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Abstract: <span><strong> </strong>| present a proposal for a worldline action for discretized gravity with the same field content as loop quantum
gravity. The proposal is defined through its action, which is a one-dimensional integral over the edges of the discretization. Every edge carries a
finite-dimensional phase space, and the evolution equations are generated by a Hamiltonian, which is a sum over the constraints of the theory. | will
explain the relevance of the model, and close with possible relations to other approaches of quantum gravity, including: relative locality, causal sets
and twistor theory.</span>
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Results and debates

The spinfoam approach defines transition amplitudes for loop quantum
gravity boundary states through a covarlant path integral on a lattice.
The EPRL model Is a concrete realization of the idea.

Interesting results:

m Graviton propagator, Regge-action for large spins, inclusion of a
(positive) cosmological constant, addition of fermions and Yang-Mills
fields, spinfoam cosmology, horizon thermodynamics...

But also ongoing debates:

m How can we find continuum GR? Which limit? Summing, refining?

m Do we miss additional secondary#gprsional) constraints?

m Apparent flatness in a face?

m Is there a notion of causality in spinfoa

I'think, these issues have little to do with the quant™g theory itself. We should

Jframework of simplicial gravity in area-connect/®
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The general idea

r:.\' B

It

m A Jocal spinfoam model assigns amplitudes A,
Ay, Ay, to the elementary building blocks of the
simplicial complex.

m In the semi-classical limit these amplitudes turn
into action functionals: A, o ¢'¥, Ay o o'/,

Ay o 0¥,

Can we write down a spinfoam action 33, Se + 3, Sy + 3, Se
same field-content as LQG? A theory of simplicial gravity in te
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Plebanski principle

The BF action is topological, and determines the symplectic structure of
the theory:

Sar[Z, A] = 2_;5." A (% Zas — B Tag) A F(4] aj:' Mas AF™, (1)

General relativity follows from the simplicity constraints added to the
action:

Sn.‘l A E;w ~ (ll;'.lll’_ (2)
With the solutions: A
ot tea Aca, 3)
= (Cn A C;l).
Notation:

a, 4, + ... are internal Lorentz indices.
L% 4 Is an so(1, 3)valued two-form,

A" 4 I8 an SO(1,49) connection, with F* 4 = dA®™ 5 + A", A A¥ 4 denoting its
curvature.

«* Is the tetrad, diagonalizing the four-dimensional metric g = n,ae™ ® ¢”.

£}, = 8mh /G, and 4 is the Barbero-Immirzi parameter
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Discretized BF theory with spinors on a lattice

Jomrsimphor .

We can write the discretized BF action as a sum over the tw¥imensional

simplicial faces [, fa,-..: “

SR L+ Z 1 o4~ 3L 11y 2 fap a1 Clyy Cfar v oy By rdhegy nel] =
Jiln
. g A A A
= % ¢ [whDut — it + Co(whof - zhef)]
Jilaces or
Notation
ADBC, are spinor indices, and cc. denotes complex conjugation.
Each face f carries two twistors: Z;, Zy 1 Of = T~ C', Z = (# 4.
Cr 1 0J = Cis a Lagrange multiplier imposing the constraint Ay = ¢
D is a covariant differential, if ¢ is an edge's tangent vector: ¢JDr? 4
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Discretized BF theory with spinors on a lattice

Joruresomplex -
werfer

We can write the discretized BF action as a sum over the two-dimensional

simplicial faces [, fa,...: .

SuPlZ11 22132110 ZtareeviCtieCtareeviors Aegrens] = 3 S

Jilnoos

= 3§ [FADuf -l (@ (who ~ i) + ce
Jilaces or

AB,C, are spinor indices, and cc. denotes complex cort
Each face f carries two twistors: Z;, Zy : Of =+ T=C', Z = (™

Cr
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Discretized BF theory with spinors on a lattice

four-simplex

vertea

We can write the discretized BF action as a sum over the two-dimensional

simplicial faces fi, fa,...: X

SBF[Zf1>Zf2>"';Zflizfzau';Cfquz"";AGMAeza"'] = Z Sf

f:faces

=2 ¢ (mhDwf - whdwf + ¢ (rhwf — mhwt)] + co.

fifaces

Notation:
m A, B,C,... arespinor indices, and cc. denotes complex conjugation.
w Each face f carries two twistors: Z;, Z; : 8f - T~C*, Z = (7 s, w?).
m (s :0f — Cis aLagrange multiplier imposing the constraint Ay = Taw? — TAw?.

m D is a covariant differential, if ¢ is an edge’s tangent vector: é 1D7? = #4 + [A. ] 7B,
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Key ideas of the proof, 1/2

m Step 1: Discretize the action:

SBF[E,A]:/ Map A FP Z/ aﬁfF‘—‘ﬁ— > 5y

f:faces f:faces

m Step 2: Define the smeared flux:

H?ﬁ(t) :/ dz dy [hw(t,m.y)]a#[hw(t‘w,y)]ﬁ"[Hp(w,y)(awa3y)]w
Tf

&

m Step 3: Employ the non-Abelian Stoke's theorem:

1 D
/dz}”n(z)p‘n(z)(az’af')h"?f(z = -nl(l)&h"n(l)?
Yt

to eventually find the one-dimensional action:

— D apf
Sy = /af dt[ 'Tf(l)dth'T!(l)] Hf (t).
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Key ideas of the proof, 1/2

m Step 1: Discretize the action:

Sur|E, A =-f Mg A F™
nr|Z, A et Z

JiInces

[ !'l...ifF“‘"s z S;.
s I

Jilnoeon

m Step 2! Define the smeared flux:

n}'“(l) — f dax dy lh‘vll.:.ullunihw[l.J.y]]"'!t [np(.r.ﬂ)(oll ﬂv)]'w-
W s

L]

m Step 3: Employ the non-Abelian Stoke's theorem:

~ )
f dz h'n'(llF'H("(D"D')h'lril) - h'ni’l)mh‘”(”'
"

to eventually find the one-dimensional action:

5 ) a
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Key ideas of the proof, 1/2

= Step 1: Discretize the action:

Sur (S, A] !==f Mas A F*? = Z
M

Jilncos

f nu.‘!anHE Z S)"
Ty J

JiTnoon

m Step 2! Define the smeared flux:

I']}""(t):f d-"*'dyl"'vll-:-ullunw‘w[l.-r.vll'r"‘[npi:.vlwnuu)]'w-
W

m Step 3: Employ the non-Abelian Stoke's theorem:

- <5 I
/-dzhwa'{alpﬁi(l}(a‘ha!)h'nll)=h1.|[1)ai""nl”'
i
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Key ideas of the proof, 1/2

m Step 1: Discretize the action:

SnriE.A]=L'nnnAF“Ha¢ ¥ f’ r[,..-f_/;F"""a > s

Jilncon*' T, S iTnces

m Step 2! Define the smeared flux:

n?“(l)=f drdy lh‘v(l-r-ull"#;h'r(l.a'.ull:r"[nr(t.v)w-huy)]“y-
T

L]

m Step 3: Employ the non-Abellan Stoke's theorem:

- L hy)
f (!:.’;,"(,,F.,,t,,(ﬂ..Dr)h.,lm = !"n‘l”a?h"'“"
]

to eventually find the one-dimensional action:

=1 ol
. ‘j:” d ["-"’mmha.(n]"””; (o).
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Key ideas of the proof, 2/2

m Step 4: Introduce spinors to diagonalize both holonomies and fluxes:

1 Atmi
ﬂ';“'(t) = EFA & w}" (t)‘n’}n[t) “k ce.,

A J S TP |
[-’hl]"n = pGXP( _j A)Ag - £ U)"ﬂ“) 2 (L)M"(t).

We also need.the area-matching constraint:
Ay = mhw] = whwi = Eg(t) = E(t).

Putting the pieces together yields the face action:
S¢1Z,Z,A,¢] =

Pirsa: 14110116
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Key ideas of the proof, 2/2

m Step 4: Introduce spinors to diagonalize both holonomies and fluxes:

l']';“'(t) = %t“'"'wff‘ (t)n’f)[t) + cc.,

J — i
[!L"]Aﬂ i chp(_f A)Au S wP(O)mh(t) = 77 (D (£)

We also need‘ the area-matching constraint:
Ay = mhwf —mhwi = Ey(t) = Eg(t).

Putting the pieces together yields the face action:
5112, 2, A\ =

e D A d a
= j;! dl[‘rr,';dtw TAGY C.ﬁ] -+ ce.

(6)
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Key ideas of the proof, 2/2

m Step 4: Introduce spinors to diagonalize both holonomies and fluxes:
ﬂ';‘"(t) = %t‘d'ﬂlw}" (t)n';“(l) + ce.,
[, = p"""(‘f A = w () (8) — f_r?(l)wf;(t)v
We also need‘ the area-matching constraint:
Ay = phwf —mhw] = Ey(t) = Ey(t).
Putting the pleces together yields the face action:
5112, 2, A\ =

s D A L) n
_f{;!dt[-.-rddtu TAgY CJ]-HC.
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Linear simplicity constraints

Instead of discretizing the quadratic simplicity constraints
Eas A E_uu X Cafuv,
we will use the linear simplicity constraints:

For a tetrahedron T, (dual to an edge e) there exist an internal

Jour-vector ng such that the fluxes through the four bounding tril@ingles =y
(dual to a face f: e C 8f) annihilate ng:

o
f Tayrig = 0.
s

The spinorial parametrization turns the simplicity constraintsjif
following complex conditions:

i 1
g S o 0]
1= goraAvr +cc.=0

Wes = niNwhal, = 0.
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Adding the simplicity constraints

= The simplicity constraints reduce the SO(1,3) spin connection A to
the SU(2), Asthekar-Barbero connectior:

A% = [ A%, + BA%). (10)

m We introduce Lagrange multipliers A € R and = € C and get the
following constrained action for each face in the discretization:

Stace|Z, ZIC, 2, AlA, 1) = j{ (7:',\17;.»;" = madw® = ¢ (aw” — maw?)+
of

A i A AA' -
-5 (E—Mm\w +cc,) —-zn 1r,-...1,‘-) -+ CC.,y (11)

where Dr? = dx? + A"t p.7? Is the SU(2), covariant differential.

m Problem: There is no term in the action that would determine the
t-dependence of the normal n? along the edges ().

= We now have to make a proposal.
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Adding the simplicity constraints

m The simplicity constraints reduce the SO(1,4) spin connection A4 to
the SU(2). Asthekar-Barbero connection:

A% = [ A%, + A%, (10)

m We introduce Lagrange multipliers A € R and = € C and get the
following constrained action for each face in the discretization:

StacelZ0 Z1C, 3, M Ay ] = j{ (raDw - zade” — C(zaw? —maw)+
or

A i A A A
- E(mﬂ“u +cc.) n ‘n’n.d,p) -+ OC., (11)

where Dr” = dx + A7 7" Is the SU(2). covariant differential.

m Problem: There is no term in the action that would determine the
t-dependence of the normal n? along the edges e(t).

= We now have to make a proposal.
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Adding the simplicity constraints

m The simplicity constraints reduce the SO(1,3) spin connection A4 to
the SU(2), Asthekar-Barbero connection;

A% = [ A%, + A% (10)

m We introduce Lagrange multipliers A € R and =z € C and get the
following constrained action for each face in the discretization:

Stuce|Z, Z|C, 2, Al A7) = j{ (MD'-’" = madw? = ((maw” = maw?)+
or

AT A B VTS
2 (B+ _]rr,\w +cc,) 11’,45-},]') + ©C., (11)

where D = dr? 4+ A% y.7? Is the SU(ZMgovariant differential.

m Problem: There is no term in the action that woSg determine the
t-dependence of the normal n? along the edges ¢

m We now have to make a proposal.
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Adding the simplicity constraints

» The simplicity constraints reduce the SO(1, 3) spin connection A% to
the SU(2). Asthekar-Barbero connection:

A% = [%ewﬂmup +BA%]. (10)

» We introduce Lagrange multipliers A € R and z € C and get the
following constrained action for each face in the discretization:

(W,&Dwﬂ‘ — gAdgA — C(EAQA - WAwA)-I-

Sf&CC[Z) Z'C, 2, )\|A, ’n,] - %
of

—_ %( - ,ﬂAwA +cc.) —znAA’

i maar) + e, (11)

where D = dn? + A%74 g,7? is the SU(2),, covariant differential.

» Problem: There is no term in the action that would determine the
t-dependence of the normal ng along the edges e(t).

= We now have to make a proposal.
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Adding the simplicity constraints

® The simplicity constraints reduce the SO(1,3) spin connection A“ 4 to
the SU(2). Asthekar-Barbero connection:

A% = [ A%, + A% (10)

m We introduce Lagrange multipliers A € R and = € C and get the
following constrained action for each face in the discretization;

Stuce[Z, Z|C, 2, Al A, 0] = f (u,\Dw" = madw? = (maw” — maw?)+
oy

AT (i A o it VY
2 (3+ [TAW -+ cc.) 2" wAQ, ) -+ €C., (11)

where Dr? = dx + A% p.x” Is the SU(2). covariant differential.

m Problem: There is no term in the action that would determine the
t-dependence of the normal n& along the edges ().

= We now have to make a proposal.
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Adding the simplicity constraints

m The simplicity constraints reduce the SO(1,3) spin connection A® 4 to
the SU(2), Asthekar-Barbero connection:

Al [%c,.,"".“\",. +8A%). (10)

m We introduce Lagrange multipliers A € R and = € C and get the
following constrained action for each face in the discretization:

StucelZ, ZIC, 2, A|A, 1) = j{ (rr,\Dw‘“ = madw? = ¢ (maw” — maw?)+
of

é i A g AACS
= (ﬂ—+-irr,\u +cc‘) —-zn 1r4.u,|-) -+ €C., (11)

where Dr? = dr? 4+ A7 .7 Is the SU(2).. covariant differential.

m Problem: There is no term In the action that would determine the
t-dependence of the normal n$ along the edges e(t).

= We now have to make a proposal.
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Adding the simplicity constraints

m The simplicity constraints reduce the SO(1,4) spin connection A® 5 to
the SU(2), Asthekar-Barbero connection:

A% = [%c,.,"";.",, +8A%]. (10)

m We introduce Lagrange multipliers A € R and = € C and get the
following constrained action for each face in the discretization:

StucelZ, ZIC, 2, Al A1) = f (m\’Dw" = madw? = ¢(Taw? = maw™)+
of

é i A SRAA -
- 2(54-'1“” +cc.) zn 1r,-..u,1)+cc.. (11)

where D = dr + A%74 p.7” Is the SU(2), covariant differential.

m Problem: There is no term In the action that would determine the
t-dependence of the normal n§ along the edges ¢(t).

u We now have to make a proposal.
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The proposal for the dynamics of the time-normals

Any proposal for the dynamics of the time-normals
= must respect the four-dimensional closure constraint, and
- be consistent with all symmetries of the action.

The following action fulfills these requirements:

Sedge| X, p|N, Vol(e)] = f (p,.(l)\'" = g(li..p" -+ Volu(l‘)))- (18)

We just need an additional boundary term at the vertices:

Svcrwnlyl'- {Xm']rjm {t'n-]c)vl - 2 (K:‘ et l\’::"')‘-':;"‘ “9)

wiedv

Where N Is a Lagrange multiplier imposing the mass-shell condition:

ci= %(pﬂp" +Voi'(e)) & 0. (20)
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The proposal for the dynamics of the time-normals

Any proposal for the dynamics of the time-normals
= must respect the four-dimensional closure constraint, and
- be consistent with all symmetries of the action.

The following action fulfills these requirements:

Seaeel X, PN, Vol(e)] = [ (padX® = Ty + Vo (@))).  (18)

«

We just need an additional boundary term at the vertices:

Swrtrnlyln {X!ﬂ'}l')l'! {t'n']r)vl - z (}’J. ot J\’.‘-‘p)'l':”. {19)

wiedw

Where N is a Lagrange multiplier imposing the mass-shell condition:

Cli %(p..p" +Vol*(¢)) & 0. (20)
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The proposal for the dynamics of the time-normals

Any proposal for the dynamics of the time-normals
- must respect the four-dimensional closure constraint, and
- be consistent with all symmetries of the action.

The following action fulfills these requirements:

Sedgel X, PIN, Vol(c)] = j (padx® - %(p..p"q-vm’{.:))). (18)

[]

We just need an additional boundary term at the vertices:

Svﬂrtﬂlyl'v {er}r)lu {t'n']n)l‘l -— 2 (K‘r‘ — d\.:‘lu)‘-'r“ ‘19)

a
aladv

Where N is a Lagrange multiplier imposing the mass-shell condition:

C:= };(p,.p" + Vol’(c)) = 0. (20)
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Hamiltonian formulation

The Hamiltonian:
H=A"Gat+ Y (c’A,+ffZ\,+zlw,, + 3 Wy -+ A’V;) +NCe, (22)
(=1
generates the t-evolution along the edges of the discretization:

d /
mwf‘ = {H,w}).

The fundamental Poisson brackets are’

N e, |
// {rﬂ,wf.} = 48,085, {T'-"!‘..;DPI'} =+

{thewh} = 8,088, {2} @0} = =6y
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Dirac analysis

- The Hamiltonian preserves all constraints provided = = 0.
- There are no secondary constraints.

Physical Hamiltonlan

'Hllhyl - A“Ga + Z (Cfd}' ar E!-&f S /\!Vj) + NC. (25)
1010

second-class simplicity constraint: Wy = piA 3{1.::{‘. 0,

first-class simplicity constraint: Vi = ﬁxf\uj‘ +cc, =0,
1

area-matching condition (first-class);. Ay = gf\g}‘ - #:r\uj.‘ = (1,

mass-shell condition (first-class): €, = ,—l,(p:',p'; + Vol*(e)) =0,

SU(2)n GauB constraint (first-class) ~ G& = 3 4% w/r] +cc.

S foa
Notation

® " . arethe SU(2),, generators: [, , 7a) = n*e,na" 1.

® Vol(e) x fnae" " LLLIL] witheg: L), = —r""“wf“ fr{,' + e,
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Twisted geometries

What kind of four-dimensional geometries does the Hamiltonlan
generate?

m The simplicity constraints guarantee that the
fluxes Lr E.a define planes in internal Minkowski
space,

m The GauR constraint tells us that these planes
close to form a tetrahedron.

@? m The physical Hamiltonlan Hyy,y. deforms the
: shape of the tetrahedron.
uh;\

The Hamiltonian generates twisted geometries, the relevant term Is the
mass-shell condition:

C= %(p..p“ -+ Vol*). (27)

Vol o fn.e*? L} L7 L) preserves the area ofthe four bounding
triangles, and the volume of the tetrahedrog joes not preserve the
tetrahedron's shape - the Hamiltonian gen ear,

AL Dianchi, MM Hagpard

1200 2200,
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