Title: Testing gravity in the centre of the Galaxy

Date: Nov 12, 2014 02:00 PM

URL: http://pirsa.org/14110094

Abstract: The supermassive black hole in the centre of the Milky Way, Sgr A*, is an ideal target for testing the properties of black holes. A number of experiments are being prepared or conducted, such as the monitoring of stellar orbits, the search for radio pulsars or the recording of an image of the shadow of a event horizon. The talk puts these efforts in context with other tests of general relativity and its alternatives. I will also compare the approaches in the Galactic centre, while concentrating in particular on the prospects of using pulsars as probes, also in combination with event horizon imaging.

Pirsa: 14110094 Page 1/80

Testing theories of gravity in the centre of the Galaxy

Michael Kramer

Max-Planck-Institut für Radioastronomie

Jodrell Bank Centre for Astrophysics, University of Manchester

Pirsa: 14110094 Page 2/80

General relativity conceptually different than description of other forces

But GR has been tested precisely, e.g. in solar system

Classical tests:

- Mercury perihelion advance
- Light-deflection at Sun
- Gravitational redshift

Pirsa: 14110094 Page 3/80

General relativity conceptually different than description of other forces

But GR has been tested precisely, e.g. in solar system

Classical tests:

- Mercury perihelion advance
- Light-deflection at Sun
- Gravitational redshift

Modern tests in solar system (see PPN formalism by Will & Nordvedt), e.g.

- Lunar Laser Ranging (LLR)
- Radar reflection at planets, Cassini spacecraft signal
- LAGEOS & Gravity Probe B

Pirsa: 14110094 Page 4/80

General relativity conceptually different than description of other forces

But GR has been tested precisely, e.g. in solar system

Classical tests:

- Mercury perihelion advance
- Light-deflection at Sun
- Gravitational redshift

Modern tests in solar system (see PPN formalism by Will & Nordvedt), e.g.

- Lunar Laser Ranging (LLR)
- Radar reflection at planets, Cassini spacecraft signal
- LAGEOS & Gravity Probe B

But, is there a problem..?

See recision cosmology: Inflation?

Dark Matter?

Dark Energy?

Pirsa: 14110094 Page 5/80

General relativity conceptually different than description of other forces

But GR has been tested precisely, e.g. in solar system

Classical tests:

- Mercury perihelion advance
- Light-deflection at Sun
- Gravitational redshift

Modern tests in solar system (see PPN formalism by Will & Nordvedt), e.g.

- Lunar Laser Ranging (LLR)
- Radar reflection at planets, Cassini spacecraft signal
- LAGEOS & Gravity Probe B

But, is there a problem..?

See recision cosmology: Inflation?

Dark Matter?

Dark Energy?

Better: Will Einstein have the last word on (macroscopic) gravity

or does GR fail far below the Planck energy?

Pirsa: 14110094 Page 6/80

General relativity conceptually different than description of other forces

But GR has been tested precisely, e.g. in solar system

Classical tests:

- Mercury perihelion advance
- Light-deflection at Sun
- Gravitational redshift

Modern tests in solar system (see PPN formalism by Will & Nordvedt), e.g.

- Lunar Laser Ranging (LLR)
- Radar reflection at planets, Cassini spacecraft signal
- LAGEOS & Gravity Probe B

But, is there a problem..?

See recision cosmology: Inflation?

Dark Matter?

Dark Energy?

Better: Will Einstein have the last word on (macroscopic) gravity

or does GR fail far below the Planck energy?

Pirsa: 14110094 Page 7/80

- We need clean tests where gravity is strong and non-linear.
- We must test the radiative properties of gravity.

Pirsa: 14110094 Page 8/80

- We need clean tests where gravity is strong and non-linear.
- We must test the radiative properties of gravity.

Pirsa: 14110094 Page 9/80

Outline

• Introduction:

Pulsar timing & examples

• Pulsars in binary systems:

Testing theories of gravity

• The current gold standard:

Tests of GR and alternative theories

• Black Holes, Event Horizon & Pulsars:

Combining the knowledge

Fundamental Physics in Radio Astronomy Max-Planck-Institut für Radioastronomie

Pirsa: 14110094 Page 10/80

A "simple" and clean experiment: Pulsar Timing

Pulsars are...

...cosmic lighthouses
...almost Black Holes: ~1.4 M_☉ within 20km
...objects of extreme matter : 10x nuclear
...massive flywheels, hence very stable clocks
...pulsar timing measures arrival time (TOA):

Pirsa: 14110094 Page 11/80

A "simple" and clean experiment: Pulsar Timing

Pulsars are...

...cosmic lighthouses

...almost Black Holes: $^{\sim}1.4~M_{\odot}~$ within 20km

...objects of extreme matter : 10x nuclear

...massive flywheels, hence very stable clocks

...pulsar timing measures arrival time (TOA):

Pirsa: 14110094 Page 12/80

Pulsar timing measures arrival time (TOA):

(adapted from D. Champion)

Coherent timing solution about 1,000,000 more precise than Doppler method!

Pirsa: 14110094 Page 13/80

A "simple" and clean experiment: Pulsar Timing Pulsar timing measures arrival time (TOA): (adapted from D. Champion) Fold Fold Model TOA Residual Coherent timing solution about 1,000,000 more precise than Doppler method!

Pirsa: 14110094 Page 14/80

Our (usual) laboratories: Pulsars with companions

~ 2500 radio pulsars

1.40 ms (PSR J1748-2446ad) 8.50 s (PSR J2144-3933)

~ 10% binary pulsars

Orbital period range

94 min (PSR J1311-3430) 5.3 yr (PSR J1638-4725)

Companions

MSS, WD, NS, planets

See summary of V. Kaspi

Measure (=time!) how a pulsar falls as a test mass in the gravitational potential of a companion (and in the Galaxy)

... a <u>clean</u> experiment with very high precision!

Pirsa: 14110094

High precision measurements – "Best of" examples...

Spin parameters:

Period: 5.757451924362137(2) ms (Verbiest et al. 2008) Note: 2 atto seconds uncertainty!

Astrometry:

Distance: 157(1) pc (Verbiest et al. 2008)
 Proper motion: 140.915(1) mas/yr (Verbiest et al. 2008)

Orbital parameters:

 Period:
 0.102251562479(8) day
 (Kramer et al. in prep.)

 Projected semi-major axis:
 31,656,123.76(15) km
 (Freire et al. 2012)

 Eccentricity:
 $3.5(1.1) \times 10^{-7}$ (Freire et al. 2012)

Masses:

• Masses of neutron stars: $1.33816(2) / 1.24891(2) \, M_\odot$ (Kramer et al. in prep.) • Mass of WD companion: $0.207(2) \, M_\odot$ (Hotan et al. 2006) • Mass of millisecond pulsar: $1.667(7) \, M_\odot$ (Freire et al. 2012) • Main sequence star companion: $1.029(3) \, M_\odot$ (Freire et al. 2012) • Mass of Jupiter and moons: $9.547921(2) \times 10^{-4} \, M_\odot$ (Champion et a. 2010)

Relativistic effects:

Periastron advance: 4.226598(5) deg/yr (Weisberg et al. 2010)
 Einstein delay: 4.2992(8) ms (Weisberg et al. 2010)
 Orbital GW damping: 7.152(8) mm/day (Kramer et al. in prep)

Gravitational wave detection:

• Change in relative distance: 100m / 1 lightyear (EPTA, NANOGrav, PPTA)

Fundamental Physics in Radio Astronomy Max-Planck-Institut für Radioastronomie

Pirsa: 14110094

Pulsars as Gravitational Wave Detectors

Pulse arrival times will be affected by low-frequency gravitational waves – correlated across sky!

In a "Pulsar Timing Array" (PTA) pulsars act as the arms of a cosmic gravitational wave detector:

Pirsa: 14110094

The European Pulsar Timing Array (EPTA)

An array of 100-m class telescopes to form a pulsar timing array

Plus theory:

...and forming the Large European Array for Pulsars (LEAP)

Pirsa: 14110094 Page 18/80

The Large European Array for Pulsars (LEAP)

"The best and most sensitive pulsar instrument right now"

- Coherently adding ("phasing up") the 6 of the 5 biggest fullysteerable telescopes in the world.
- Forming a telescope with an equivalent size of a 200 m dish.
- A LEAP in collecting area seeing most of the sky.
- LEAP can produce ToAs and images
- Funded by ERC Advanced Grant (PI Kramer)
- Integreal part of EPTA observing monthly

Pirsa: 14110094 Page 19/80

Limits on theories of gravity from EPTA Effelsberg data

 Best test on existence of preferred frames, i.e. gravitational Lorentz invariance, thanks to unique long-term Effelsberg data set:

- Idea: Look for profile changes in isolated pulsars
- Inspected two pulsars in detail: no changes found over 18 years!
- Important: Longest, uninterrupted coherently dedispersed data existing!

$$\hat{\alpha}_1 = -0.4^{+3.7}_{-3.1} \times 10^{-5}$$
 (95% C.L.)
[Shao & Wex 2012]

$$|\hat{lpha}_2| < 1.6 imes 10^{-9} \quad (95\% \ {
m C.L.})$$
 [Shao et al. 2013]

Limits on theories of gravity from EPTA Effelsberg data

 Best test on existence of preferred frames, i.e. gravitational Lorentz invariance, thanks to unique long-term Effelsberg data set:

- Idea: Look for profile changes in isolated pulsars
- Inspected two pulsars in detail: no changes found over 18 years!
- Important: Longest, uninterrupted coherently dedispersed data existing!

$$\hat{\alpha}_1 = -0.4^{+3.7}_{-3.1} \times 10^{-5} \quad (95\% \text{ C.L.})$$
[Shao & Wex 2012]

$$|\hat{lpha}_2| < 1.6 imes 10^{-9} \quad (95\% \ {
m C.L.})$$
 [Shao et al. 2013]

Pirsa: 14110094 Page 22/80

The Double Pulsar (Burgay et al. 2003, Lyne et al. 2004)

- Old 22-ms pulsar in a 147-min orbit with young 2.77-s pulsar
- Orbital velocities of 1 Mill. km/h
- Eclipsing binary in compact, slightly eccentric (e=0.088) and edge-on orbit
- Ideal laboratory for gravitational and fundamental physics
- In particular, exploitation for tests of general relativity

(Kramer et al. 2006, Breton et al. 2008)

Pirsa: 14110094 Page 23/80

Double Pulsar: a unique relativistic double-line system

We can measure two orbits → mass ratio

$$R \equiv \frac{x_B}{x_A} = \frac{m_A}{m_B} = 1.0714 \pm 0.0011$$

Note: theory-independent to 1PN order! (Damour & Deruelle 1986, Damour 2005)

Pirsa: 14110094 Page 24/80

Double Pulsar: a unique relativistic double-line system

We can measure two orbits → mass ratio

$$R \equiv \frac{x_B}{x_A} = \frac{m_A}{m_B} = 1.0714 \pm 0.0011$$

Note: theory-independent to 1PN order! (Damour & Deruelle 1986, Damour 2005)

• Huge orbital precession of 16.8991 ± 0.0001 deg/yr!

(4 x larger than Hulse-Taylor - already at 2PN precision!)

Double Pulsar: a unique relativistic double-line system

We can measure two orbits → mass ratio

$$R \equiv \frac{x_B}{x_A} = \frac{m_A}{m_B} = 1.0714 \pm 0.0011$$

Note: theory-independent to 1PN order! (Damour & Deruelle 1986, Damour 2005)

Huge orbital precession of 16.8991 ± 0.0001 deg/yr!

(4 x larger than Hulse-Taylor - already at 2PN precision!)

$$d\omega / dt = 3T_{Sun}^{2/3} \left(\frac{P_b}{2\pi}\right)^{-5/3} \frac{\left(m_A + m_B\right)^{2/3}}{1 - e^2}$$

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!

$$\frac{\text{Obs.Val.}}{\text{Exp.(GR)}} = 1.000 \pm 0.002$$

- As other clocks, pulsars run slower in deep gravitational potentials
- Changing distance to companion (and felt grav. potential) during elliptical orbit

Pirsa: 14110094 Page 27/80

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!
- Shapiro delay in edge-on orbit: $s = sin(i) = 0.99975 \pm 0.00009$

- At superior conjunction, pulses from pulsar A pass B in 20,000km distance
- Space-time near companion is curved → Additional path length
 - → Delay in arrival time depending on geometry and companion mass

Pirsa: 14110094 Page 28/80

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!
- Shapiro delay in edge-on orbit: $s = sin(i) = 0.99975 \pm 0.00009$

• Relativistic spin precession: $\Omega_B = 4.8(7) \text{ deg yr}^{-1}$

Pirsa: 14110094 Page 29/80

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!
- Shapiro delay in edge-on orbit: $s = sin(i) = 0.99975 \pm 0.00009$

• Relativistic spin precession: $\Omega_B = 4.8(7) \text{ deg yr}^{-1}$

Pirsa: 14110094 Page 30/80

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!
- Shapiro delay in edge-on orbit: $s = sin(i) = 0.99975 \pm 0.00009$

• Relativistic spin precession: $\Omega_B = 4.8(7) \text{ deg yr}^{-1}$

Pirsa: 14110094 Page 31/80

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!
- Shapiro delay in edge-on orbit: $s = sin(i) = 0.99975 \pm 0.00009$
- Relativistic spin precession: $\Omega_B=4.8(7) \text{ deg yr}^{-1}$
- Shrinkage of orbit due to GW emission: $\Delta P_b = 107.79 \pm 0.11 \text{ ns/day!}$
 - Pulsars approach each other by

 $7.152 \pm 0.008 \, \text{mm/day}$

$$\frac{\text{Obs.Val.}}{\text{Exp.(GR)}} = 1.000 \pm 0.001$$

- Merger in 85 Million years

Rezzolla

Precision of all tests will improve with time: expect to supersede solar system tests

Pirsa: 14110094 Page 32/80

- Huge orbital precession of 16.8991 ± 0.0001 deg/yr!
- Clock variation due to gravitational redshift: 383.9 ± 0.6 microseconds!
- Shapiro delay in edge-on orbit: $s = sin(i) = 0.99975 \pm 0.00009$
- Relativistic spin precession: $\Omega_B=4.8(7) \text{ deg yr}^{-1}$
- Shrinkage of orbit due to GW emission: $\Delta P_b = 107.79 \pm 0.11 \text{ ns/day!}$
 - Pulsars approach each other by

 $7.152 \pm 0.008 \, \text{mm/day}$

$$\frac{\text{Obs.Val.}}{\text{Exp.(GR)}} = 1.000 \pm 0.001$$

- Merger in 85 Million years

Rezzolla

Precision of all tests will improve with time: expect to supersede solar system tests

Pirsa: 14110094 Page 33/80

Gravitational wave emission: H-T vs D-PSR

Pirsa: 14110094 Page 34/80

Gravitational wave emission: H-T vs D-PSR

Pirsa: 14110094 Page 35/80

Gravitational wave emission: H-T vs D-PSR

Pirsa: 14110094 Page 36/80

Tensor-Scalar theories

A number of motivations for scalar partners (spin 0) to the graviton (spin 2):

- •- Unified and extra-dimensional theories (superstrings)
- - Dark Energy (inflation, quintessence)
- - Dark Matter (modified Newtonian dynamics)

$$R_{\mu\nu}^* = \frac{8\pi G_*}{c^4} \left(T_{\mu\nu}^* - \frac{1}{2} T^* g_{\mu\nu}^* \right) + 2\partial_{\mu}\varphi \partial_{\nu}\varphi$$

$$g_*^{\mu\nu} \nabla_{\mu}^* \nabla_{\nu}^* \varphi = -\frac{4\pi G_*}{c^4} \left(\alpha_0 + \beta_0 \varphi \right) T_*$$

Damour & Esposito-Farese (1993, 1996)

Physical (Jordan) metric:
$$\tilde{g}_{\mu\nu} = g^*_{\mu\nu} \exp(2\alpha_0 \varphi + \beta_0 \varphi^2)$$

- •- Note that the matter-scalar coupling constants α_0 and β_0 are related (non-linearly)
- to the "PPN" parameters (Eddington 1923, Nordtvedt & Will 1972)
- •- Hence, their values are very well constrained in the weak field of the solar system

Tensor-Scalar theories

A number of motivations for scalar partners (spin 0) to the graviton (spin 2):

- •- Unified and extra-dimensional theories (superstrings)
- - Dark Energy (inflation, quintessence)
- - Dark Matter (modified Newtonian dynamics)

$$R_{\mu\nu}^* = \frac{8\pi G_*}{c^4} \left(T_{\mu\nu}^* - \frac{1}{2} T^* g_{\mu\nu}^* \right) + 2\partial_{\mu}\varphi \partial_{\nu}\varphi$$

$$g_*^{\mu\nu} \nabla_{\mu}^* \nabla_{\nu}^* \varphi = -\frac{4\pi G_*}{c^4} \left(\alpha_0 + \beta_0 \varphi \right) T_*$$

Damour & Esposito-Farese (1993, 1996)

Physical (Jordan) metric:
$$\tilde{g}_{\mu\nu} = g^*_{\mu\nu} \exp(2\alpha_0 \varphi + \beta_0 \varphi^2)$$

- •- Note that the matter-scalar coupling constants α_0 and β_0 are related (non-linearly)
- to the "PPN" parameters (Eddington 1923, Nordtvedt & Will 1972)
- •- Hence, their values are very well constrained in the weak field of the solar system

Tensor-Scalar theories

A number of motivations for scalar partners (spin 0) to the graviton (spin 2):

- •- Note that the matter-scalar coupling constants α_0 and β_0 are related (non-linearly)
- to the "PPN" parameters (Eddington 1923, Nordtvedt & Will 1972)
- •- Hence, their values are very well constrained in the weak field of the solar system

•- We need to constrain them also in strong fields!

Pirsa: 14110094 Page 39/80

Dipolar Gravitational Radiation in Binary Systems?

Unlike GR, most alternative theories of gravity – including tensor-scalar theories – predict other radiation multipoles that <u>dominate</u> the energy loss of the orbital dynamics:

Energy flux =
$$\frac{\text{Quadrupole}}{c^5} + O\left(\frac{1}{c^7}\right) \quad \text{spin 2}$$

$$+ \frac{\text{Monopole}}{c} \left(0 + \frac{1}{c^2}\right)^2 + \frac{\text{Dipole}}{c^3} + \frac{\text{Quadrupole}}{c^5} + O\left(\frac{1}{c^7}\right) \quad \text{spin 0}$$

$$\propto \left(\alpha_4 - \alpha_8\right)^2$$

Hence, visible in orbital decay:

$$\begin{array}{ccc} \dot{P}_{\rm b}^{\rm quadrupole} & \propto & \left(\frac{v}{c}\right)^5 \\ \\ \dot{P}_{\rm b}^{\rm dipole} & \propto & \left(\frac{v}{c}\right)^3 (\alpha_A - \alpha_B)^2 \\ \\ \uparrow & & & \sim 0 \text{ in Double Pulsar} \\ \\ = 0 \text{ in GR} & & \text{since } \alpha_A \approx \alpha_B \end{array}$$

Dipolar Gravitational Radiation in Binary Systems?

Unlike GR, most alternative theories of gravity – including tensor-scalar theories – predict other radiation multipoles that <u>dominate</u> the energy loss of the orbital dynamics:

PSR-BH system would be best as BH would have zero scalar charge

But PSR – WD system also effective lab – in particular if PSR is massive!

The "next best thing": PSR-WD

- PSR J0348+0432: first massive NS in relativistic orbit (Lynch et al. 2013)
- Combining VLT, Effelsberg, Arecibo & GBT data, new record mass measured:

M=2.01±0.04 M_☉ (Antoniadis et al., 2013)

Pirsa: 14110094 Page 42/80

The "next best thing": PSR-WD

- PSR J0348+0432: first massive NS in relativistic orbit (Lynch et al. 2013)
- Combining VLT, Effelsberg, Arecibo & GBT data, new record mass measured:

M=2.01±0.04 M_☉ (Antoniadis et al., 2013)

No vast improvement for EoS (though comforting!) but probing different fields!

Pirsa: 14110094 Page 43/80

Constraining tensor-scalar gravity

Pirsa: 14110094 Page 44/80

Pirsa: 14110094 Page 45/80

Pirsa: 14110094 Page 46/80

Pirsa: 14110094 Page 47/80

Pirsa: 14110094 Page 48/80

Implications for LIGO/VIRGO

- Merger of binaries with NS companion main source of expected LIGO population
- Expected signal will differ for tensor-scalar theories
- Example: merger of $1.3M_{\odot}$ and $2M_{\odot}$ NS:

$$\frac{\dot{n}_{\rm b}}{n_{\rm b}^2} = \frac{m_A m_B}{(m_A + m_B)^2} \, \frac{96}{5} \, \left(\frac{v}{c}\right)^5$$

$$\frac{\dot{n}_{\rm b}}{n_{\rm b}^2} = \frac{m_A m_B}{(m_A + m_B)^2} \, \frac{96}{5} \, \left(\frac{v}{c}\right)^5 \qquad \text{VS.} \qquad \frac{\dot{n}_{\rm b}}{n_{\rm b}^2} = \frac{m_A m_B}{(m_A + m_B)^2} \left[\frac{96}{5} \left(\frac{v}{c}\right)^5 \kappa_{AB} + \left(\frac{v}{c}\right)^3 \frac{(\alpha_A - \alpha_B)^2}{1 + \alpha_A \alpha_B}\right]$$

From J0348+0432 \rightarrow Δ N <0.5 - less than ½ a cycle!

It is sufficient to work with GR templates even for massive NSs!

Observations of Black Holes Properties

- We need to trace the spacetime around a black hole ideally in a clean way!
- In a perfect world, we have a clock around it...
- ...in a nearly perfect world, we have a pulsar!
- See Wex & Kopeikin (1999) for a first recipe and Liu et al. for more details

Spin from Lense-Thirring/spin-orbit coupling ("wobble of orbit"):

$$\omega = \omega_0 + (\dot{\omega}_{PN} + \dot{\omega}_{LT})(T - T_0) + \frac{1}{2}\ddot{\omega}_{LT}(T - T_0)^2 + \dots$$

$$x = x_0 + \dot{x}_{LT}(T - T_0) + \frac{1}{2}\ddot{x}_{LT}(T - T_0)^2 + \dots$$

[Wex & Kopeikin 1999; Liu 2012; Liu et al. 2014]

With a fast millisecond pulsar about a 10-30 $M_{\odot}BH$, we practically need the SKA:

BH mass with precision < 0.1% BH spin with precision < 1% Cosmic Censorship: S < GM²/c

A more massive BH with pulsars would be much easier...

Pirsa: 14110094 Page 50/80

Relativistic effects for a pulsar orbit around Sgr A*

Pulsar in a 0.3 yr eccentric (e=0.5) orbit around Sgr A*

Semi-major axis: $72 \text{ AU} = 860 \text{ R}_{S}$ Pericenter distance: $36 \text{ AU} = 430 \text{ R}_{S}$

Pericenter velocity: 0.042 c (~ 20 × Double Pulsar)

Pericenter advance:

1pN: 2.8 deg/yr, $\Delta L \sim 1.8 \text{ AU/yr}$

2pN: 0.014 deg/yr, $\Delta L \sim 1,400,000 \text{ km/yr}$

Einstein delay:

1pN: 15 min 2pN: 1.6 s

Propagation delay ($i = 0^{\circ} / i = 80^{\circ}$):

Shapiro 1pN: 46.4 s / 246.9 sShapiro 2pN: 0.2 s / 8.0 sFrame dragging: 0.1 s / 6.5 sBending delay (P = 1s): 0.2 ms / 4.2 ms

Lense-Thirring precession:

Orbital plane ΩLT : 0.052 deg/yr, $\Delta L \sim 10^7$ km/yr

Similar contribution to $\dot{\omega}_{\rm Fundamental}$ Physics in Radio Astronomy Geod. precession 1.4 deg/yr Max-Planck-Institut für Radioastronomie

Pirsa: 14110094 Page 51/80

Mass of Sgr A*, a first GR test & the GC distance

 $M_{BH} >> m_{PSR} \Rightarrow$ only one relativistic effect needed to measure mass of Sgr A*

Simulations: 5 yr of timing, one 100 μs TOA per week: Mass precision ~ 1 M_☉!

A first GR test:

$$M_{\Delta S} \neq M_{\gamma_E}$$

Note: mass measurement not affected by the uncertainty in R₀!

Combining with 10 µas astrometry from e.g. GRAVITY

R_o with ~1 pc uncertainty

Fundamental Physics in Radio Astronomy
Max-Planck-Institut für Radioastronomie

Pirsa: 14110094 Page 52/80

Determining the spin of the Sgr A* - incl. direction!

Testing Cosmic Censorship Conjecture:

 $\chi \equiv \frac{c}{G} \frac{S}{M^2} \le 1$

[Wex & Kopeikin 1999, Liu et al. 2012]

$$\omega = \omega_0 + \dot{\omega}_0 (T - T_0) + \frac{1}{2} \ddot{\omega}_0 (T - T_0)^2 + \dots$$

$$x = x_0 + \dot{x}_0(T - T_0) + \frac{1}{2}\ddot{x}_0(T - T_0)^2 + \dots$$

Fundamental Physics in Radio Astronomy
Max-Planck-Institut für Radioastronomie

Determining the spin of the Sgr A* - incl. direction!

Testing Cosmic Censorship Conjecture:

 $\chi \equiv \frac{c}{G} \frac{S}{M^2} \le 1$

[Wex & Kopeikin 1999, Liu et al. 2012]

$$\omega = \omega_0 + \dot{\omega}_0 (T - T_0) + \frac{1}{2} \ddot{\omega}_0 (T - T_0)^2 + \dots$$

$$x = x_0 + \dot{x}_0(T - T_0) + \frac{1}{2}\ddot{x}_0(T - T_0)^2 + \dots$$

Hundamental Physics in Radio Astronomy
Max-Planck-Institut für Radioastronomie

<u>Pulsar orbit</u>

$$P_b$$
 = 0.3 yr
e = 0.5
 Φ_0 = 45°
 Ψ_0 = 45°
 θ = 60°
 λ = 60°

 $\frac{\text{Sgr A*:}}{\text{M = 4} \times 10^6 \, \text{M}_{\odot}}$

Pirsa: 14110094

<u>Pulsar orbit</u>

$$P_b = 0.3 \text{ yr}$$

e = 0.5

$$\Psi_0 = 45^{\circ}$$

Weekly TOA:

100 μs

<u>Sgr A*:</u>

M = 4
$$imes$$
 10 6 M $_{\odot}$

 $\chi = 1.2$

Pirsa: 14110094 Page 58/80

Pulsar orbit

$$P_b$$
 = 0.3 yr
 e = 0.5
 Φ_0 = 45°
 Ψ_0 = 45°
 θ = 60°
 λ = 60°

$$\delta\omega = 10\%$$
 LT

Weekly TOA: 100 μs

Sgr A*:

$$M = 4 \times 10^6 M\odot$$

$$\chi = 1.0$$

External perturbations

- Here: stellar population 10³ stars/mpc (cf. Merritt et al. 2010)
- Effect of perturbations immediately detectable
- We want orbits with P_b<0.3 yrs
- Mass measurement easy

Fundamental Physics in Radio Astronomy Max-Planck-Institut für Radioastronomie

Testing the no-hair theorem

No-hair theorem $\Rightarrow Q = -S^2/M$ (units where c=G=1)

Pulsar in a 0.1 yr orbit around Sgr A*:

- Secular precession caused by quadrupole is 2 orders of magnitude below frame dragging, and is not separable from frame-dragging
- Fortunately, quadrupole leads to *characteristic periodic residuals* of order msecs Simulation: Extreme Kerr, 3 orbits, 160 TOAs with 100 μ s error, e = 0.4

$$\rightarrow$$
 $\delta Q/Q = 0.008$

No-hair theorem to ~1%

 $q\equiv rac{c^2}{G^2}\,rac{Q}{M^3}=-\chi^2$ (no-hair theorem)

[Liu et al. 2012]

Pirsa: 14110094 Page 60/80

Testing the no-hair theorem

No-hair theorem $\Rightarrow Q = -S^2/M$ (units where c=G=1)

Pulsar in a 0.1 yr orbit around Sgr A*:

- Secular precession caused by quadrupole is 2 orders of magnitude below frame dragging, and is not separable from frame-dragging
- Fortunately, quadrupole leads to *characteristic periodic residuals* of order msecs Simulation: Extreme Kerr, 3 orbits, 160 TOAs with 100 μ s error, e = 0.4

Actual precision will depend on eccentricity

- and may be much better!

Pirsa: 14110094 Page 61/80

Combining the image and pulsars

A single pulsar can give you precise spin & direction – potentially very cleanly!

Pirsa: 14110094 Page 62/80

- We have evidence for past formation of massive stars in the Galactic Centre,
 i.e. massive stars and the remnants are being observed
- It is a region of high stellar density, so exchange interaction can produce all types of binary companions, we can expect all kinds of extreme binary systems
- ...e.g. Faucher-Giguere & Loeb (2011) predict highly ecc. stellar BH-MSP systems
- We can even expect > 1000 pulsars, incl. millisecond pulsars (Wharton et al. 2013)

Pirsa: 14110094 Page 63/80

- We have evidence for past formation of massive stars in the Galactic Centre,
 i.e. massive stars and the remnants are being observed
- It is a region of high stellar density, so exchange interaction can produce all types of binary companions, we can expect all kinds of extreme binary systems
- ...e.g. Faucher-Giguere & Loeb (2011) predict highly ecc. stellar BH-MSP systems
- We can even expect > 1000 pulsars, incl. millisecond pulsars (Wharton et al. 2013)
- We can probe:
 - star formation history (from char. ages)
 - local gravitational potential (from accel.)
 - distribution and properties of central ISM
 - properties & strength of central B-field (RM)

Pirsa: 14110094 Page 64/80

- We have evidence for past formation of massive stars in the Galactic Centre,
 i.e. massive stars and the remnants are being observed
- It is a region of high stellar density, so exchange interaction can produce all types of binary companions, we can expect all kinds of extreme binary systems
- ...e.g. Faucher-Giguere & Loeb (2011) predict highly ecc. stellar BH-MSP systems
- We can even expect > 1000 pulsars, incl. millisecond pulsars (Wharton et al. 2013)
- We can probe:
 - star formation history (from char. ages)
 - local gravitational potential (from accel.)
 - distribution and properties of central ISM
 - properties & strength of central B-field (RM)

Pirsa: 14110094 Page 65/80

- We have evidence for past formation of massive stars in the Galactic Centre,
 i.e. massive stars and the remnants are being observed
- It is a region of high stellar density, so exchange interaction can produce all types of binary companions, we can expect all kinds of extreme binary systems
- ...e.g. Faucher-Giguere & Loeb (2011) predict highly ecc. stellar BH-MSP systems
- We can even expect > 1000 pulsars, incl. millisecond pulsars (Wharton et al. 2013)
- We can probe:
 - star formation history (from char. ages)
 - local gravitational potential (from accel.)
 - distribution and properties of central ISM
 - properties & strength of central B-field (RM)

Pirsa: 14110094 Page 66/80

Selection effects – Why is it so hard?

The inhomogeneous ionized ISMs smears and scatters the pulses (NB: dispersion is easy...):

Expected scattering time may be enormous:

→ In particular at the centre:

4.85 GHz PSR B1758-23

1.41 GHz

0 50 100 150 200 250 300 350 400 450

Time (msec)

At "normal" search frequencies pulses may be undetectable!

Pirsa: 14110094 Page 67/80

Why not observing at very high frequencies?

- Pulsars generally have steep flux density spectra

Pirsa: 14110094 Page 68/80

Observations at mm-wavelengths

Pulsars have been detected at mm-wavelengths, e.g.:

Kramer et al. (1996)

Kramer et al. (1997)

Morris et al. (1997)

But we still need pulsars...!

Pirsa: 14110094 Page 69/80

The first pulsar in the Galactic Centre

- First discovered with SWIFT (Kennea et al. ,13)
 and NuSTAR (Mori et al. 13)
- Pulsations at 3.76s
- Discovery by Effelsberg and later Nancay and Jodrell at radio frequencies (Eatough et al.'13)
- Observed dispersion and rotation measures
 place it firmly inside the Galactic Centre
- Estimated distance about 0.1pc
- It is a radio-loud magnetar = very rare NS!

Proof that pulsars exist in Galactic Centre region!!

Pirsa: 14110094 Page 70/80

The first pulsar in the Galactic Centre

- First discovered with SWIFT (Kennea et al. ,13)
 and NuSTAR (Mori et al. 13)
- Pulsations at 3.76s
- Discovery by Effelsberg and later Nancay and Jodrell at radio frequencies (Eatough et al.'13)
- Observed dispersion and rotation measures place it firmly inside the Galactic Centre
- Estimated distance about 0.1pc
- It is a radio-loud magnetar = very rare NS!

Proof that pulsars exist in Galactic Centre region!!

Pirsa: 14110094 Page 71/80

Record observations of the GC Magnetar

- Detection up to 154 GHz, perhaps even 225 GHz!
- Single pulses up to 154 GHz!
- Simultaneous observations with Pico Veleta and Effelsberg: 5-154 GHz

Pirsa: 14110094 Page 72/80

Recent observations of pulsars & magnetar at high frequencies

- <u>Preliminary results</u> from observations at Pico Veleta (Torne et al. to be sub.)
- New record!
- Change of spectrum?

Pirsa: 14110094 Page 73/80

Previous indications for spectral change

• Some pulsars observed at 9mm and 7mm seem to show a peculiar spectral change:

Pirsa: 14110094 Page 74/80

Previous indications for spectral change

• Some pulsars observed at 9mm and 7mm seem to show a peculiar spectral change:

- This does not come totally unexpected, e.g. we know from the Crab that its infrared flux density is much higher than the high-frequency radio flux density
- Similar observations also for Vela— and possibly expexted:

Pirsa: 14110094 Page 75/80

Where are the pulsars? - Scattering revisited

- Based on our measurements of the scattering for the magnetar (Spitler et al. 2013)
 lots of people have claimed that there are not any pulsars, since scattering so low
- However, medium is very turbulent and there is a lot of "weather" new result:

Pirsa: 14110094 Page 76/80

Where are the pulsars? - Scattering revisited

- Based on our measurements of the scattering for the magnetar (Spitler et al. 2013)
 lots of people have claimed that there are not any pulsars, since scattering so low
- However, medium is very turbulent and there is a lot of "weather" new result:

Pirsa: 14110094 Page 77/80

Where are the pulsars? – Scattering revisited

- Based on our measurements of the scattering for the magnetar (Spitler et al. 2013)
 lots of people have claimed that there are not any pulsars, since scattering so low
- However, medium is very turbulent and there is a lot of "weather" new result:

Let's find the pulsars and use them!!

Pirsa: 14110094 Page 78/80

Where are the pulsars? - Scattering revisited

- Based on our measurements of the scattering for the magnetar (Spitler et al. 2013) lots of people have claimed that there are not any pulsars, since scattering so low
- However, medium is very turbulent and there is a lot of "weather" new result:

Let's find the pulsars and use them!!

Pirsa: 14110094 Page 79/80

Summary

- Pulsars probe wide range of fundamental physics, in particular gravity
- Eventually, we can also probe BH properties for ultimate tests of GR, precisely
- Recent results support idea to find and observe pulsars at mm-wavelengths

Combination of SGR A* probes using stars, pulsars and mm-VLBI image

Pirsa: 14110094 Page 80/80