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Abstract: <span>Gravity in 1+1 dimension is classically trivial but, as shown by A. Polyakov in 1981, it is a non-trivial quantum theory, in fact a
conformal field theory (the Liouville theory), and also a string theory. In the last decades many important results and connexions with various areas
of mathematics and theoretical physics have been established, but some important issues remain to be understood. In this colloquium | shall focus on
some recent developments and new questions on the relation between discrete and continuous 2 dimensiona gravity, probabilities and stochastic
processes, random fractal geometries and SLE curves.</span>
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Gravitation is classically trivial in 1+1 dimension

1
le - R;Ll/ i 5 g;w R =0

The Einstein-Hilbert action is a topological
invariant: the Euler characteristic

/ Vv |g| R = 47 x = 8m(1 — h)
M

However, it is a non-trivial quantum theory,
thanks to the Weyl anomaly !
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Path integral over 2D (Riemannian) metrics

/ Dlg 1( = / \/m(ﬂ+";m)

Invariance under the Diffeomorphisms of M.
This requires gauge fixing.

Polyakov 1981: use conformal gauge
(uniformization theory of Riemann surfaces)

guv(x) = A2) g ()

With 9. () a fixed reference metric (up to moduli
parameters).
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Examples

Sphere (g=0) § metric with
constant curvature R = 2

Torus (g=1) g, flat metric

Depends on the aspect ratio 7
2 moduli

General Riemann curve (g>1)
metric with constant curvature

R=-2
Depends on 3g-3 moduli

e
(=
==
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Gauge fixing involves a Faddev-Popov determinant

/D[.q /D,, (9] det[V,]det[V /pq d) e~ Seti[4]

The effective action depends of the metric, hence of the
conformal factor ¢ through the Weyl anomaly and the
trace of the E-M tensor for the bc ghost system.

0Sef [(;')]

o

(—26) 26

24 2-17r

= {1 [;’:> — — e ?(—A¢+ R)

We obtain a quantum theory for the ghost fields bc, the
conformal factor @ (now treated as quantum field), plus
the other quantum fields coupled to the metric (matter
fields).
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This effective theory is the Liouville theory
Its action is

SLiml\'il](‘[*r’ = 1 \/_ ( + (")R % i H e’ I;)
/"
the "quantum” metric is ds® = e77'*%) dzdz
. H - 2 i
with (conformal invariance) Q=-—-+ —;
/"} i

In the classical limit v <1 the equations of motion are
the “Liouville equations”

R+u=0
with R the curvature R =e¢ 7% (—", Ay + f?)

and p the “cosmological constant”

6
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The Liouville theory is a Conformal Theory (CFT)

az +b
cz +d

2w =

Critical systems 2D (Ising)
Scale+Rotation invariance (+ Unitarity)

AdS,
AdS/CFT

Symmetries of AdS space 24
Liouville

Remnant of diffeomorphims invariance
. —
after conformal gauge fixing

Pirsa: 14110130 Page 9/48



Pirsa: 14110130

Liouville is a CFT

central charge CLiouville = 1 + 6Q?

Weyl anomaly consistency

i1t | I 1 C 'U 1 e _I_ (.u' 0Ss + C : or — ()
condition (Diff. invariance) towyil ghost T Cmatter

(2-_) - 20 — (:111;111('1‘
§)
Transformation law of the field
N : 0z
z — w(z) p(2) = ¢(w) = (2) + Qlog | 5
aow

but it is a non-rational CFT, it is much more difficult to
study than “ordinary” minimal or rational (and probably
the logarithmic) CFT
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Vertex operators
the vertex operator Va(z) = exp(ap(z))

has conformal dimension P (Q L ﬂ)
2 2

in particular the interaction term has dimension A, =1
but « / exp(7¢) is not a “mass term”

Insertion of a vertex operator amounts to insert a
curvature singularity (conical point) on the surface with

A7 Q.

Qo = 27(1 — @/Q) / \J, /_;,
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N-point functions and Seiberg bounds

The sphere is not a solution of Liouville equation !
ZH]}II(‘I'(‘ =0

But correlation functions  (V,,, (x1)Va, (z2) - Vo (zN))

make sense, provided they satisfy the Seiberg bounds

o; < @

Z a; > 2Q

Z
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Liouville theory describes (non-critical) strings

2D gravity = string in a O/_\/_\/\)

linear Dilaton background S
g va +1 4 CD

LT A
= / VG XFREX G LA X)+T(X)+ RO(X)
¢ ﬂ' .

view Liouville field ¥ as X" coordinate (“time”)

d(X)=QX" linear dilaton background

T'(X) = pexp(Xp) exponential tachyon background

11
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Many developments since 30 years...

For instance, the 2004 review by Nakayama contains
approx. 500 references. Many more now...

Especially in view of:
Liouville theory in the disk and branes in string theory
(FZZT-branes and ZZ-branes)

AGT conjecture (relation between Liouville in 2D and
supersymmetric gauge theories in 4D)
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Discrete 2D gravity

Discretized 2D geometry = random maps (here a planar
triangulation)
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Discrete 2D gravity
The dual is a planar graph (here trivalent)
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Discrete 2D gravity
The dual is a planar graph (here trivalent)

|

A
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Discrete 2D gravity
The dual is in fact a planar fat graph

|
4/

/./
L
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Combinatorics of planar maps

By combinatorics: Tutte recurrence equations
By matrix models: generating functions N x N matrix

/ dM exp(—N Tr(ﬂ[2 - gﬂ[:‘))
. .\[:A['

't Hooft planar limit: 1/N~topological expansion

'O+ @WN

critical point: ¢ — g. large maps and continuum limit
double scaling limit: the topological expansion is an
expansion in z=N"%(g, — g)~%+" and it
corresponds to non-perturbative solution of string theory

16
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Discrete 2D gravity
The dual is in fact a planar fat graph

|
v/
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Discrete 2D gravity
The dual is in fact a planar fat graph
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N

W. Tutte

l ' o\

s, J. Frohlich

E. Brézin, V. Kazakov D. Gross, A. Migdal M. Douglas, S. Shenker
17

Pirsa: 14110130 Page 22/48



KPZ scaling laws

Consider some matter CFT (Ising, O(n) model) could to
2D gravity.

If some local operator (spin, energy) has dimension X
in the CFT, it has dimension X in gravity+CFT theory

xo=1T+ }—1.1'(.1' - 1)

The “string exponent” is
4

Vs =1——

-~

Proven by CFT & Liouville - basically A, = % (( — Q)

.
Knizhnik-Polyakov-Zamolodchikov ‘88 i
FD ‘88, Distler-Kawai ‘89

18

Pirsa: 14110130 Page 23/48



V. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov

F. David J. Distler, H. Kawai

some guys to be associated to KPZ, later on....
19
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NOT THIS KPZ'!

20

Pirsa: 14110130 Page 25/48



Many evidences for equivalence Liouville - Matrix models

Explicit calculations for many models
Same scaling dimensions
Same recursion relations

Also relation with Kontsevich model and topological
gravity (geometry of moduli space of Riemann
surfaces)

However...
No direct construction and complete understanding of:
discrete conformal map + continuum limit

conformal structure (measure) versus Riemannian
structure (distance metric and topology) except for

pure aravity  cpater =0, 7 = /8/3
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Distance geometry: random maps & random trees

There are bijections between planar maps and labelled
trees Cory-Vauquelin, Schaeffer, .... Ambjorn-Kawai, ...

This gives access to some metric information (distances)

dspectral = 2 random walk on a quantum metric not

that different from the classical one
duausdorft = 4 geometry of geodesics on a quantum

metric is very different

22
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Local limit of Liouville: the Gaussian Free Field (GFF)

“Locally”, Liouville CFT “looks like” the Gaussian Free Field

, R .
S=— [ &z (8p)?

47
The GFF is already an interesting object

example:

its level-lines are fractal
and related to curves
created by a SLE
process, here SLE,

Schramm-Sheffield
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Stochastic/Schramm Loewner Evolution (SLE) process

SLE is a curve growth process which has two properties:
1. Conformal invariance
2. Domain Markov property

In the upper half plane (chordal SLE) it is defined from
the stochastic equation

dgi(z) 2
gt gi(z) — &
This defines a conformal mapping from the upper-half-
plane minus a curve onto the upper-half-plane
This curve is the SLE curve

¢ = \/k B; Brownian process

O. Schramm 99, ... ,Lawler, Schramm & Werner 01

24
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Some properties of SLE

Hl‘
(z)
z j) N

0 S

This seemingly simple process is highly non-trivial

D<k<4 4<xk<8 ; [
dy :l—{—h'./?% g =2
Hausdorff space-filling

dimension continuous curve

25
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SLE, Interfaces in CFT and KPZ

SLE has revolutionised our understanding of the multifractal
properties of interfaces and clusters in 2D critical systems
and CFT.

The SLE, curve describes the interface of a critical model
in the plane whose continuum limit is a CFT with central
charge ¢ with a simple relation between ¢ and ~ .

This relation is nothing but a KPZ relation for Liouville+CFT
. 2 B\ 2B-c
@=(7#+7) =55

This suggest a deep relation between SLE and Liouville

26
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Geometric KPZ & the GFF

A geometric version of the KPZ relation holds: it relates
the fractal dimension of an object in the classical flat
measure fo(dz) = d°z and its fractal dimension in the
“quantum” measure p(dz) = d*z exp(yp) with ¥ a GFF
This requires tools of probability theory (Kahane
multiplicative chaos, eftc.), or studying random walks in a
guantum metric.

. o |
-y N 9 2
e 'J:: » ,-\"':4341 ."LJ':‘,.;‘ — m—— . PO
Mo o do =d+ 3 d(2 — d)
&
Bt

Duplantier-Sheffield, Benjamini-Schramm, Rhodes-Vargas (see also Bauer-David)

27
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Diffusion in random metric

C=-24, k=2/3 (Liouville at weak coupling)
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Diffusion in random metric

==24, k=2/3 (Liouville at weak coupling)
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Diffusion in random metric

=—24, k=2/3 (Liouville at weak coupling)
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SLE/Liouville: Conformal Welding

One can construct SLE out of Liouville (in its GFF avatar) by

“conformally gluing” pieces of quantum surfaces with the
quantum metric ds® = e?¥**) dzdz with ¥ the GFF with
free boundary conditions

SLE .

“classical welding” “‘quantum welding”
flat metric guantum metric

Sheffield, Duplantier-Sheffield (see also Dubedat, Kupiainen et al.)

30
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Discrete Conformal & Quasiconformal Maps

How do we embed a random map onto the plane/sphere,
preserving its conformal structure?

Exact uniformization (Curien)

31
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Discrete Conformal & Quasiconformal Maps

How do we embed a random map onto the plane/sphere,
preserving its conformal structure?

Circle packings? (Folklore, but few results...)
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Discrete Conformal & Quasiconformal Maps

How do we embed a random map onto the plane/sphere,
preserving its conformal structure?

Delaunay circle patterns? (David-Eynard)

33
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There is a bijection between

triangulations+edge angles Delaunay triangulations on
(some truncation of the moauli the plane

space of the punctured sphere  Random distribution on N points on
Mo.n the plane, with non-trivial measure

Plane

Sphere

34
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The measure over points is very singular but integrable !

One expects large fluctuations of the density of points at all scales,

consequence of conformal invariance

39
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From the GFF to Liouville theory: the probabilistic track

Recent result by F.D., A. Kupiainen, R. Rhodes & V. Vargas
A rigorous probabilistic construction of the functional

integral and of the correlation functions of the full Liouville
theory on the sphere (as a first step...)

|
(" e ‘r>],iml\'illt' =E |:(“\r]) <_

—

r 1

/ Q]?,:- g (‘X])(ﬁ.;)) V... l']

GFF
and check of its conformal
invariance properties of the

KPZ relations for the full fledged
Liouville theory.

36
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Liouville Quantum Gravity on the Riemann sphere

Frangois David ! Antti Kupiainen | Rémi Rhodes *, Vincent Vargas

Niesday 28" October. 2014

Abstract

In this paper, we rigorously construct 2d Liouville Quantum Field Theory on the Riemann
sphere introduced in the 1981 seminal work by Polyakov Quantum Geometry of bosonic
strings. We also establish some of its fundamental properties like conformal covariance un
ler PSLy(C)-action, Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly
Polyakov-Ray-Singer) formula for Liouville Quantum Gravity

Key words or phrases: Liouville Quantum Gravity, Gaussian multiplicative chaos, KPZ formula, KPZ scalin

3, Polyakov formula
MSC 2000 subject classifications: 81 T40, 81T20, 60D05.
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Thank you!
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