm)
* Dyyy(p.a) = dtr|p— a| (trace/predual norm)
* Daa(p.o) = tr((a = p)a=(a - p)) (quantum y?)
* Duz(p.o) = -1—_‘? log tr(p*/2a(1=0)/2)2; (2 € B [Audenauert-Datta'14]
for supp(p) C supp(e), and with all D(p. 0) = +2¢ otherwise
® Various “quantum geometries” will arise from different additional conditions imposed
on pairs (M(N). D).
o Different choices of M(N) reflect different assumptions on the available possible
knowledge (clescription of experimental situation), while different choices of D
reflect different assumptions regarding the convention of “best/optimal”

estimation/inference. Both choices are case-dependent and should be operationally
justified.
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Kinematics |l: Quantum entropic (information) geometries

Basic geometric structure: quantum distances D : M(N) x M(N') = [0.¢]
StRD(ie) =0 p= 0,

e Eg.
Dy(p. ) = tx(plog p — plog ) [Umegaki'62,Araki‘76]
* Dysa(p.o) =2||/p - ﬁ“‘é‘zt.“‘) (Hilbert-Schmidt norm)
* Dy (o) = dtx|p — a| (trace/predual norm)
Da(p.a) = tr((o = p)a=(a = p)) (quantum ?)
» Doz(p.o) = {2 logtr(p*/2all=a)/z)z; o z € R [Audenavert-Datta’14]
for supp(p7) C supp(e), and with all D(p. o) = +a¢ otherwise,
® Various “quantum geometries” will arise from different additional conditions imposed
on pairs (M(N), D).
o Different choices of M(N) reflect different assumptions on the available possible
knowledge (description of experimental situation), while different choices of D
reflect different assumptions regarding the convention of “best/optimal”

estimation/inference. Both choices are case-dependent and should be operationally
justified,
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Dynamics I1l: Quantum entropic projections as a bayesian inference

Bayes-Laplace and Liiders' conditionings are special cases of entropic projections
= “quantum bayesianism C quantum relative entropism".

e Bub'77'79, Caves—Fuchs=Schack'01, Fuchs'02, Jacobs'02: Liiders' rules

PyP
£ fnow = Z PipP; (‘weak'); = Prow - St

) ‘= = (Pp) (‘strong’)

are rules of inductive inference (conditioning) that are quantum analogues of the
Bayes-Laplace rule
p(x)p(blx)
P(b)
e Williams'80,Warmuth'05, Caticha&Giffin'06: for Dyi(p. q) = [y 11p(x) log(2{4)), the

alx)
Bayes—Laplace rule is a special case of "ﬁg’ for some choices of @ € M(X’. ).

Douven&Romeijn'12: it is also a special case of '133", where Do(p. q) = Di(q. p)-

e RPK'14,F. Hellmann-W.Kaminski-RPK'14: weak Liiders' rule is a special case of
‘1‘3’ with Q = {p € N." | [P:. p] = 0 Vi}; strong Liiders' rule derived from 'l‘@" with
Q={peN |[Pi.p] =0. tr(pP;) = pi ¥i} under the limit pa..... Pn — 0.

o Caticha&Giffin'06: under more general constraints, a Jeffrey's rule (generalising

Bayes—-Laplace) can be derived; RPK'14: '1‘3" allows to derive the quantum
analogue of a Jeffrey's rule, which generalises Liiders' rule.

P(X) = Puew(x) :=
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Dynamics 111: Quantum entropic projections as a bayesian inference

Bayes-Laplace and Liiders' conditionings are special cases of entropic projections
= “quantum bayesianism C quantum relative entropism".

e Bub'77'79, Caves-Fuchs=Schack'01, Fuchs'02, Jacobs'02; Liiders' rules

: PyP
= fpew = Z PH’P] (Iweak )i Pt ffhow = ’—

: e (Pr) (‘strong’)

are rules of inductive inference (conditioning) that are quantum analogues of the
Bayes-Laplace rule

P{X) s Pm-w(x) = P(X)p(blx)

e Williams'80,Warmuth'05, Caticha&Giffin'06: for Di(p. q) = [y sip(x)log(2f), the
Bayes—Laplace rule is a special case of ‘1‘3' for some choices of @ C M(X. ).
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Bayes-Laplace) can be derived; RPK'14: '1‘3“ allows to derive the quantum
analogue of a Jeffrey's rule, which generalises Liiders' rule.
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Dynamics |V: Causal inferences = entropic-hamiltonian dynamics

e Two elementary forms of quantum dynamics

» hamiltonian flows w)! generated by nonlinear hamiltonian vector fields {h. -}
» entropic projections ‘l‘g generated by quantum distances D(-. ")

@ Interpretation:

» {h,-} represents a convention of causality (“internal dynamics")
» D(-,-) represents the convention of "best estimation/inference”

\
i/\ general form of quantum dynamics is defined as a causal inference 113 o w;".

@ It generalises unitary evolution followed by a “projective measurement”.

o Postulate: consider the setting of causal inferences 113 o w;" as an alternative to the

paradigm of CP maps.

@ Some virtues:

no requirement for lack of initial correlations

nonmarkovianity

consistent nonlinearity

direct relationship with geometric structures on quantum states, and with conventions
of estimation

» replacement for ad hoc techniques of perturbations of hamiltonians

yvvyy
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Overview of structures and their "operational” semantics |

1) W=-algebras \ are “integrable algebras of elementary quantities” replacing “integrable
spaces of elementary events”.
No operational semantics for W*-algebras is established, but there is a substantial hope
that they can be considered as algebraic representations of (measurable) groupoids [every
measurable groupoid G defines an associated W*-algebra N'(G). and this mapping extends
to the functor of corresponding categories (Landsman’01)]. So one can think of:

W=-algebras \' _ measure spaces (A" U(AX). 1)
groupoids of elementary invertible processes  sets of elementary isolated events

2) Quantum models M(N) C N, are spaces of integrals on N, that are denormalised
generalisations of probabilistic models M (X', 1) C Ly (X, j1); and of spaces of density
operators M(H) C T(H)y .

These are spaces of states of knowledge. The construction of a specific M(N) can be
provided by various rules of encoding knowledge (e.g. symmetry, max.ent.. ...). in complete
analogy to methods of construction of probabilistic models,

Nonlinear observables f : M(\) — E. For any given parametrisation

B 20 e 0~ p(t) € M(N) one can think of observables f as the
reparametrisation-invariant version of operational functions fa : © — R of parameters:
fa(0) = f(p()).
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Emergent space-times |

@ D(-,-) represents a convention of a global/nonasymptotic estimation/inference
gD(-. <) represents a convention of a local /asymptotic estimation/inference
{h.-} represents a convention of a local temporal causality.

@ ldea: If an emergent space-time is to be understood as a “space-time of causally ordered
information”, then it should be a result of?

@ chosing only those degrees of freedom of a quantum model that are operationally
(“macroscopically”) controllable
O assuming causal “temporalisation” of some parameter of estimation /inference =

considering as simultaneously decidable/estimable only such information states that
share the same value of this parameter

© encoding the conventions of local estimation/inference and local temporal causality
into a single geometric structure.

@ Implementation

* split M(N) I x .‘:l{,\'). where L is a manifold parametrised by operationally

controlled parameters, equipped with a riemannian metric gf:’ induced by gP. and a
globally defined vector field {h. -}

“Poincaré~Wick rotation” of g.L'? to a lorentzian gf"‘ along a vector field {h,}:

D _ D < D . 2D.h
B =B Tenley =g —en0e,=gr".

where g? is a riemannian metric induced by gED on the submanifolds orthogonal to ey,
_&P((h))
{he))’

while ey, := -

An emergent space-time is a triple (. gg <l ey)
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Emergent space-times |1

° g,?(x.y) is a generalisation of the two-point correlation function, taking various
different forms, such as tr(pxy), tr(p xp*y), tr( [y dAp xp*1y), etc. So, its
Poincaré-Wick rotation is a generalisation of a typical euclidean/lorentzian rotation
of correlation functions of QSM/QFT.

o P.Duch&RPK'12: A model M(#) has been found for which the Poincaré-Wick
rotation of g™ reproduces Schwarzschild space-time.

e Note #1: Operational assumptions leading to derivation of 4-dimensionality of Z:
see the recent work of M.Miiller & P.H&hn.

o Note #2: Instead of a split M(AN) 2 £ x M(N), one can consider also a nontrivial

fibre bundle with locally (but not globally) defined operational space-times
7:M(WN) = I

@ Note #3: Every section of a bundle .Ct(-\') over  defines a global quantum state

©(&) over space-time, and this determines a bundle of GNS Hilbert spaces H..(¢
This allows to use Prugovecki's approach to defining quantum propagators over a
curved space-time. => construction of emergent qfts over curved space-time.
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° g}?(x.y) is a generalisation of the two-point correlation function, taking various
different forms, such as tr(pxy), tr(p xp*y), tr( [y dAp xp*2y), ete. So, its
Poincaré~Wick rotation is a generalisation of a typical euclidean/lorentzian rotation
of correlation functions of QSM/QFT.

P.Duch&RPK'12: A model M(H) has been found for which the Poincaré-Wick
rotation of g™ reproduces Schwarzschild space-time.

Note #1: Operational assumptions leading to derivation of 4-dimensionality of Z:
see the recent work of M.Miiller & P.H&hn.

Note #2: Instead of a split M(AN) 2 £ x M(N), one can consider also a nontrivial

fibre bundle with locally (but not globally) defined operational space-times
7:MN) = L

Note #3: Every section of a bundle .CI‘(.\") over  defines a global quantum state

(L) over space-time, and this determines a bundle of GNS Hilbert spaces H..(«).
This allows to use Prugovecki's approach to defining quantum propagators over a
curved space-time. => construction of emergent fts over curved space-time.
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