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Abstract: <span>Scattering in the tenuous interstellar plasma blurs the image of Sgr A*. This effect decreases steeply with increasing frequency and
becomes subdominant to the intrinsic emission structure at wavelengths close to a millimeter. | will discuss recent work that demonstrates how we
can invert the blurring when properties of the scattering are known. With this technique, we can reconstruct the unscattered image of Sgr A* using
EHT data. | will also show why some EHT observables -- such as closure phase and fractional polarization -- are largely immune to scattering.
Finally, despite decades of study, there has been a recent flurry of progress in understanding the scattering properties, including studies of the
Galactic Center magnetar and the discovery of refractive substructure in the scattering disk of Sgr A* at 1.3-cm wavelength. | will discuss these
recent findings and their implications for imaging Sgr A* with the EHT</span>
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Interstellar Scattering

ISM density inhomogeneities scatter
radio waves

Scattering is stochastic

Effects:
Angular Broadening
Temporal Broadening
Scintillation
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Stars Twinkle, Planets Don't

A large source quenches the scintillation

* Point Source = Snapshot Image
* Large Source = Average Image

* Time Average = Ensemble-Average Image

Ensemble-average scattering is deterministic!

For the Air through which we look upon the Stars, is in a perpetual Tremor; as may be seen
by the tremulous Motion of Shadows cast from high Towers, and by the twinkling of the
fix'd Stars... Long Telescopes may cause Objects to appear brighter and larger than short
ones can do, but they cannot be so formed as to take away that confusion of the Rays
which arises from the Tremors of the Atmosphere. - Newton, Opticks
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The Phase Structure Function

Scattering can be described by a “thin-screen” that imparts a stochastic,
position-dependent phase

The phase structure function conveniently parametrizes the scattering:

Dy(x) = <[f,(x T g ”(x’):2>

Need: Real, positive, symmetric

Injection (outer) scale of the turbulence
Power-law index in the inertial range
Dissipation (inner) scale of the turbulence
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The Ensemble-Average Image

For interferometry, the ensemble-average image of a point source is
closely related to the structure function:

i(u) = exXp [_1[)(/) ( AU )] <«—— Scattering Kernel

/ \ 2 1+ M

Visibility  Baseline

Magnification

For an extended source, scattering simply acts as a convolution

Result: The image is uniformly blurred
The visibilities are multiplied by the point-source response (kernel)

Also: Some VLBI quantities are unaffected!

Page 6/27



Sgr A*: Observed Size vs. Wavelength
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Sgr A* with 1.3-mm VLBI

Correlated flux density (Jy)
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The Scattering Kernel at 230 GHz
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Deblurring Images of Sgr A*

w/ Scattering @ 1.3mm

' < Simulated Images

Fish et al. (2014)

Reconstructed Images — '

w/ Scattering @ 1.3mm || w/ Visibility Deblurring

Original
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The Scattering Kernel at 86 GHz
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VLBA+GBT

0.8

0.6

v (GA)

0

u (GA) Fish et al. (2014)

Page 11/27



Summary

Blurring from scattering is deterministic and invertible

Scattering = Amplified Thermal Noise (no more than x5 on EHT baselines)

Mitigation Strategy:
1. Divide sampled visibilities by known kernel
2. Image using the re-scaled visibilities
3. Result gives the unscattered image

Limitations:
1. Do we know the scattering kernel?
2. Is the ensemble-average regime a good approximation?
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Refractive Substructure at 1.3 cm
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Refractive Substructure at 1.3 cm

Intrinsic Source Size (mas)
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A Shallow Spectrum?
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Sgr A* with 1.3-mm VLBI

Correlated flux density (Jy)
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Expected Refractive Noise
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Expected Refractive Noise
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But the refractive noise is correlated on EHT baselines

Leading Effect: Flux variations (easy to normalize)
Next Effect: Image wander (not immediately relevant)
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The Role of Simulations

Idea (Narayan & Goodman 1989):
Make a scattering screen (an array of correlated random phases)
Do the Fresnel scattering integral (Source + Screen + Observing Plane)

2D:
For Sgr A* at 1.3 cm: (10715 screen phases)x(4-dim integral) per baseline

1.3 mm: (10”9 screen phases)x(4-dim integral) per baseline

But, analytical results for special cases!
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How Does Refractive Substructure Look?

Unscattered Source

Ensemble-Average Scattering

\High-Resolution LOW-Resolut'ionj

Y

“Snapshot” Scattered Source
= Average-Image Regime
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How Does Refractive Substructure Look?
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How Does Refractive Substructure Look?
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How Does Refractive Substructure Look?
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How Does Refractive Substructure Look?

Movie Average:

~ Ensemble-Average Image
(suitable for deblurring)
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Summary

Scattering is important to understand and is still providing surprises

The dominant effect is blurring
Invertible
Just added noise (if known kernel)

The sub-dominant effect is substructure
Averaging still gives ensemble average (see poster: Freek Roelofs)
Variations can distort single-epoch images
< 100 mly noise seems a likely fundamental limit
Further mitigation techniques needed!

What is the relative strength of GR tests with M877
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What is the relative strength of GR tests with M877?
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