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Abstract: <span>l will discuss the current status of the NANOGrav pulsar timing array, and the prospects for a detection of the stochastic
background produced by the mergers of supermassive black holes.</span>
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o "NANOGrav

The North American Nanohertz Observatory for Gravitational Waves:
about 50 students and scientists in the US and Canada working to characterize
the gravitational wave universe at low frequencies using pulsar timing. Part of a

world-wide effort including European and Australian partners.
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o " NANOGrav

Gravitational waves (GWs)

Gravitational waves are ripples in spacetime 0L/ T °
that propagate at the speed of light. They are a J )
key prediction of general relativity. 4 5

They are produced by massive objects moving
rapidly, and they change the distance between °
freely falling objects. B
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Gravitational wave observations will provide an entirely new means
to study the universe.

Their strength is measured by “strain”. k=
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Evidence for GWSs
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Now we're trying to detect GWs directly and build a telescope
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 "NANOGrav
Gravitational wave physics experiments
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o 'NANOGIrav
Analogy with electromagnetic observations

Observations in different parts of
the EM spectrum have provided us
with invaluable complementary

insights and knowledge about our
universe.

’ -.-h—&..— _,' . _8’4.‘_‘-.““‘

Infrared Visible

When a new part of phase space is revealed there are always new
discoveries.

Our goal is to inaugurate the era of low-frequency D
GWs.
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o " NANOGrav
Gravitational wave sources

The most promising sources are supermassive binary black holes (SMBBHs):

Stochastic background (hina

Continuous wave (single binan
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Other sources at nanohertz frequencies include
cosmic strings, inflation, and phase transitions in
the early universe.
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Pulsars

Pulsars are a type of neutron star which have
strong magnetic fields, spin rapidly, and emit beams
of radio waves along their magnetic axes.

Masses of about a solar mass, radii of about |0km.

Nuclear density—aside from black holes the most
extreme objects in the universe.

ROTATION
AXIS

RADIATION

BEAM

Rotate with periods of
milliseconds to seconds

Celestial lighthouses/clocks
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o« "NANOGrav
Pulsar timing

Millisecond pulsars (MSPs) have periods < 20 ms and rotate rapidly with a
long term stability that rivals atomic clocks. Millisecond pulsars are
Nature’s celestial clocks:
E.g.: Rotational period of PSR J1713+0747 on Tuesday Oct 28 2014 10:00 EDT
01365287363 +/- 0.0000000000000001 s

| N ) "e he 0 0045/ j| 365300853 4 O00000000000000

GWs perturb the times of arrival of pulses at levels that will be measurable.
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« " NANOGrav
A galactic-scale GW detector: the Pulsar Timing Array

. 4

GW perturbations are
correlated among different
pulsars.

David Champion

Need to observe an ensemble of
MSPs to extract the correlated
signal from the noise.

Arrival-time deviation correlation
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« "NANOGrav
The Green Bank Telescope and Arecibo Observatory

Our measurements are made with the two
most sensitive radio telescopes in the world:

Arecibo Observatory (AO), PR Green Bank Telescope (GBT), WV

World’s largest World’s largest steerable
radio telescope radio telescope

Soon CHIME will contribute to our data sets at low frequencies

Pirsa: 14110089 Page 12/24



 ""NANOGrav
NANOGrav Observing Status
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We observe 42 pulsars at the GBT and Arecibo, roughly every three weeks,
at two radio frequencies.

We search for GWs in “timing residuals”, calculated over long time spans.
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o« " NANOGrav
NANOGrav Activities

GW detector cor:lstr.uction and GW data set generation and GW detection and
characterization curation characterization

* Find additional MSPs (200 with * Regular (18 month) open data  * First detection of low-

at least 20-40 suitable for PTAs) releases frequency GWs or tightest

to increase our sensitivity constraints to date

* New pulsar timing packages

* More efficient/sensitive pulsar * Comprehensive open-source
searches * Cyber-| data curation system GW data analysis suite

* Fully characterized low-
frequency GW detector
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 "NANOGrav
Our goals

Making a detection of the stochastic background produced by SMBBHs, inaugurating the era of
low-frequency GWs.
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o T INAINUVQUINAV
Our goals

Making a detection of the stochastic background produced by SMBBHs, inaugurating the era of
low-frequency GWs.
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Our goals

o ' INIAINUCUIINAY

Making a detection of the stochastic background produced by SMBBHs, inaugurating the era of

low-frequency GWs.
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interesting territory!
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o 'NANOGIrav
Our goals

As the low-frequency GW sky comes into focus, it will offer a novel view of
unique and groundbreaking physics.

Cosmic strings:

Individual gl
supermassive =& early universe
black hole physics/high

inspirals and energy physics

their collective
“chorus™: physics
of accretion, late
inspiral dynamics

"W Black hole merger
‘ - \\ “memory”: a
New physics: "( - t surprising prediction
expect to be Q@ of strong field
surprised general relativity.
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Alternative theories of gravity and GWs
Two potential differences:
1) Additional GW polarization states: up to 6 modes

In GR only have 2 polarization states. Metric perturbation /..,
has 10 independent components. Can perform a coordinate
transformation x,, — z,(x,) that removes 4 components.
In GR can work in Lorentz gauge, d,,h*"” = 0 removing 4
additional components. In general cannot impose Lorentz
gauge.

2) GWs may propagate with speeds < c. E.g. in massive gravity
GWs will have a dispersion relation.
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Additional polarization states
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Antenna pattern response functions for pulsar-Earth
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Effect on stochastic backgrounds

Change the expected shape of the Hellings-Downs curve
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Effect on stochastic backgrounds

Change the expected shape of the Hellings-Downs curve
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Conclusions

* Pulsar timing experiments can be used to observe
the low frequency GW universe

* A detection is possible within the decade

* These experiments can be used to test gravity in a
new way
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