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Abstract: <span>Interferometers capture a basic mystery of quantum mechanics: a single particle can exhibit wave behavior, yet that wave behavior
disappears when one tries to determine the particle's path inside the interferometer. This idea has been formulated quantitatively as an inequality,
e.g., by Englert and Jaeger, Shimony, and Vaidman, which upper bounds the sum of the interference visibility and the path distinguishability. Such
wave-particle duality relations (WPDRs) are often thought to be conceptually inequivalent to Heisenberg's uncertainty principle, although this has
been debated. Here we show that WPDRs correspond precisely to a modern formulation of the uncertainty principle in terms of entropies, namely
the min- and max-entropies. This observation unifies two fundamental concepts in quantum mechanics. Furthermore, it leads to a robust framework
for deriving novel WPDRs by applying entropic uncertainty relations to interferometric models (arXiv reference: 1403.4687).</span>
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Wave-particle duality

The transition (from no interference to interference)
can even be seen with single electrons.

Data from: “Controlled double-slit electron
diffraction” Bach et al. NJP (2013)
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Wave-particle duality

The transition (from no interference to interference)
can even be seen with single electrons.

Data from: “Controlled double-slit electron
diffraction” Bach et al. NJP (2013)

The great mystery:

Each kind of thing (bullet, electron, bacteria, ...) has
the ability to exhibit wave behavior, i.e., produce
interference. Likewise, each can exhibit particle
behavior, i.e., have a well-defined path. But the two
behaviors compete — you either get one or the other.
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Wave-particle duality: big molecules
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Wave-particle duallty
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Wave-particle duality
getting quantitative

Dy
Simplification of double-slit: 10)
Two-path interferometer for BS, BS;
single photons (named after 1) ¢
Mach and Zehnder). D,

Pirsa: 14110114 Page 9/73



Wave-particle duality
getting quantitative

Simplification of double-slit: 10)

Two-path interferometer for BS, BS;
single photons (named after 1) ¢

Mach and Zehnder). D,
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Wave-particle duality
getting quantitative

Dy
Simplification of double-slit: 10)
Two-path interferometer for BS, BS;
single photons (named after 1) ¢
Mach and Zehnder). D

Fringe visibility

D() _ D()
V . Imax pmin
Dy Dy

Pmax - pmin
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Wave-particle duality
getting quantitative

Dy
Simplification of double-slit: 10)
Two-path interferometer for BS, BS;
single photons (named after 1) ¢
Mach and Zehnder). D
Fringe visibility Path predictability (e.g. asymmetric BS,)
Do _ Do 7 =1410). 11

V A max p{nin { ‘ > ) | > }

D D p— _

pm%x -+ P 0 P = 2pg11(_zss (Z) 1

min
/!

probability of guessing Z correctly
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Wave-particle duality
getting quantitative

Wooters, Zurek (1979)

Greenberger, Yasin (1988) Dg
Englert (1996) ’U>
Wave-particle duality relation BS,
(WPDR): BS, 3
2 2 1)
Pe+Ve <1 D;

Full particle behavior = No wave behavior
Full wave behavior = No particle behavior

Path predictability (e.g. asymmetric BS,)

Fringe visibility Z — {‘O>? |]‘>}

D() . D()
.__ Pmax Pmin P = 2p .UCSS(Z) —1
V D 5 Pg
pm%x + pm?n /

probability of guessing Z correctly
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Wave-particle duality
getting quantitative

Jaeger, Shimony, Vaidman (1995)

Englert (1996) D
0) 0
Let £ be a (partial) which-path detector.
E could be gas of atoms whose internal BS.
: L BS;
state is sensitive to presence of photon. D O
D
Stronger WPDR: :
2 2
D +Ve <1
Path distinguishability
Fringe visibility D = 2pgucss(Z|E) —1
D() . pD() /
V ] o 100330 probability of guessing Z correctly
Dg Dg

o ( given E (i.e., given optimal
Pmax p II111 measurement on E)
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Wave-particle duality
getting quantitative

Jaeger, Shimony, Vaidman (1995)

Englert (1996) |0> Do
Let £ be a (partial) which-path detector.
E could be gas of atoms whose internal BS,
: L BS;
state is sensitive to presence of photon. D O
D
Stronger WPDR: |
2 2
D4+ V<1
Path distinguishability
Fringe visibility D = 2pgucss(Z|E) —1
Do _ pDE) /
V — Sacs 100330 probability of guessing Z correctly
Dy _|_ Do given E (i.e., given optimal
Pmax T Phin

measurement on E)
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WPDRs

Where do they come from?

7)2 —+ V2 < ]_ |s wave-particle duality a fundamental
9 9 principle of quantum mechanics, or is it a
D 4 V < 1 corollary of some other principle?
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WPDRs

Where do they come from?

7)2 -t V2 g ]_ Is wave-particle duality a fundamental
9 9 principle of quantum mechanics, oris it a
D 4 V < 1 corollary of some other principle?

“... Does not make use of Heisenberg’s uncertainty principle in any form”

Is it a consequence of position/momentum Aqu 2 h/z p

uncertainty principle?
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WPDRs

Where do they come from?

7)2 -t V2 g ]_ |s wave-particle duality a fundamental
9 9 principle of quantum mechanics, oris it a
D 4 V < 1 corollary of some other principle?

“... Does not make use of Heisenberg’s uncertainty principle in any form”

Is it a consequence of position/momentum AC]A[) 2 h/z p

uncertainty principle?

This was intensely debated in 1990’s:
“Path detection and the uncertainty principle” Storey et al. Nature (1994).
“Complementarity and uncertainty” Englert, Scully, Walther. Nature (1995),
and Reply by Storey et al.
“Uncertainty over complementarity?” Wiseman, Harrison. Nature (1995).

Looks to be inconclusive / still open to debate
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WPDRs

Where do they come from?

Consider: 7)2 -+ VQ g 1
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WPDRs

Where do they come from?

Consider: 7)2 -+ VQ g 1

Several authors showed that this WPDR is 1
equivalent to Robertson’s uncertainty AXAZ ; — ‘ <w‘ [X) Z] ‘qp> |
relation for particular qubit observables 2

Busch and Shilladay (2006) Q-\Ubit observables:

Bjork et al. (1999) _

Durr and Rempe (2000) F T GZ

Bosvyk et al. (2013) qu - (COS ¢) o + (Sln ¢) UV
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WPDRs

Where do they come from?

Consider: 7)2 -+ VQ < 1

Several authors showed that this WPDR is

equivalent to Robertson’s uncertainty AXAZ 2

relation for particular qubit observables

(I, Z] 1)

DO | —

Busch and Shilladay (2006) Q-\Ubit observables:

Bjork et al. (1999) _
Durr and Rempe (2000) P o GZ

Bosyk et al. (2013) ‘A/qb — (COS ¢) Oy + (Sin ¢) G_V

(AP)* =1— P?

Variances: (A‘}}(/})z —1_ v2 COSz(Q L Qb)
Plugging into (] . Pz)[l — Vz COSz(Q — ¢)]
Robertson’s
relation gives: = P2 V2 COS2 (6 — Gb) + V2 Sin2(9 — (;b)
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WPDRs

Where do they come from?

So we have

» AXAZ = S|(W]X, Z][4)]

1
2

<1
D? +V? <1 quup 297?

irsa: 14110114 Page 22/73



WPDRs

Where do they come from?

So we have

1
P2 V2 <1 » AXAZ = SI{WIIX, Z][v)
D2+ V2 <1 mh 299777

Note that distinguishability involves conditioning on system E. This is
not so natural for standard deviation, but is quite natural for entropies.
Could the D-V relation be related to the entropic uncertainty principle?

D = 2pguoss(Z’E) — 1
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WPDRSs
Consider again: 732 | VQ g 1

Bosyk et al. [Phys. Scr. (2013)] considered entropic uncertainty
relations (EURs), of the form:

H,(P)+H,(V) =B,

for Renyi entropies:  Hy(P) = ——1n | (22) 4 (122
: ( = n —_—
or rnenyl entropies / | — q 7 ) |

L [V, (=Y
1—q |\ 2 > )

They argue that such EURs are inequivalent to the P-V relation!

Hq(v) —
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WPDRs
Consider again: 732 | V2 g 1

Bosyk et al. [Phys. Scr. (2013)] considered entropic uncertainty

relations (EURs), of the form:

H,(P)+H,(V) =B,

1

for Renyi entropies: —
|l —¢q

H,(P)

H,(V)=
(V) | —g

In

In

(
(

I+ P
2
[+V
2

)
X

| — P

2
|-V

2

).
)

They argue that such EURs are inequivalent to the P-V relation!

But Maassen & Uffink (1988) proved an EUR that involves

different g’s, for example,

Hoo(P)+ Hyp(V) 2 1

Qur first result: This EUR is equivalent to the P-V relation!!!!
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WPDRs
Hoo(P) + Hy o(V) > 1
INVITATION: Plug these formulas in to obtain P-V relation
Hy(P)=1—log(1+P)
Hy (V) =log (14 /1 —V?)
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WPDRs
Hoo(P) + Hy o(V) > 1
INVITATION: Plug these formulas in to obtain P-V relation
Hy(P)=1—log(1+P)
Hy (V) =log (14 /1 —V?)

So we have

» Hoo(P) + Hyo(V) 2 1

227777
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WPDRs
Hoo(P)+ Hy (V) 21
INVITATION: Plug these formulas in to obtain P-V relation
Hy(P)=1—1log(1+P)
Hy (V) =log (14 /1 —V?)

So we have
P24 V2 <1 b Hoo(P)+ Hyyn(V) > 1
D+ V%<1 222777

APOLOGY: In what follows, | will switch notation:

Hoo(P) — Hrrnn(Z) HI/Q(V) — HmaX(W)
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Goals of our work

1.) Unify a vast literature on WPDRs. Many complicated versions of WPDRs
have been formulated, for exotic scenarios involving quantum beam splitters
or quantum erasure or for alternative interferometers like the double slit. We
show that all these WPDRs correspond to special cases of a single inequality.

2.) Show that WPDRs come from the uncertainty relation for the min- and
max-entropies. Hence we unify the entropic uncertainty principle with the
wave-particle duality principle.

3.) Provide a general, robust framework for discussing WPDRs and deriving
novel WPDRs. We illustrate this by deriving a novel WPDR for a quantum
beam splitter.

Page 29/73



Pirsa: 14110114

Goals of our work

1.) Unify a vast literature on WPDRs. Many complicated versions of WPDRs
have been formulated, for exotic scenarios involving quantum beam splitters
or quantum erasure or for alternative interferometers like the double slit. We
show that all these WPDRs correspond to special cases of a single inequality.

2.) Show that WPDRs come from the uncertainty relation for the min- and
max-entropies. Hence we unify the entropic uncertainty principle with the
wave-particle duality principle.

3.) Provide a general, robust framework for discussing WPDRs and deriving
novel WPDRs. We illustrate this by deriving a novel WPDR for a quantum
beam splitter.

4.) Uncertainty relations can be applied in two different ways. We emphasize
the distinction between preparation and measurement WPDRs.
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Main Result

For a binary interferometer (i.e., two interfering paths), we identify particle and
wave behaviors with the knowledge of complementary qubit observables:

which-path: Z = {|0),|1)}
which-phase: W = {|lwy)}, |wi) =

1
V2

(10) £ e"0[1))
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Main Result

For a binary interferometer (i.e., two interfering paths), we identify particle and
wave behaviors with the knowledge of complementary qubit observables:

which-path: Z = {|0),|1)}
which-phase: W = {|lwy)}, |wi) =

({‘*'7f/){1
ﬂw» +e'™[1))

lack of particle behavior: H i, (Z|FE1)

lack of wave behavior: M}lli{_ly Hax (W E>)
e/

E,, E,:some other quantum systems that
help to reveal the behavior
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Main Result

For a binary interferometer (i.e., two interfering paths), we identify particle and
wave behaviors with the knowledge of complementary qubit observables:

which-path: Z = {|0),|1)}
which-phase: W = {|lwy)}, |wi) =

({‘*'7f/){1
ﬂw» +e'™[1))

lack of particle behavior: H i, (Z|Eh)

lack of wave behavior: m}ni\?y Hax (W E5)
=P

E,, E,:some other quantum systems that
help to reveal the behavior

Our general WPDR:

Y
Hmin(Z‘El) + min Hnm.x(W|E2) 2 1
WeXY

| Majority of WPDRs in literature are
special cases of this relation.
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Revisiting Distinguishability-Visibility tradeoff

(! lo

| | D
Recall scenario: ‘()> I |
photon interacts | [
with E inside ! ' BS,
interferometer BS; : : ¢

1)
| ! D
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Revisiting Distinguishability-Visibility tradeoff

q Lo

| | D
Recall scenario: ‘()> I |
photon interacts | |
with E inside ! ' BS.
interferometer BS; : : ¢

1)
| ! D

Apply uncertainty relation at time t,

Hlllill(Z)[n_z + M}IEI%JI(IY Hmel,x(W)f.g

B P2112<0

WV

1
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Revisiting Distinguishability-Visibility tradeoff

(! Lo

| | D
Recall scenario: ‘()> I |
photon interacts | [
with E inside | ' BS,
interferometer BS; : : ¢

1)
| ! Dy

Apply uncertainty relation at time t,

Hlllill(Z)[n_z + M}IEI%JI(IY Hmel,x(W)f.g

B P2112<0

Hmin(Z’E)f,z + Hlilly Hnm.x(W)l,z 2 1‘

WV

:

WeX

Lo D?ryigi
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Operational meaning of entropies

Quantum key distribution

Hmin(Z|EL) + min Hmzl‘x(W‘E2) = 1
WeXY

| Used to prove security of QKD

H,, : randomness extraction
H,... : data compression
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Operational meaning of entropies

Quantum key distribution

Huin(Z|E1) + min Hpax(W[Es) > 1
wWeXY
|

. Used to prove security of QKD

H,, : randomness extraction
H,... : data compression
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Operational meaning of entropies

Quantum key distribution
Huin(Z|Ey) + min Hupax (W] Es) > 1
WeXyY

Used to prove security of QKD

H,., : randomness extraction
H,... : data compression

Guessing games
classical-quantum state px g

Hmin(X‘B) — logpguess(X|B)

When X is binary, we show that:

Hmax(X‘B) < lOg (1 + \/1 o (ngll()ss(X‘B) — 1)2)
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Complementary Guessing Games

Consider two games
Game #1: We ask Alice to | |
® « to

guess which path the
quanton takes, given that

g
she has access to E,. ‘l
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Complementary Guessing Games

Consider two games
Game #1: We ask Alice to | |
® « to

guess which path the
quanton takes, given that

b
she has access to E,. ‘l
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Complementary Guessing Games

Consider two games
Game #1: We ask Alice to |
® (o {

I

guess which path the Dy
quanton takes, given that @ 0) | ‘ *
she has access to E,. |

_ | | BSz
Game #2: We ask Alice to BS; | I—
guess which phase was ‘ I} | | &
applied to the quanton | | Dy

(0 or m), given that she | |
has access to E,. | |

Our WPDR says that she cannot win both games.

Hlllill(Z’El) + min Hmax(W’E2) 2 1
WeXY
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Complementary Guessing Games

Consider two games
Game #1: We ask Alice to |
® (o {

I

guess which path the Dy
quanton takes, given that @ 0) | | *
she has access to E,. |

_ | \ BSZ
Game #2: We ask Alice to BS; | I—
guess which phase was ‘ l} | | &
applied to the quanton | | Dy

(0 or m), given that she | |
has access to E,. | |

Our WPDR says that she cannot win both games.
Hlllill(Z’El) + min Hmax(W’E2) 2 1

' WweXY '

Related to winning Related to winning
probability for Game #1 probability for Game #2
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Complementary Guessing Games
Consider two games w w
Game #1: We ask Alice to I t.
guess which path the e "] e Do o
quanton takes, given that @ 0) | | *
she has access to E,. |

_ | \ BSz

Game #2: We ask Alice to BS; | I—
guess which phase was ‘ l} | | &
applied to the quanton | | D
(0 or m), given that she | |
has access to E,. | |

Hlllill(Z’El) + min Hnmx(W’E2) 2 1

WweXY
Generic measures Rearrange into
Dy - QT)gll(rss(Z‘El) . 1’ J traditional WPDR form
V.(} o= M},Ié“}g(Y[ngucss(W‘E2) o 1] D‘g --I-— ng < ]_
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Preparation Uncertainty

Remark | |

We applied the preparation :f-l :f»z D,
uncertainty relation at time t, 0)) |

to derive the WPDR. ! @ : BS.
Preparation uncertainty BS : : r )
restricts one’s ability to 1) D,

predict future measurements. | |

Pirsa: 14110114 Page 45/73



Preparation Uncertainty

Remark | |

We applied the preparation :’-l :f»z D,
uncertainty relation at time t, 0)) |

to derive the WPDR. : @ : BS.
Preparation uncertainty BS) : : ” )
restricts one’s ability to 1) D,

predict future measurements. | |

To measure Por D, one
removes the second beam  Prediction removed
splitter (BS,) and tries to —

predict which detector
clicks. @
¢ e

D= 2])g11(!SH(Z’E)t2 — 1
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Measurement Uncertainty

Preparation uncertainty
Fixed input state; complementary output measurements

Measurement uncertainty
Fixed output measurement; complementary input ensembles:

Zi = {0, [1)} W = {lwe)} fws) = (0) £ €[1))/v2
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Measurement Uncertainty

Preparation uncertainty
- Fixed input state; complementary output measurements

Measurement uncertainty
- Fixed output measurement; complementary input ensembles:

Zi = {0, [1)} Wi = {lwe)} fws) = (0) £ €4[1))/v2

Retrodiction I

blocker

@ o
Guessing game

The Z; states are generated by Bob flipping a coin and blocking either
the top or bottom arm depending on flip outcome. Alice tries to guess
Bob’s coin flip, given E and given which detector clicks, denoted by C.

D; := 2pg110ss(Zvl|EC) — 1
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Measurement Uncertainty

Preparation uncertainty
- Fixed input state; complementary output measurements

Measurement uncertainty
- Fixed output measurement; complementary input ensembles:

Zi = {0, [1)} Wi = {lwe)} fws) = (0) £ €4[1))/v2

Retrodiction I

blocker

@ o
Guessing game

The Z; states are generated by Bob flipping a coin and blocking either
the top or bottom arm depending on flip outcome. Alice tries to guess
Bob’s coin flip, given E and given which detector clicks, denoted by C.

D; := 2pg110ss(Zvl|EC) — 1
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Preparation vs. Measurement
Uncertainty

Output distinguishability Prediction removed Dy
. ) —1
D = 2[)g11(:ss(Z|E)t2 — 1
Output visibility @
D() D(l ¢ =
Y i— Pmax — Pmin
Do Do
[)IlléLX + [)111111 Dl
Retrodiction - D[)

Input distinguishability
blocker

D, = 2I)g11(!HH(Z7:|EO) — 1 @

Input visibility P
V‘!ﬁ F= I/LI’Ié(}(XY (I)'11;+|])1) _ p’m—|])()) Dl ‘l
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Preparation vs. Measurement

Uncertainty
Output distinguishability
D p— QI)E.’;]I(!SS(Z|E)1:2 - 1 Hpreparatlon” WPDR
2 2
Output visibility ‘D + V < ]-
nPo 0
Y — Pmax — Pmin Addresses question of how well
T ,)D() + ,)D() Alice can prepare a state with
Pmax Pmin low uncertainty in Zand W.

Input distinguishability

“Measurement” WPDR
D; = Qf)guoss(Zi‘EC) —1

D} +V? <1

Input visibility Addresses question of how well
V. = max (p > — Doy | D Alice can jointly measure Bob's
!’ WeXY ([ wt|Do ~ Pw—|1 “) Z and W observables
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Novel WPDRs
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Preparation vs. Measurement
Uncertainty

Output distinguishability Prediction removed Do
o ) ——]
D = 2[)g11(:ss(Z|E)t2 — 1
Output visibility @
Do Dy ¢ =
V L Pmax — pmin
Dy Do
Pmax + Pmin D
Retrodiction - D[)

Input distinguishability
blocker

D, = 2I)g11(zHH(Zi|EO) —1 @

Input visibility P
V‘!ﬁ F= I/LI’Ié(}(XY (pw—HD” _ p’m—|])()) Dl ‘l
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Preparation vs. Measurement

Uncertainty
Output distinguishability
D — 2])5_)3'11(333(Z|E)t2 - 1 HPreparatlon” WPDR
2 2
Output visibility ‘D + V < ]-
0 0
Y — Prmax — Pmin Addresses question of how well
T ,)D() + ,)D() Alice can prepare a state with
Pmax Pmin low uncertainty in Zand W.

Input distinguishability

“Measurement” WPDR
D; = Qf)guoss(Zi‘EC) —1

D; +V? <1

Input visibility Addresses question of how well
V. = max (p > — Doy | D Alice can jointly measure Bob's
!’ WeXY ([ wt|Do ~ Pw—|I “) Z and W observables
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Preparation vs. Measurement

Uncertainty
Output distinguishability
D 1= 2pguess(Z|E), — 1 “Preparation” WPDR
2 2
Output visibility ‘D + V < ]-
nPo D0
Y — Pmax — Pmin Addresses question of how well
T ,)D() + ,)D() Alice can prepare a state with
Pmax Pmin low uncertainty in Zand W.

Input distinguishability

“Measurement” WPDR
D; = Qf)guoss(Zi‘EC) —1

D} +V? <1

Input visibility Addresses question of how well
V. = max (p > — Doy | D Alice can jointly measure Bob's
: WeXY ([ wt|Do ~ Pw—|1 “) Z and W observables
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Example: quantum beam splitter
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Example: quantum beam splitter

Feeding in a polarization
superposition means that BS,
is in a superposition of
“absent” and “present”.

2 2 2
o) = [y K|

|’z/ﬁg?)> = cos a|H) + sin a|V)
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Example: quantum beam splitter

1.0
WPDR was experimentally tested: .
Science
D; +1V* <1 .
v ~ 0.51 @ D?
—A— V2. D?

80 60 40 20 0
Angle o (deg)
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Example: quantum beam splitter

1.0 o
WPDR was experimentally tested: .
Science
DQ + VQ <1 (2012)
¢ . 0.5{ @ D -
—A— Vv D?
0.0-4——

80 60 40 20 0
Angle o (deg)
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Example: quantum beam splitter

1.0
WPDR was experimentally tested: .
Science
DQ + VQ <1 (2012)
v - 0.5 @ D°
—A— V%4 D?

‘This relation is untight!

0.04=——
80 60
Angle o (deg)

1.0

40 20 0

Di+V

0.8

D; V

L6

o (deg)
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Preparation vs. Measurement

Uncertainty
Output distinguishability
D 1= 2pguess(Z|E), — 1 “Preparation” WPDR
2 2
Output visibility ‘D + V < ]-
nPo 10
Y — Pmax — Pmin Addresses question of how well
T ,)D() + ,)D() Alice can prepare a state with
Pmax Pmin low uncertainty in Zand W.

Input distinguishability

“Measurement” WPDR
D; = Qf)guoss(Zi‘EC) —1

D} +V? <1

Input visibility Addresses question of how well
V. = max (p > — Doy | D Alice can jointly measure Bob's
!’ WeXY ([ wt|Do ~ Pw—|1 “) Z and W observables
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Example: quantum beam splitter

WPDR was experimentally tested:

D; +V* <1

1.0

Science
(2012)

0.51

0.0

60
Angle o (deg)

40 20 0
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Example: quantum beam splitter

1.0 o
WPDR was experimentally tested: .
Science
DQ + VQ <1 (2012)
¢ - 0.5{ @ D -
—A— V% D?

0.0

80 60 40 20 0
Angle o (deg)

1.0

Di+V

0.8

D; V

(L6

o (deg)

Pirsa: 14110114 Page 63/73



Example: quantum beam splitter

Previously known relation is
untight, and more importantly,
does not capture beam splitter’s
coherence!!

D +V?* <1
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Example: quantum beam splitter

Previously known relation is Qur framework easily provides a
untight, and more importantly, tight relation that captures
does not capture beam splitter’s beam splitter’s coherence.
coherence!! We condition distinguishability

on the final polarization.

D +V?* <1
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Binary interferometers

Two interfering paths

Double Slit

( Which slit (Z)?)
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Binary interferometers

Two interfering paths

Double Slit
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Final Remarks

- WPDRs are EURs in disguise.
Namely, the EUR for the min- and max-entropies applied to qubits.
This gives WPDRs operational meaning in guessing games.
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This gives WPDRs operational meaning in guessing games.

- All of our WPDRs hold if you replace both min and max with von
Neumann.

- Our framework provides two classes of WPDRs associated with
preparation uncertainty and measurement uncertainty.
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this for the QBS.)
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- Our framework applies universally to binary interferometers. It would be
interesting to extend this to the general N-path case.
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