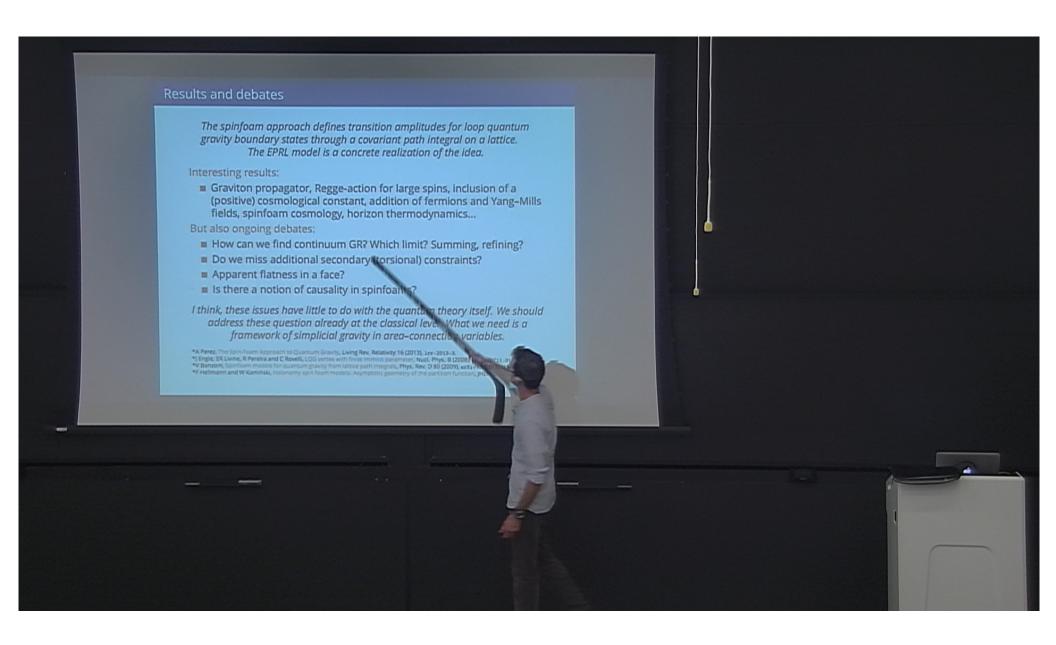
Title: Worldline formalism for covariant loop gravity

Date: Nov 06, 2014 02:15 PM

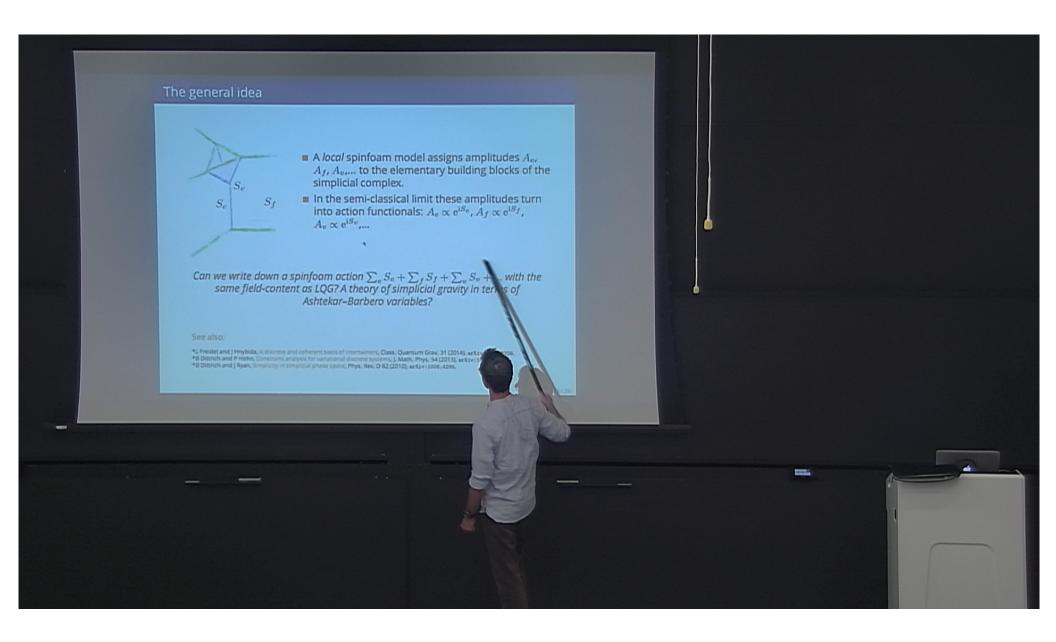
URL: http://pirsa.org/14110116

Abstract: I present a proposal for a worldline action for discretized gravity with the same field content as loop quantum gravity. The proposal is defined through its action, which is a one-dimensional integral over the edges of the discretization. Every edge carries a finite-dimensional phase space, and the evolution equations are generated by a Hamiltonian, which is a sum over the constraints of the theory. I will explain the relevance of the model, and close with possible relations to other approaches of quantum gravity, including: relative locality, causal sets and twistor theory.

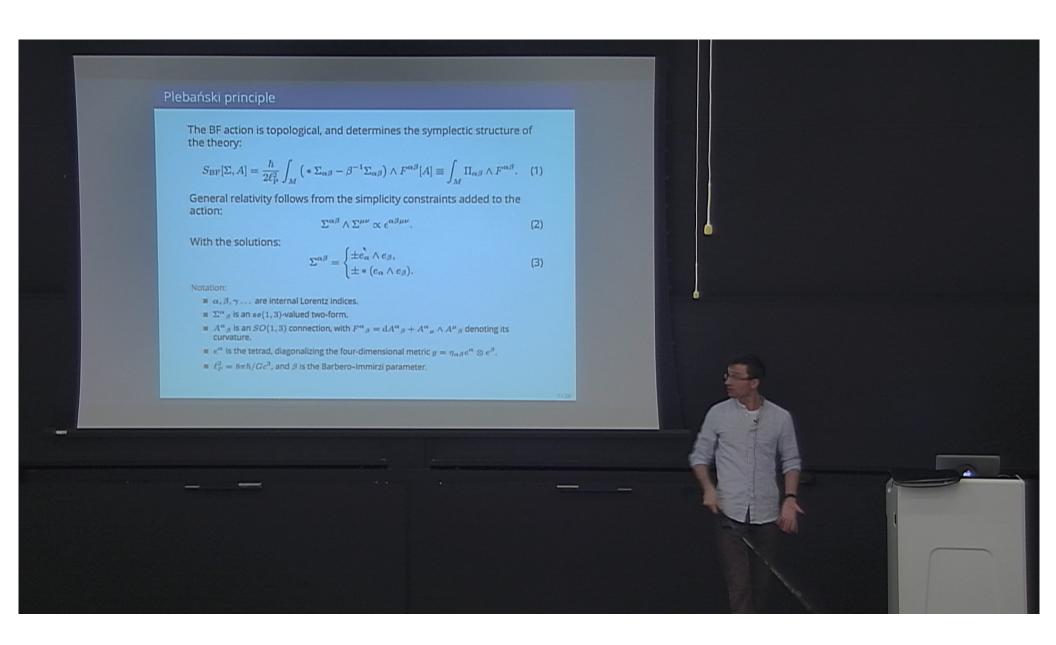
Pirsa: 14110116 Page 1/33



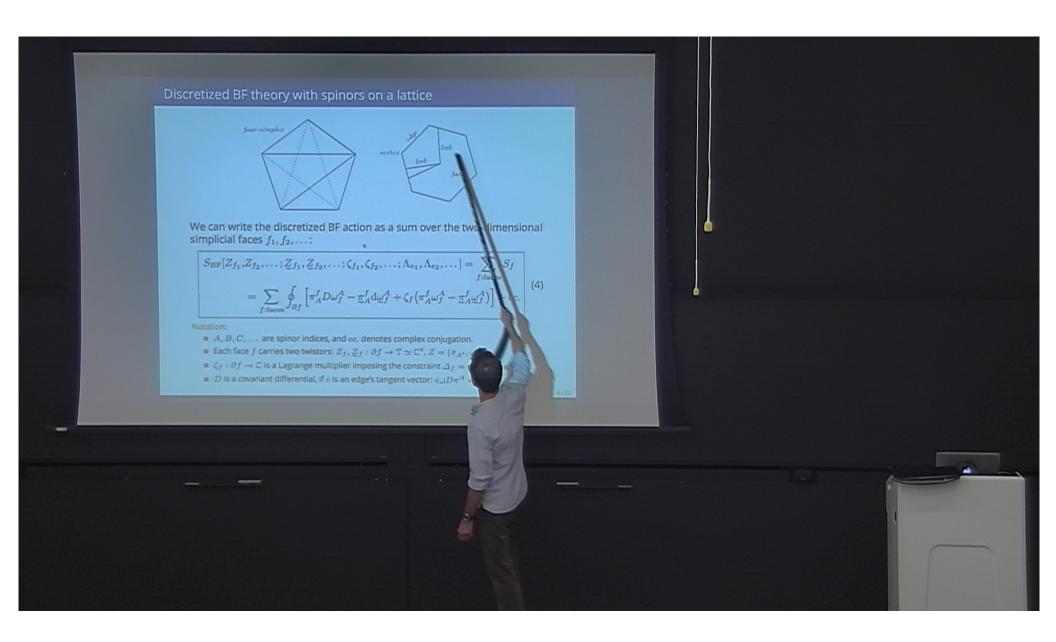
Pirsa: 14110116 Page 2/33



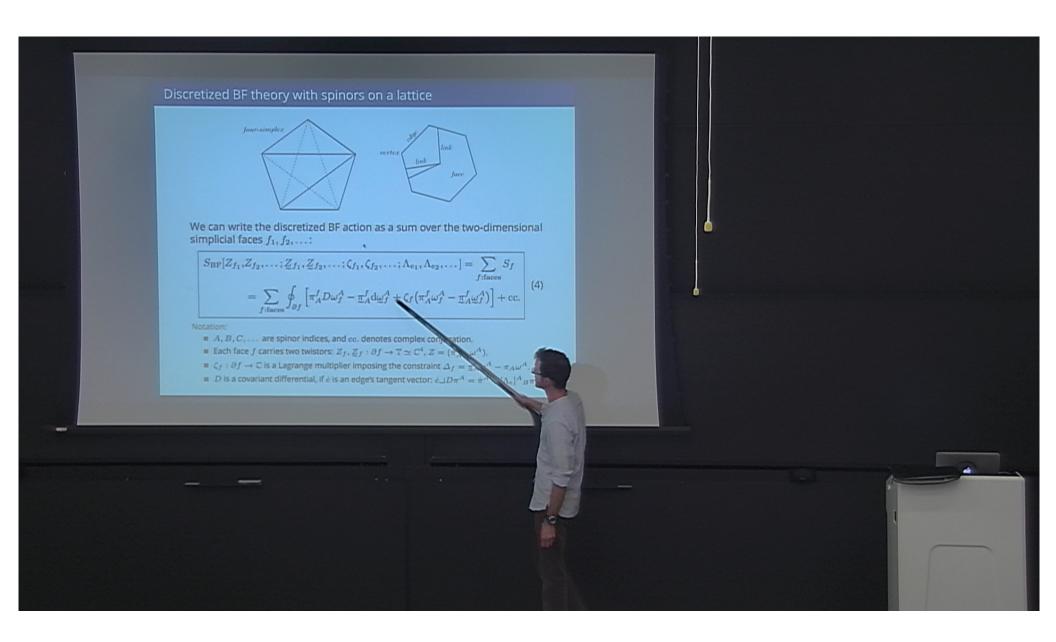
Pirsa: 14110116 Page 3/33



Pirsa: 14110116 Page 4/33

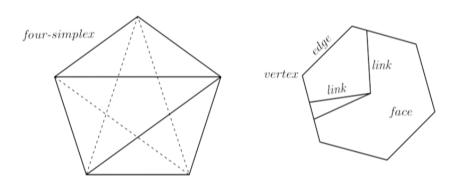


Pirsa: 14110116 Page 5/33



Pirsa: 14110116 Page 6/33

Discretized BF theory with spinors on a lattice



We can write the discretized BF action as a sum over the two-dimensional simplicial faces $f_1, f_2, ...$:

$$S_{BF}[Z_{f_{1}}, Z_{f_{2}}, \dots; Z_{f_{1}}, Z_{f_{2}}, \dots; \zeta_{f_{1}}, \zeta_{f_{2}}, \dots; \Lambda_{e_{1}}, \Lambda_{e_{2}}, \dots] = \sum_{f: \text{faces}} S_{f}$$

$$= \sum_{f: \text{faces}} \oint_{\partial f} \left[\pi_{A}^{f} D \omega_{f}^{A} - \pi_{A}^{f} d \underline{\omega}_{f}^{A} + \zeta_{f} (\pi_{A}^{f} \omega_{f}^{A} - \pi_{A}^{f} \underline{\omega}_{f}^{A}) \right] + \text{cc.}$$

$$(4)$$

Notation:

- \blacksquare A, B, C, \ldots are spinor indices, and cc denotes complex conjugation.
- Each face f carries two twistors: $Z_f, Z_f : \partial f \to \mathbb{T} \simeq \mathbb{C}^4, Z = (\bar{\pi}_{A'}, \omega^A)$.
- lacksquare $\zeta_f:\partial f o \mathbb{C}$ is a Lagrange multiplier imposing the constraint $\Delta_f=\pi_A\underline{\omega}^A-\pi_A\omega^A.$
- D is a covariant differential, if \dot{e} is an edge's tangent vector: $\dot{e} \sqcup D\pi^A = \dot{\pi}^A + [\Lambda_e]^A{}_B\pi^B$.

8/28

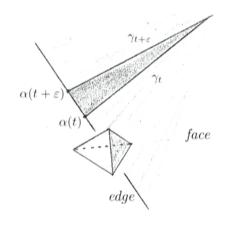
Key ideas of the proof, 1/2

Step 1: Discretize the action:

$$S_{\mathrm{BF}}[\Sigma,A] = \int_{M} \Pi_{\alpha\beta} \wedge F^{\alpha\beta} pprox \sum_{f:\mathrm{faces}} \int_{ au_{f}} \Pi_{\alpha\beta} \int_{f} F^{\alpha\beta} \equiv \sum_{f:\mathrm{faces}} S_{f}.$$

Step 2: Define the smeared flux:

$$\Pi_f^{\alpha\beta}(t) = \int_{\tau_f} \mathrm{d}x \,\mathrm{d}y \left[h_{\gamma(t,x,y)} \right]^{\alpha}{}_{\mu} \left[h_{\gamma(t,x,y)} \right]^{\beta}{}_{\nu} \left[\Pi_{p(x,y)}(\partial_x,\partial_y) \right]^{\mu\nu}.$$



Step 3: Employ the non-Abelian Stoke's theorem:

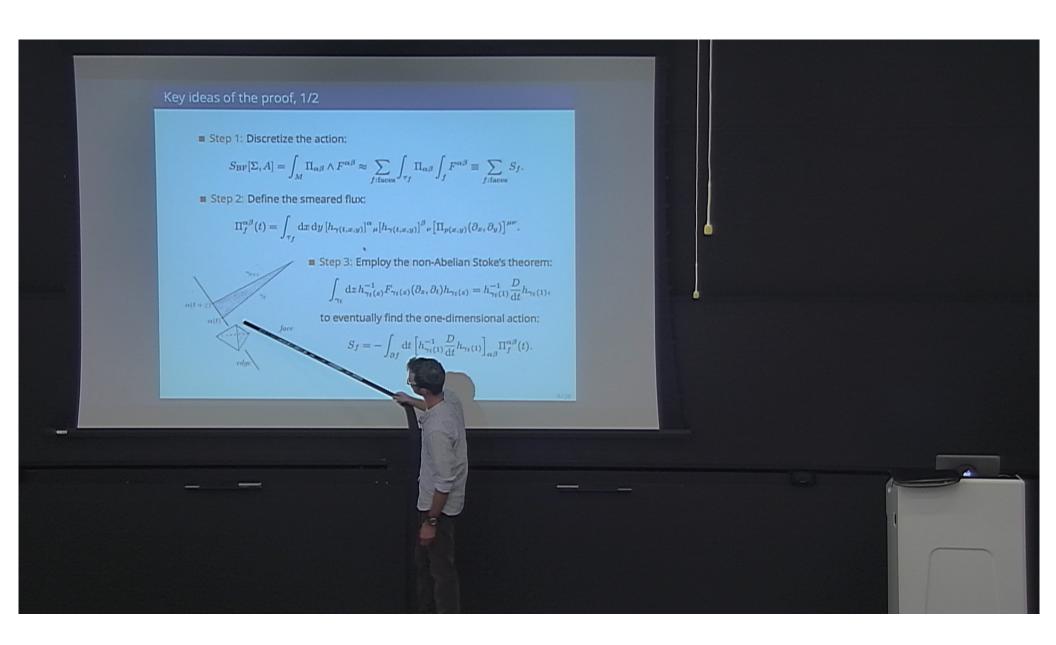
$$\int_{\gamma_t} \mathrm{d}z \, h_{\gamma_t(z)}^{-1} F_{\gamma_t(z)}(\partial_z, \partial_t) h_{\gamma_t(z)} = h_{\gamma_t(1)}^{-1} \frac{D}{\mathrm{d}t} h_{\gamma_t(1)},$$

to eventually find the one-dimensional action:

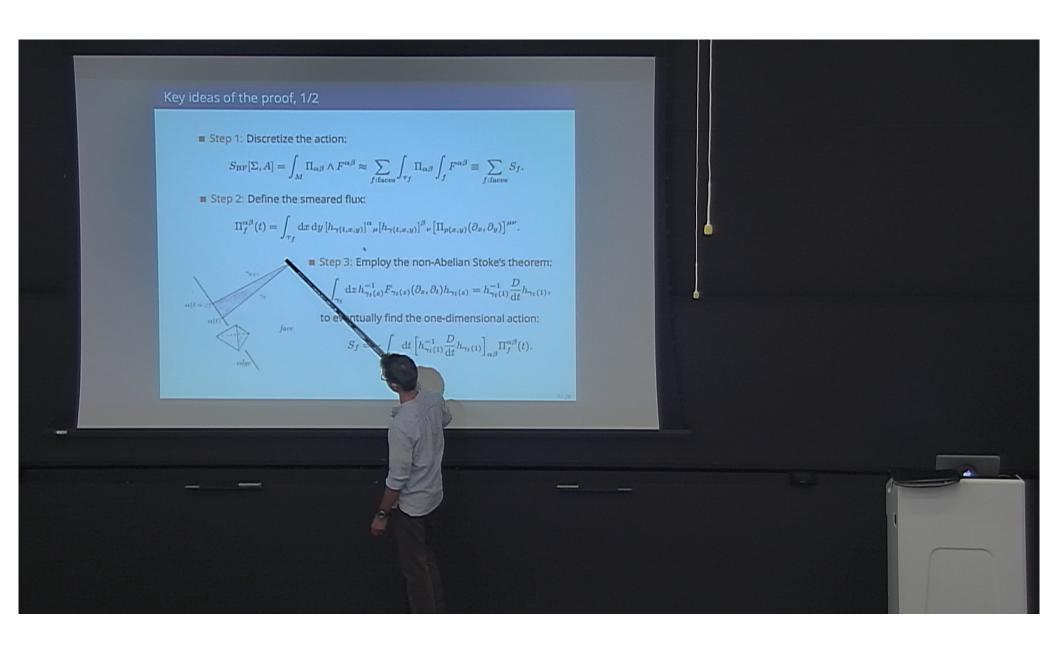
$$S_f = -\int_{\partial f} dt \left[h_{\gamma_t(1)}^{-1} \frac{D}{dt} h_{\gamma_t(1)} \right]_{\alpha\beta} \Pi_f^{\alpha\beta}(t).$$

9/28

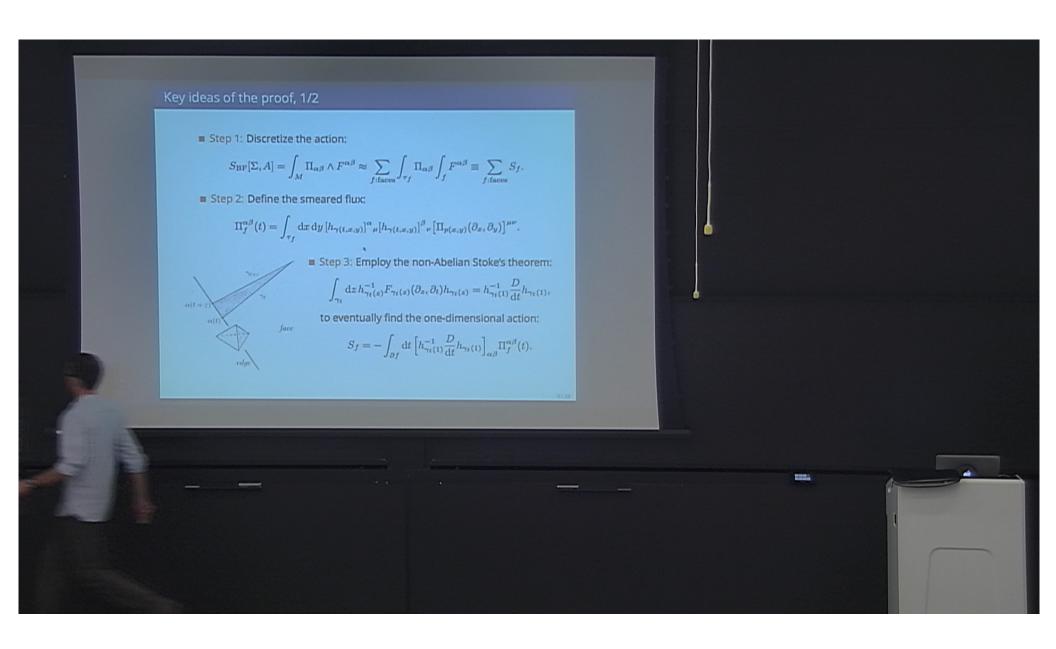
Pirsa: 14110116 Page 8/33



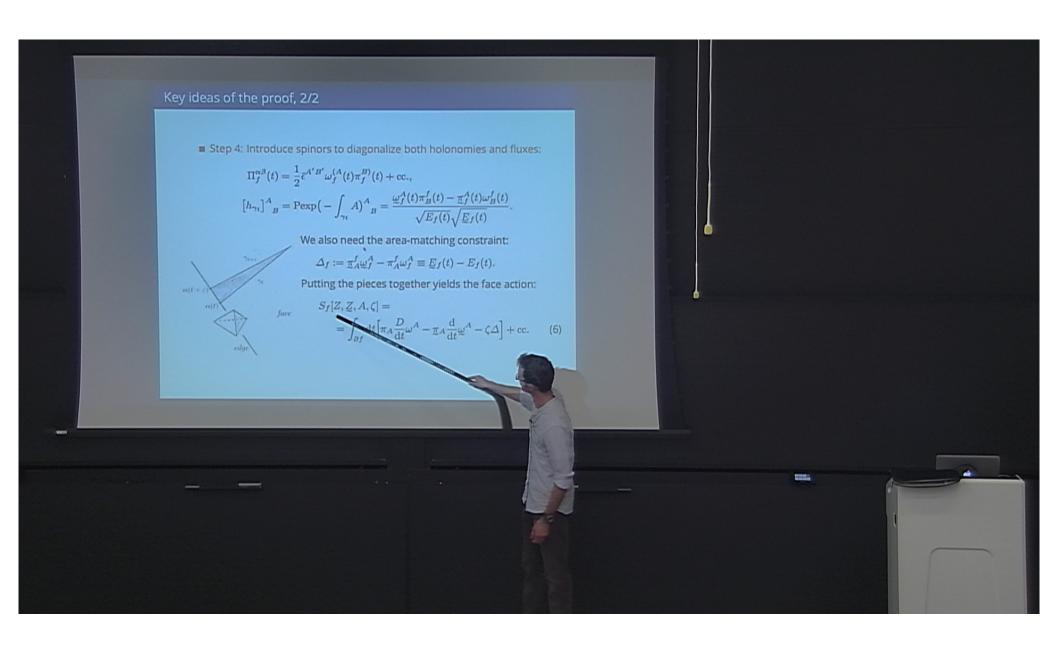
Pirsa: 14110116 Page 9/33



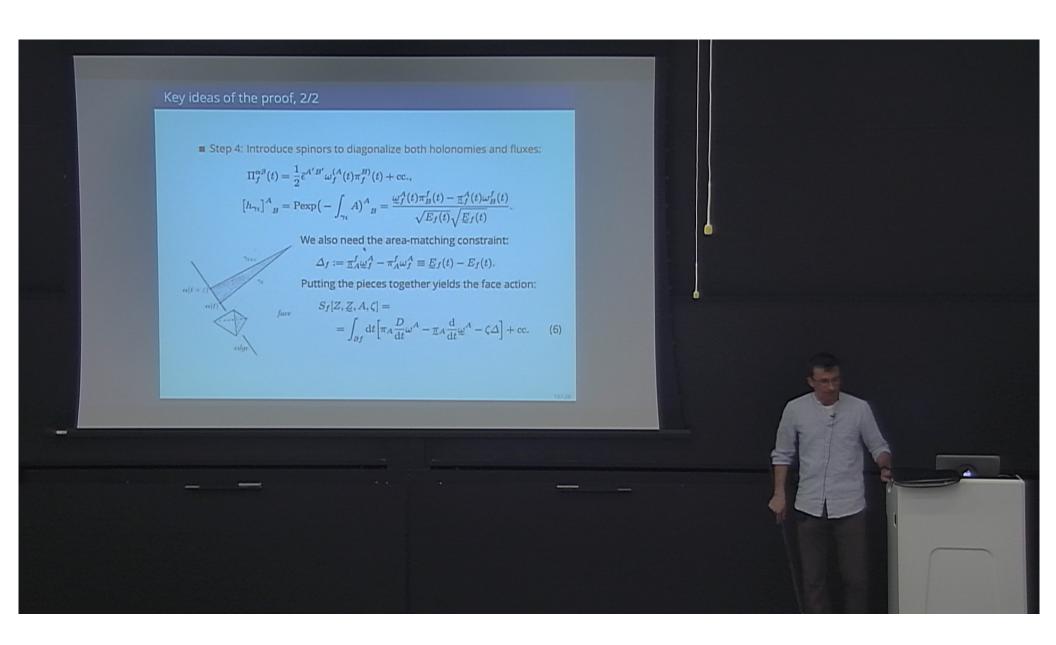
Pirsa: 14110116 Page 10/33



Pirsa: 14110116 Page 11/33



Pirsa: 14110116 Page 12/33

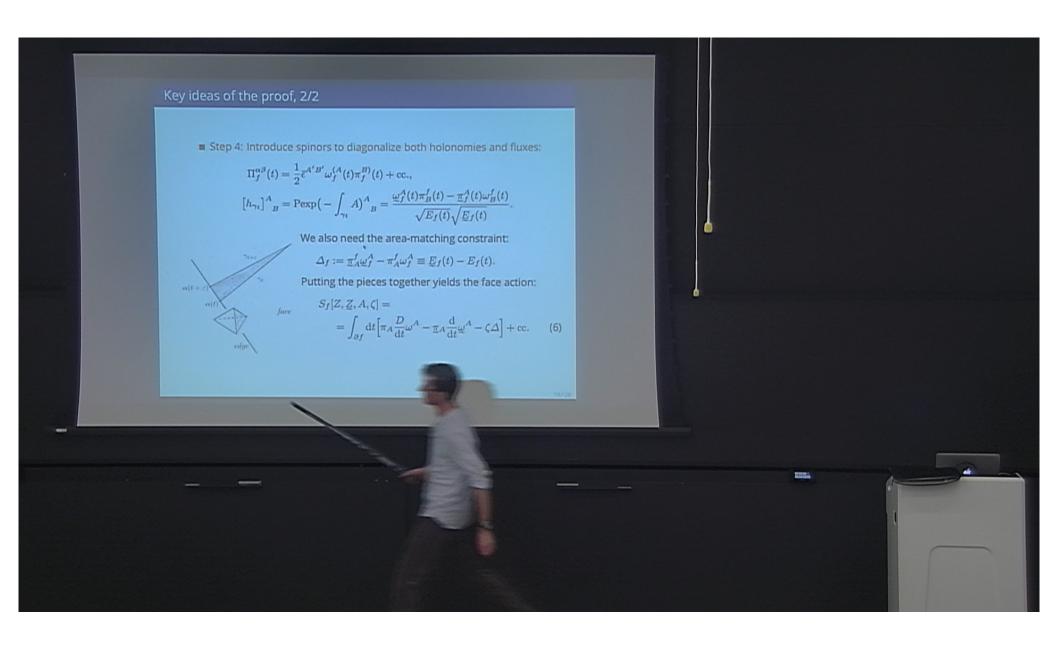


Pirsa: 14110116 Page 13/33

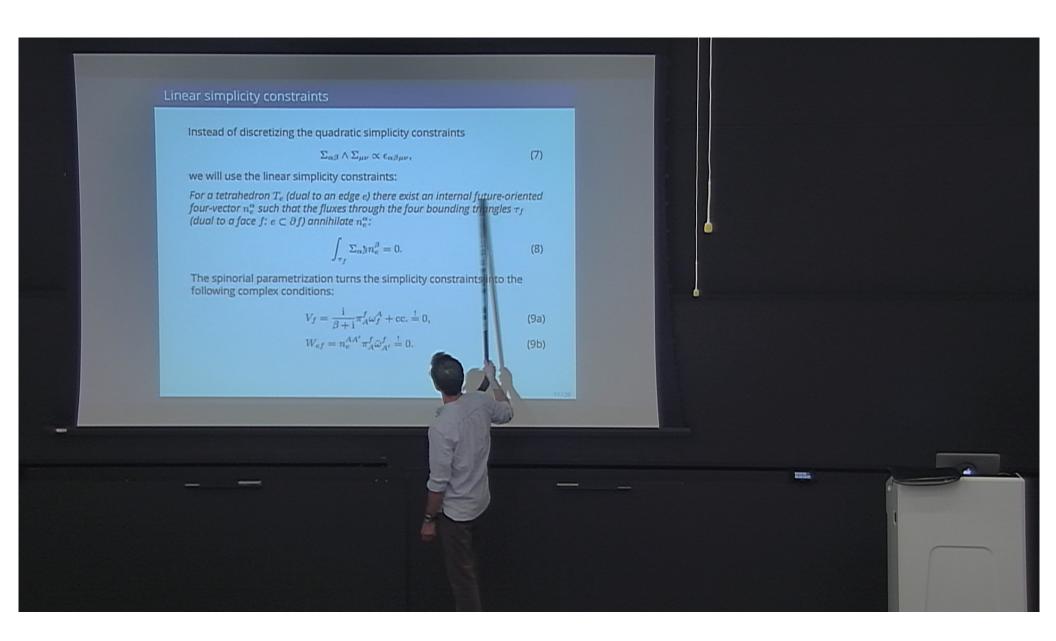


Pirsa: 14110116 Page 14/33

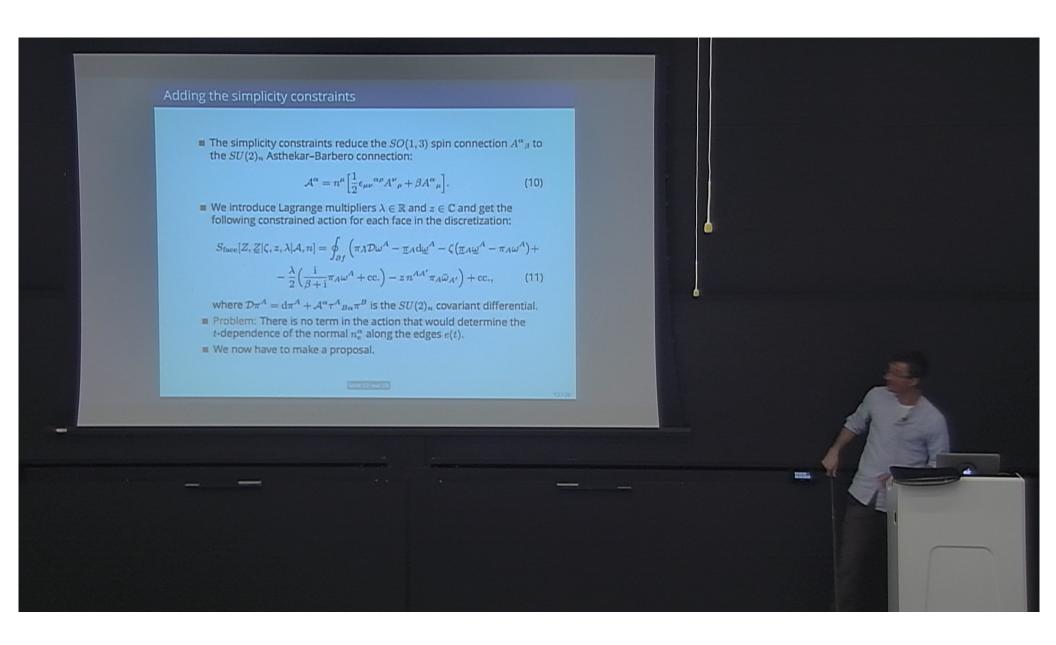
Pirsa: 14110116 Page 15/33



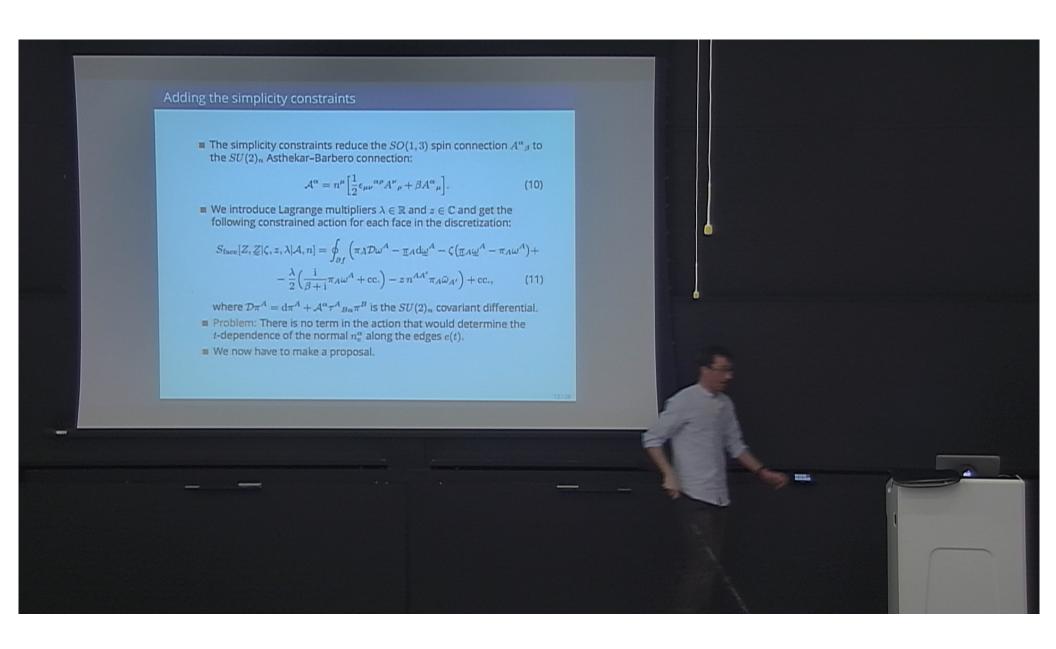
Pirsa: 14110116 Page 16/33



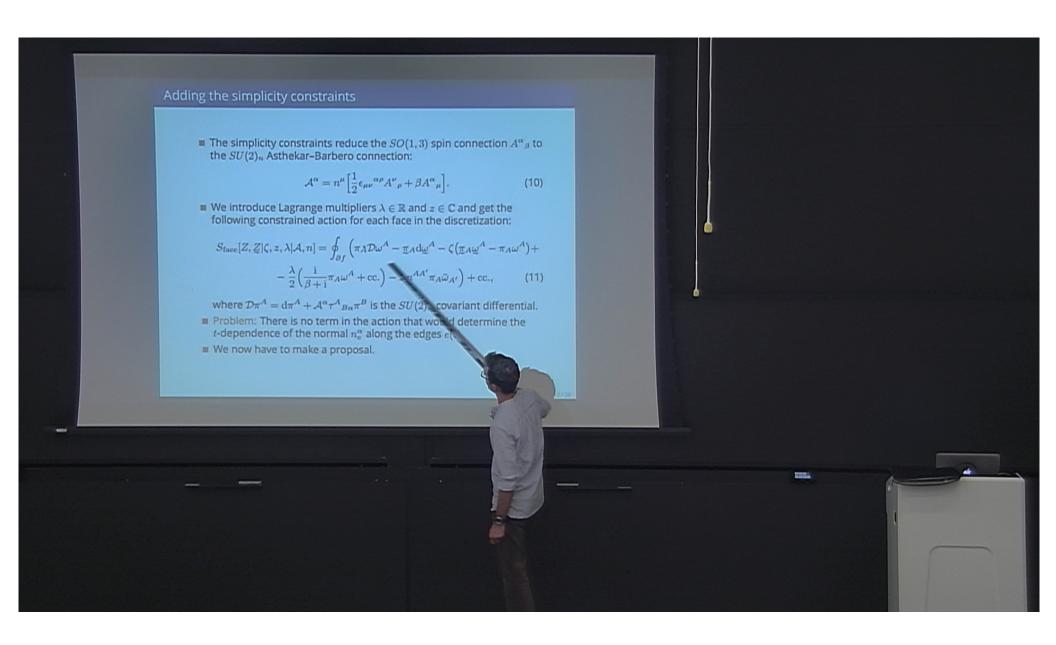
Pirsa: 14110116 Page 17/33



Pirsa: 14110116 Page 18/33



Pirsa: 14110116 Page 19/33



Pirsa: 14110116 Page 20/33

Adding the simplicity constraints

■ The simplicity constraints reduce the SO(1,3) spin connection $A^{\alpha}{}_{\beta}$ to the $SU(2)_n$ Asthekar–Barbero connection:

$$\mathcal{A}^{\alpha} = n^{\mu} \left[\frac{1}{2} \epsilon_{\mu\nu}{}^{\alpha\rho} A^{\nu}{}_{\rho} + \beta A^{\alpha}{}_{\mu} \right]. \tag{10}$$

■ We introduce Lagrange multipliers $\lambda \in \mathbb{R}$ and $z \in \mathbb{C}$ and get the following constrained action for each face in the discretization:

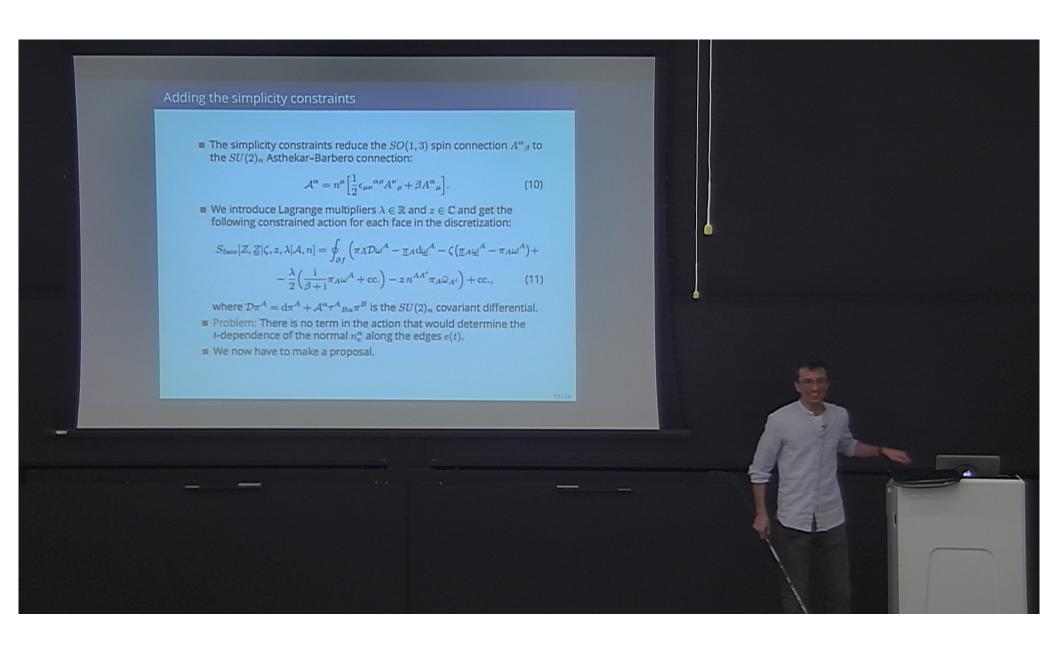
$$S_{\text{face}}[Z, \underline{Z}|\zeta, z, \lambda|\mathcal{A}, n] = \oint_{\partial f} \left(\pi_{A} \mathcal{D} \omega^{A} - \underline{\pi}_{A} d\underline{\omega}^{A} - \zeta (\underline{\pi}_{A} \underline{\omega}^{A} - \pi_{A} \omega^{A}) + \frac{\lambda}{2} \left(\frac{\mathrm{i}}{\beta + \mathrm{i}} \pi_{A} \omega^{A} + \mathrm{cc.} \right) - z \, n^{AA'} \pi_{A} \bar{\omega}_{A'} \right) + \mathrm{cc.}, \tag{11}$$

where $\mathcal{D}\pi^A = \mathrm{d}\pi^A + \mathcal{A}^\alpha \tau^A{}_{B\alpha}\pi^B$ is the $SU(2)_n$ covariant differential.

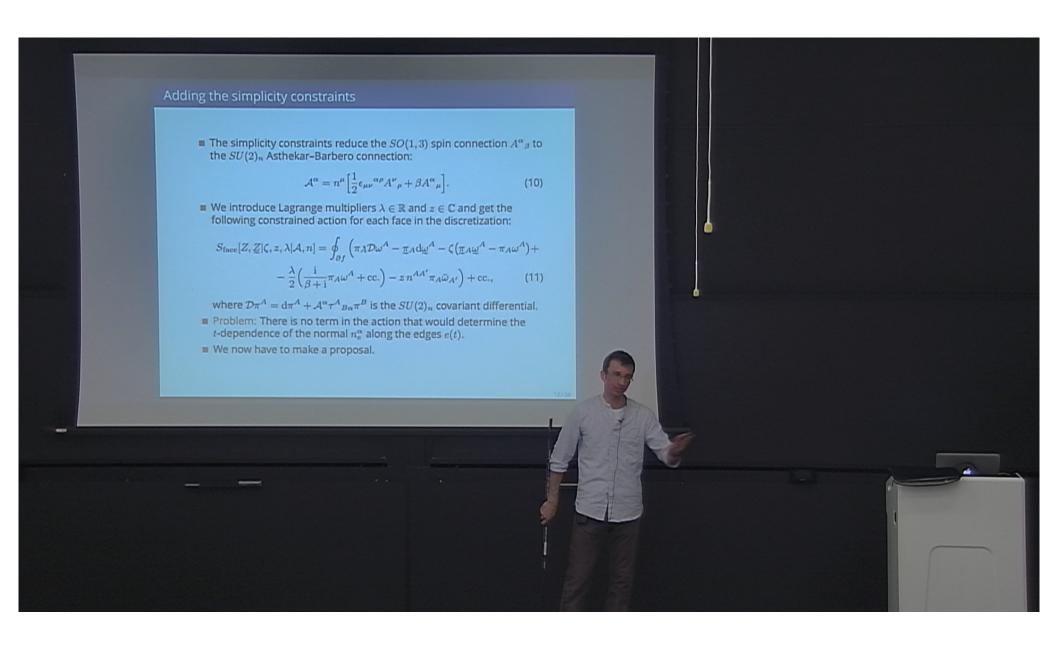
- Problem: There is no term in the action that would determine the t-dependence of the normal n_e^{α} along the edges e(t).
- We now have to make a proposal.

12/28

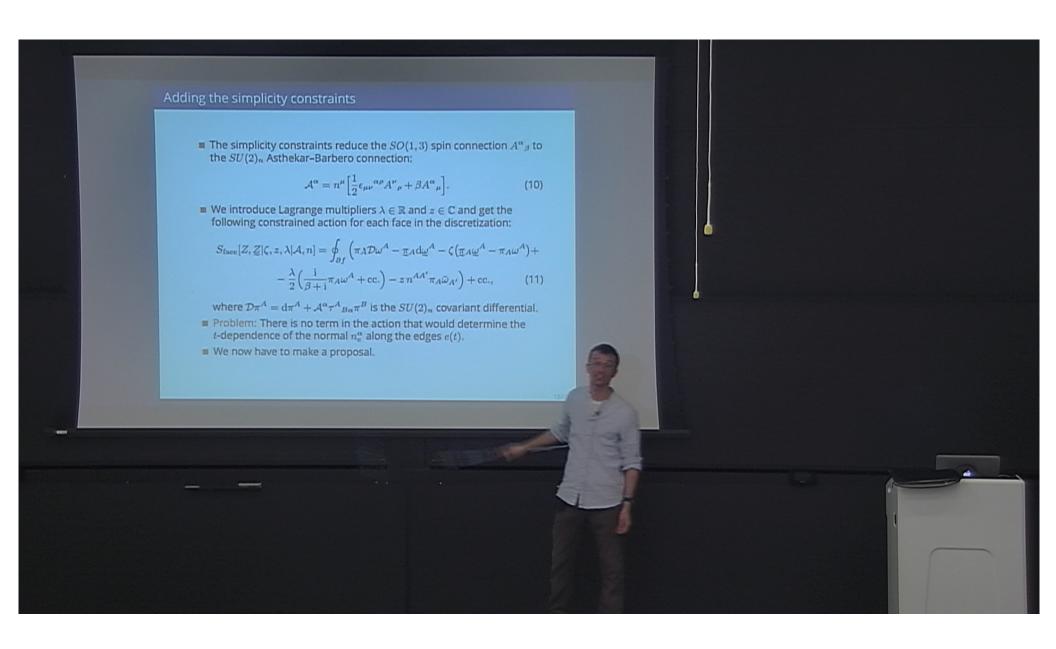
Pirsa: 14110116 Page 21/33



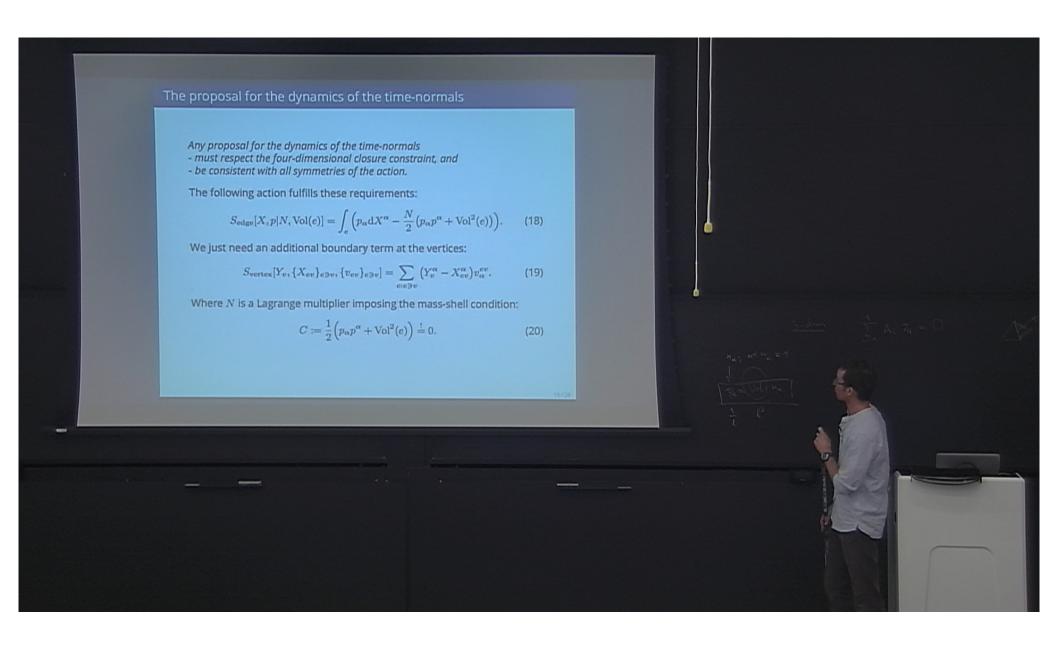
Pirsa: 14110116 Page 22/33



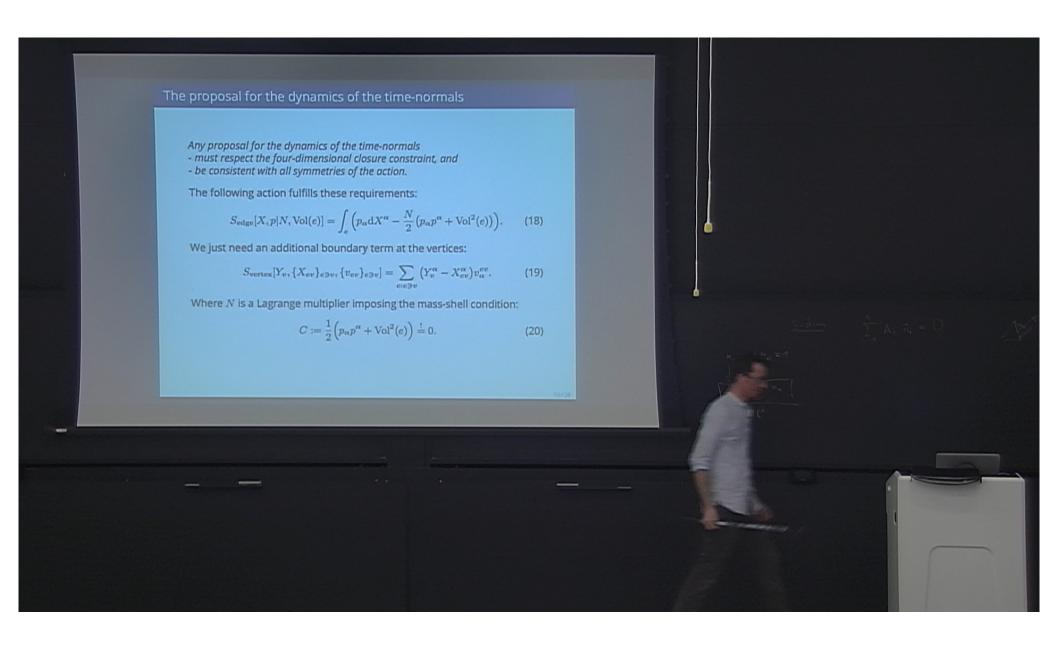
Pirsa: 14110116 Page 23/33



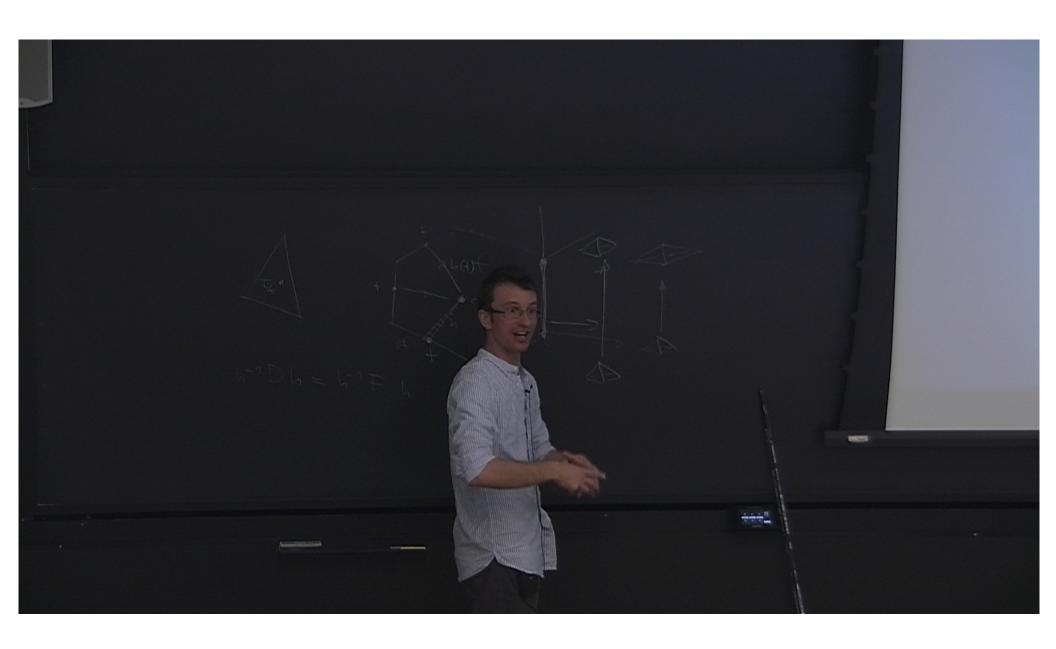
Pirsa: 14110116 Page 24/33



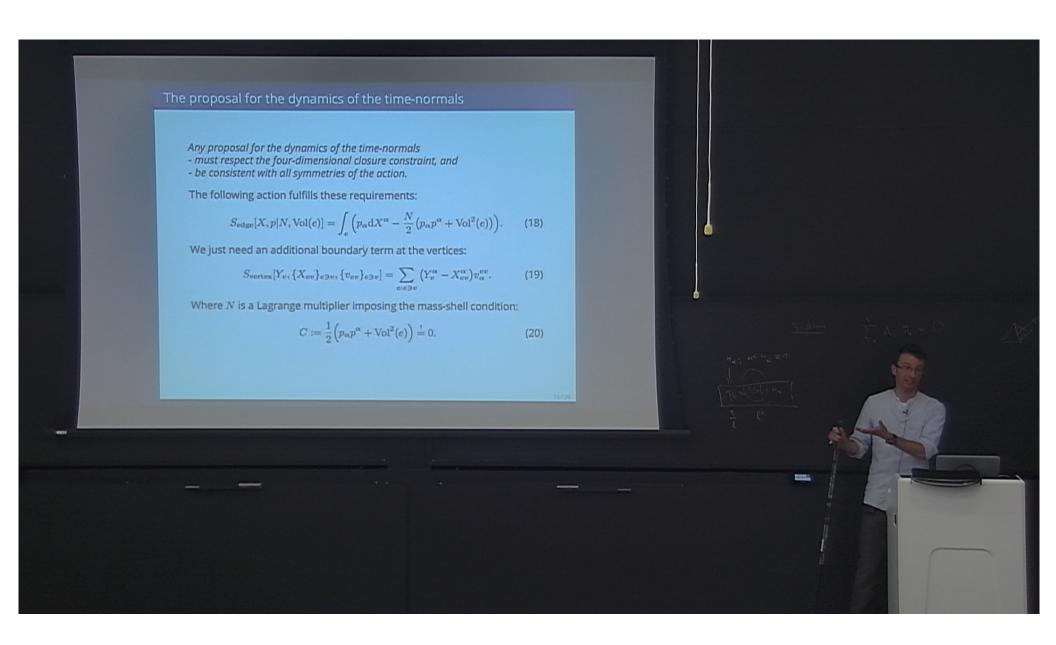
Pirsa: 14110116 Page 25/33



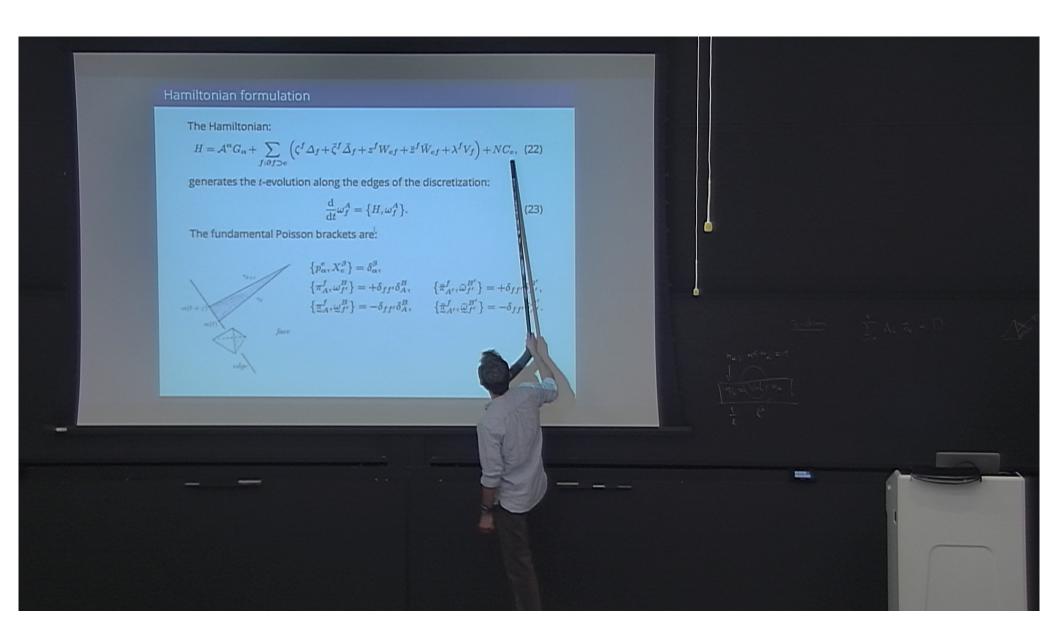
Pirsa: 14110116 Page 26/33



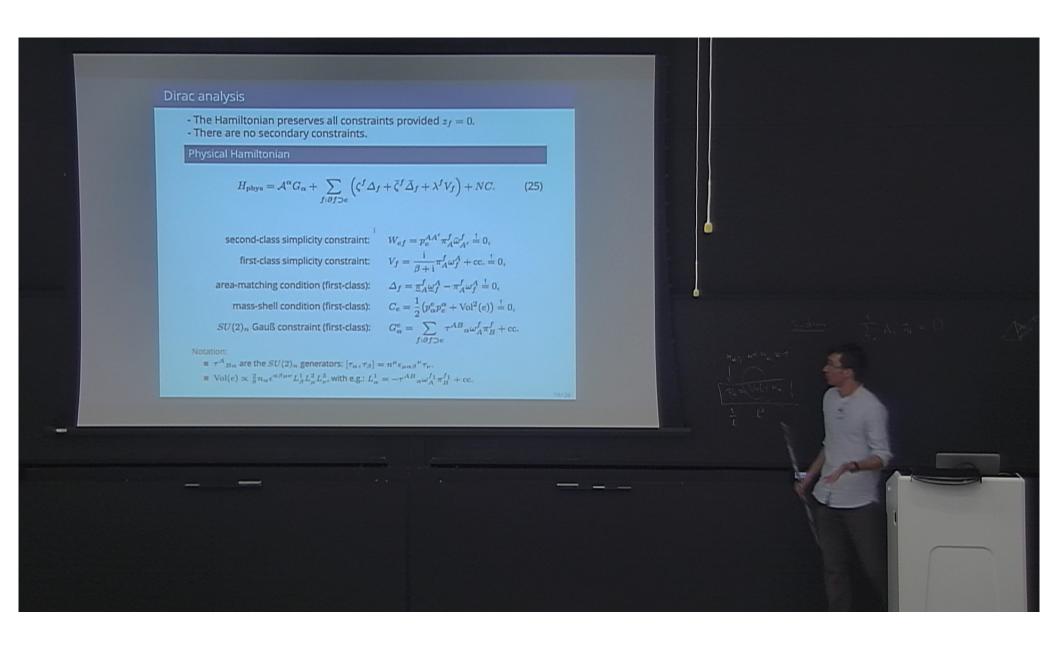
Pirsa: 14110116 Page 27/33



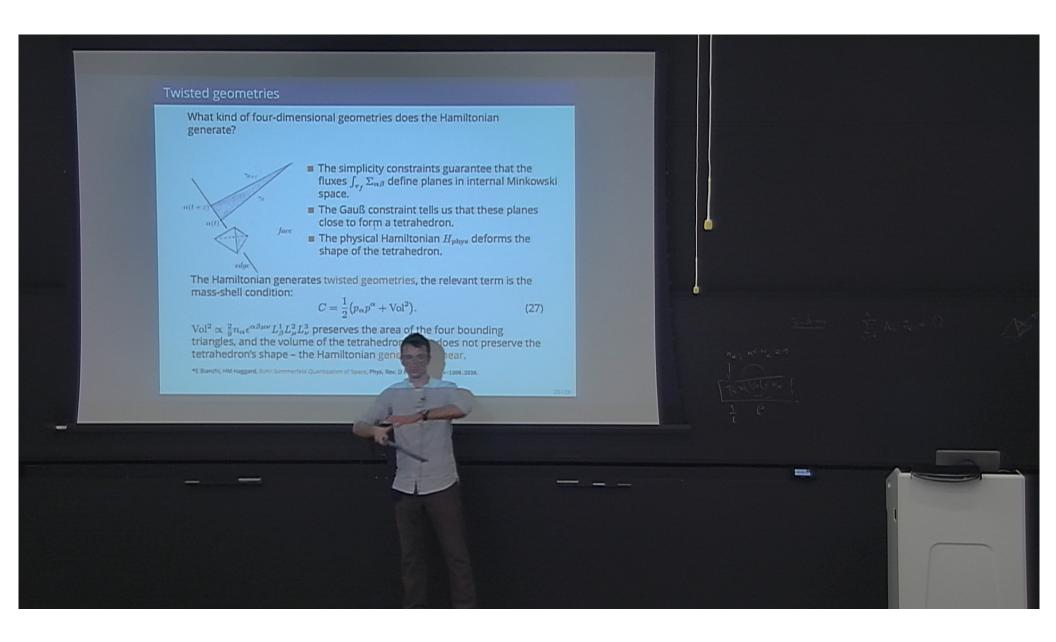
Pirsa: 14110116 Page 28/33



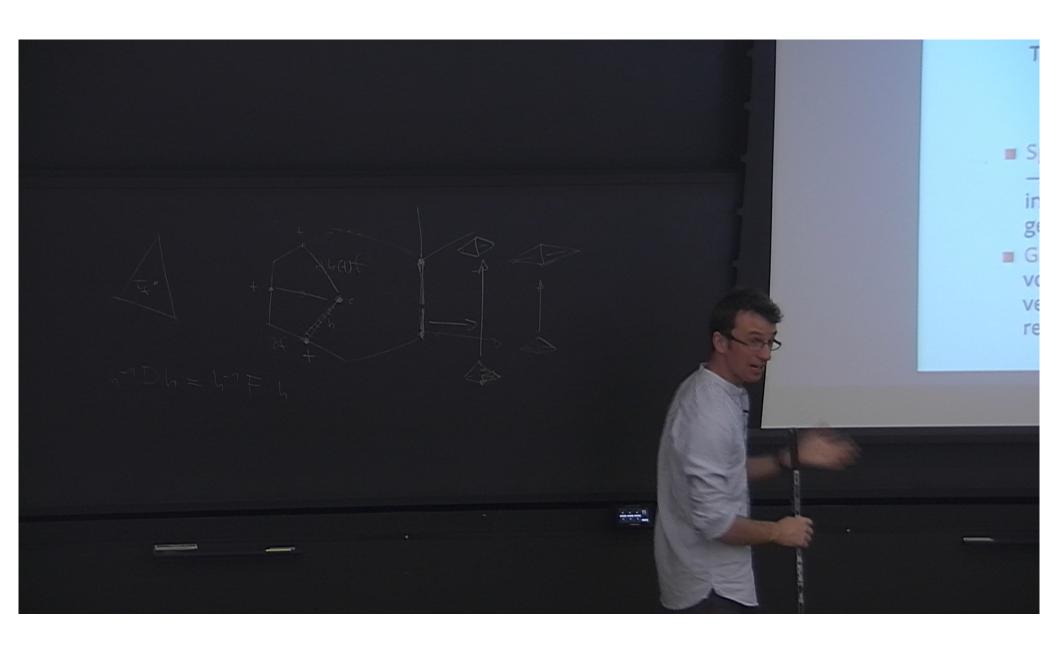
Pirsa: 14110116 Page 29/33



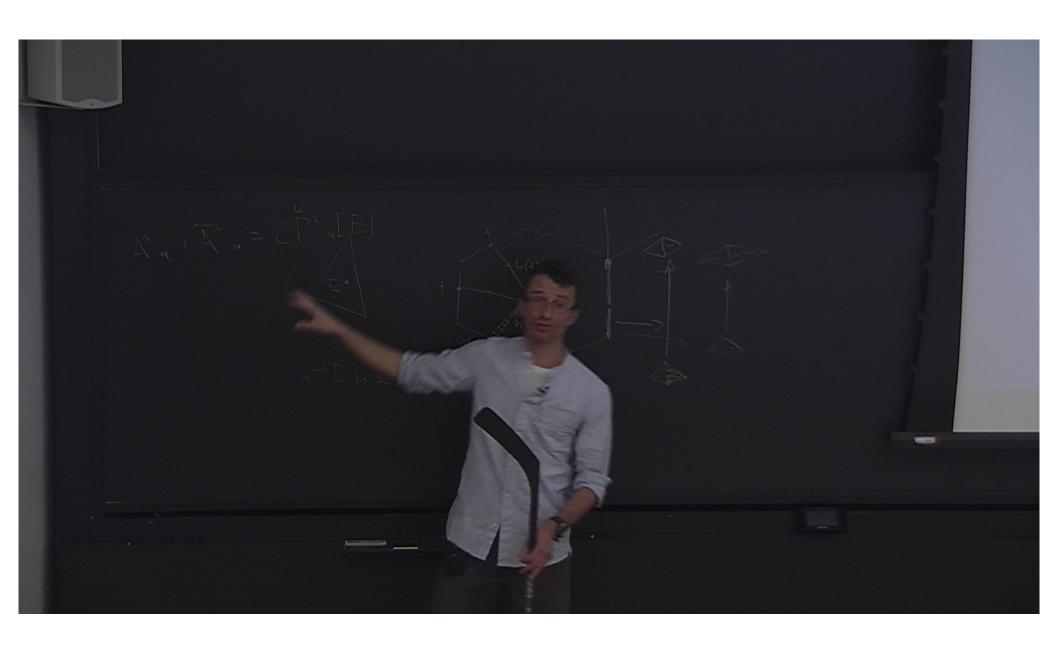
Pirsa: 14110116 Page 30/33



Pirsa: 14110116 Page 31/33



Pirsa: 14110116 Page 32/33



Pirsa: 14110116 Page 33/33